Published on in Vol 9 (2025)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/67969, first published .
Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach

Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach

Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach

Journals

  1. Defaz Defaz L, Sisalema Bonito K, Tituaña Saquinga J, Torres Iza L, Acosta Nuñez J. Use of pain assessment scales in non-communicative patients. Community and Interculturality in Dialogue 2025;5:154 View
  2. Jang E, Eum Y, Yoon D, Byun S. Classifying social and physical pain from multimodal physiological signals using machine learning. Scientific Reports 2025;15(1) View
  3. Defaz Defaz L, Sisalema Bonito K, Tituaña Saquinga J, Torres Iza L, Acosta Nuñez J. Use Of Pain Assessment Scales In Non-Communicative And Communicative Patients. Community and Interculturality in Dialogue 2025;5:127 View
  4. Özdemir C. Çok Modlu Biyosinyallerle Akut Ağrıların Makine Öğrenmesiyle Tespiti. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi 2025;6(2):85 View
  5. Mukherjee P, Halder Roy A, Konar A, Nagar A. EEG and EMG Induced Pain-Sensitive Learning Controller for Robotic Knee Rehabilitation Using Deep Learning. IEEE Access 2025;13:179944 View

Conference Proceedings

  1. Bonilla L, Aguirre-Usandizaga J, Garcia-Perez A, Osa M, Belacortu I, Diaz-de-Arcaya J, Aroca J, Torre-Bastida A, Milioñ R, Almeida A. 2025 IEEE International Conference on Smart Computing (SMARTCOMP). Towards a Framework for Intelligent Sampling: Comprehensive Review of Challenges, AI Techniques, and Tools View
  2. Datta S, Datta G, Gedeon T, Hossain M. Companion Proceedings of the 27th International Conference on Multimodal Interaction. Painthenticate: Feature Engineering on Multimodal Physiological Signals View