Published on in Vol 5, No 8 (2021): August
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/25290, first published
.

Journals
- Uppamma P, Bhattacharya S, Geman O. Deep Learning and Medical Image Processing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. Journal of Healthcare Engineering 2023;2023(1) View
- Starovoitov V, Golub Y, Lukashevich M. A Universal Retinal Image Template for Automated Screening of Diabetic Retinopathy. Pattern Recognition and Image Analysis 2022;32(2):322 View
- Dow E, Chen K, Zhao C, Knapp A, Phadke A, Weng K, Do D, Mahajan V, Mruthyunjaya P, Leng T, Myung D. Artificial Intelligence Improves Patient Follow-Up in a Diabetic Retinopathy Screening Program. Clinical Ophthalmology 2023;Volume 17:3323 View
- Martindale A, Llewellyn C, de Visser R, Ng B, Ngai V, Kale A, di Ruffano L, Golub R, Collins G, Moher D, McCradden M, Oakden-Rayner L, Rivera S, Calvert M, Kelly C, Lee C, Yau C, Chan A, Keane P, Beam A, Denniston A, Liu X. Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines. Nature Communications 2024;15(1) View
- Pattathil N, Zhao J, Sam-Oyerinde O, Felfeli T. Adherence of randomised controlled trials using artificial intelligence in ophthalmology to CONSORT-AI guidelines: a systematic review and critical appraisal. BMJ Health & Care Informatics 2023;30(1):e100757 View
- Cleland C, Rwiza J, Evans J, Gordon I, MacLeod D, Burton M, Bascaran C. Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping review. BMJ Open Diabetes Research & Care 2023;11(4):e003424 View
- Nguyen T, Ong J, Masalkhi M, Waisberg E, Zaman N, Sarker P, Aman S, Lin H, Luo M, Ambrosio R, Machado A, Ting D, Mehta J, Tavakkoli A, Lee A. Artificial intelligence in corneal diseases: A narrative review. Contact Lens and Anterior Eye 2024;47(6):102284 View
- Crew A, Reidy C, van der Westhuizen H, Graham M. A Narrative Review of Ethical Issues in the Use of Artificial Intelligence Enabled Diagnostics for Diabetic Retinopathy. Journal of Evaluation in Clinical Practice 2025;31(6) View
- Nguyen T, Ong J, Jonnakuti V, Masalkhi M, Waisberg E, Aman S, Zaman N, Sarker P, Teo Z, Ting D, Ting D, Tavakkoli A, Lee A. Artificial intelligence in the diagnosis and management of refractive errors. European Journal of Ophthalmology 2025;35(4):1456 View
- Camacho-García-Formentí D, Baylón-Vázquez G, Arriozola-Rodríguez K, Avalos-Ramirez E, Hartleben-Matkin C, Valdez-Flores H, Hodelin-Fuentes D, Noriega A. Synergistic AI-resident approach achieves superior diagnostic accuracy in tertiary ophthalmic care for glaucoma and retinal disease. Frontiers in Ophthalmology 2025;5 View
- Rios-Garcia W, Sofía F, Silva-Jiménez S, Banegas-Báez D, Rios-Garcia A. Artificial Intelligence for Chronic Disease Screening in Latin America and the Caribbean: The Diagnostic Potential of Digital Health. Journal of Medical Systems 2025;49(1) View
- Ansari A, Ansari N, Khalid U, Markov D, Bechev K, Aleksiev V, Markov G, Poryazova E. The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy. Journal of Clinical Medicine 2025;14(14):5150 View
- Wang T, Luo W, Tu Y, Chou Y, Wu Y. Prospective validation of deep-learning algorithms for diabetic retinopathy screening: A systematic review and meta-analysis. Survey of Ophthalmology 2025 View
