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Abstract

Background: The automated screening of patients at risk of developing diabetic retinopathy represents an opportunity to improve
their midterm outcome and lower the public expenditure associated with direct and indirect costs of common sight-threatening
complications of diabetes.

Objective: This study aimed to develop and evaluate the performance of an automated deep learning–based system to classify
retinal fundus images as referable and nonreferable diabetic retinopathy cases, from international and Mexican patients. In
particular, we aimed to evaluate the performance of the automated retina image analysis (ARIA) system under an independent
scheme (ie, only ARIA screening) and 2 assistive schemes (ie, hybrid ARIA plus ophthalmologist screening), using a web-based
platform for remote image analysis to determine and compare the sensibility and specificity of the 3 schemes.

Methods: A randomized controlled experiment was performed where 17 ophthalmologists were asked to classify a series of
retinal fundus images under 3 different conditions. The conditions were to (1) screen the fundus image by themselves (solo); (2)
screen the fundus image after exposure to the retina image classification of the ARIA system (ARIA answer); and (3) screen the
fundus image after exposure to the classification of the ARIA system, as well as its level of confidence and an attention map
highlighting the most important areas of interest in the image according to the ARIA system (ARIA explanation). The
ophthalmologists’ classification in each condition and the result from the ARIA system were compared against a gold standard
generated by consulting and aggregating the opinion of 3 retina specialists for each fundus image.

Results: The ARIA system was able to classify referable vs nonreferable cases with an area under the receiver operating
characteristic curve of 98%, a sensitivity of 95.1%, and a specificity of 91.5% for international patient cases. There was an area
under the receiver operating characteristic curve of 98.3%, a sensitivity of 95.2%, and a specificity of 90% for Mexican patient
cases. The ARIA system performance was more successful than the average performance of the 17 ophthalmologists enrolled in
the study. Additionally, the results suggest that the ARIA system can be useful as an assistive tool, as sensitivity was significantly
higher in the experimental condition where ophthalmologists were exposed to the ARIA system’s answer prior to their own
classification (93.3%), compared with the sensitivity of the condition where participants assessed the images independently
(87.3%; P=.05).
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Conclusions: These results demonstrate that both independent and assistive use cases of the ARIA system present, for Latin
American countries such as Mexico, a substantial opportunity toward expanding the monitoring capacity for the early detection
of diabetes-related blindness.

(JMIR Form Res 2021;5(8):e25290) doi: 10.2196/25290
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Introduction

Impact of Diabetes
Diabetes is one of the most challenging health problems in the
world, affecting more than 400 million people. Particularly,
diabetes threatens the health care systems of low- and
middle-income countries, where 80% of the world’s diabetic
population live [1,2] . Diabetes is a multifactorial and complex
disease with a strong genetic component. In this regard, it has
been demonstrated that Hispanic/Latino people have a greater
susceptibility to develop type II diabetes, as well as
diabetes-associated complications, including renal insufficiency
and visual impairment [1-4].

In 2015, there were more than 41 million adults diagnosed with
diabetes in Latin America and Caribbean countries, making it
one of the major causes of premature death and disability in the
region [5,6] . Particularly, Mexico ranked sixth among the
world’s diabetes prevalence in 2015 and second among Latin
America, only after Brazil [7,8]. It is estimated that 26 million
adults live in Mexico with diabetes or prediabetes, and only
half of them have been diagnosed. Diabetes and its related
complications are the first cause of disability and the third cause
of death in the country, largely impacting productivity, life
quality, and the economy [5].

Evolution and Treatment of Diabetic Retinopathy
Diabetic retinopathy (DR) is the most common complication
in advanced or uncontrolled diabetic patients and is the leading
cause of irreversible vision loss in working-age adults [9,10].
DR is a microvascular complication that emerges in diabetic
patients as a consequence of chronic hyperglycemia that
contributes to blood vessel damage in the retina, causing a
combination of fluid leakage, swelling of the surrounding tissue,
blood flow obstruction, and abnormal neovascularization [9,10].

DR progression is slow, gradual, and reversible in its first stage.
However, if not treated promptly, it can lead to irreversible
blindness . According to the International Clinical Diabetic
Retinopathy Severity Scale, the first stage of DR is classified
as mild nonproliferative diabetic retinopathy (NPDR), which
is characterized by the presence of at least 1 microaneurysm
and is highly reversible through blood pressure, cholesterol,
and sugar level control. Only very rare cases that present
macular edema (swelling of fluid and protein deposits on or
under the macula) might require laser photocoagulation or
intravitreal injections. Without adequate diabetic control, the
disease advances to moderate and severe NPDR stages, which
include the presence of hemorrhages, microaneurysms, hard
exudates, venous beading, or intraretinal microvascular
abnormalities. At these stages, metabolic control is not sufficient

to stop the disease progression, and the patient will require
invasive treatments such as photocoagulation and intravitreal
antivascular endothelial growth factor agents or corticosteroids.
The most advanced stage is proliferative DR and is characterized
by neovascularization, preretinal hemorrhages, hemorrhages in
the vitreous, traction retinal detachments, or macular edema.
Proliferative DR is treated with the more aggressive laser
therapy called scatter or pan-retinal photocoagulation;
intravitreal injection; and, in some cases, vitreoretinal surgery,
which removes scar tissue or blood from the vitreous cavity to
repair retinal detachments or treat macular holes [10-13].

To increase early detection and prevent the progression of DR
to advanced stages, diabetic patients are recommended to have
annual or semiannual retinal screenings beginning at the moment
when they are diagnosed with diabetes. However, according to
data from the Diabetic Retinopathy Barometer, 27% of people
living with diabetes declared that they never discussed eye
complications with their doctors before the onset of
complications, and only 13% of the diabetic population have
visited an ophthalmologist after their diagnosis [4,14]. Through
frequent, preventive screenings, 70% of the cases can be
captured at the initial stages of the disease and treated with
noninvasive strategies such as metabolic control or
photocoagulation [15]. Unfortunately, in most developing
countries, there is no ophthalmological attention at primary care
clinics, and it is only when diabetic patients develop vision
attenuation that they are referred to second- and third-level
hospitals to be screened, diagnosed, and treated [16]. At this
point, significant retinal damage has occurred, and, even with
invasive vitreoretinal surgery or photocoagulation, vision cannot
be restored.

The limited access to ophthalmologists and retina specialists at
primary care clinics, due to financial and staff limitations at
national health care institutions, precludes the continuous
monitoring of diabetic patients in low- and middle-income
countries such as Mexico.

Challenges of Diabetic Retinopathy Screening on a
Large Scale
In Mexico, DR is a leading cause of irreversible blindness
among the working-age population [4,13] . Approximately 30%
of the patients diagnosed with diabetes develop DR, and, based
on the predictions of diabetes increasing in prevalence, by 2045,
there will be 245 million people with DR lesions and 77 million
people with vision-threatening DR [17].

One of the main limitations for the establishment of a systematic
eye-screening program is the limited availability of
ophthalmologists and their unequal distribution around the
country. Based on the 2013 registry of society-affiliated
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ophthalmologists from the Mexican Society of Ophthalmology,
the average number of ophthalmologists per 100,000 people is
lower (2.68 per 100,000) than the average among Latin
American countries (5.27 per 100,000). There is a particularly
worrying distribution in rural areas, with 2 ophthalmologists
per 100,000 people [18].

In particular, in low- and middle-income countries such as Costa
Rica, Peru, and India, there have been several efforts to
implement DR screening programs targeting the limitation of
ophthalmologists with mobile screening units integrated with
telemedicine [19-21]. In these contexts, 2 key factors were
identified for achieving cost-effectiveness of these strategies:
(1) accurate identification of the risk population and (2)
optimization of the number of people screened per unit of time
[21]. Notably, these 2 factors can be improved by leveraging
automated retinal image analysis (ARIA) systems such as the
one in this study.

ARIA for Diabetic Retinopathy Screening
In recent years, the combination of the development of advanced
statistical methods, the greater availability of data, and the
substantial increase in computing power has allowed for the
application of advanced computational methodologies, including
artificial intelligence (AI), in diverse social and medical
domains. Among the use of AI for social welfare, AI
applications in health care domains are one of the fastest
growing sectors, with a compound annual growth rate above
40% during the period between 2014 and 2021 [22]. AI tools
have been successfully applied to diagnostics, therapeutics,
population health management, administration, and regulation,
showing a capacity to augment societies’ access to health care
and improve the coverage and quality of the services provided.

Ultimately, AI applications in health care present opportunities
to improve overall quality of life, patients’ prognoses, and
optimization of human and financial resources [23]. In
particular, ARIA systems have emerged as a promising solution
to increase early detection of DR at primary care clinics,
particularly, in resource-constrained developing countries,
thereby improving health outcomes, avoiding incapacitating
complications, and reducing treatment costs.

ARIA systems analyze retinal fundus images by applying
techniques such as deep learning (DL) to classify diabetic
patients in (1) cases without retinal lesions associated to DR
(nonreferable output) and (2) cases that need to undergo
examination by an ophthalmologist to confirm diagnosis and
define treatment (referable output) [24-28]. As of today, various
analysis systems have been developed and implemented on the
market in European countries, Canada, and the United States.
However, very few have been tested in Latin America and
Caribbean countries to evaluate their performance and usability
in the particular resource-constrained settings of these countries
[29]. To determine qualities of successful implementation in
these countries, research must investigate patients’ ethnicities,
the training of health care personnel, community openness to
new technologies, and hospital resources.

Aims and Key Findings of the Study
This study aimed to evaluate the performance of a DL-based
ARIA system that classifies retinal fundus images in
nonreferable or referable circumstances, based on the presence
of DR damage, as well as the potential benefits of its use as an
assistive tool for ophthalmic doctors. We also completed a
randomized controlled trial where the performance of the ARIA
system was compared with the accuracy of 17 ophthalmologists
from one of the most reputable ophthalmic hospitals in Mexico,
Hospital de la Ceguera, which is part of the “Association to
Avoid Blindness in Mexico” (APEC). In particular, the
performances of ophthalmologists in 3 experimental conditions
were assessed: 1 independent condition, in which the
ophthalmologists assessed the images independently from the
ARIA system, and 2 assistive conditions, in which either
ophthalmologists observed and were influenced by the ARIA
system’s classification and confidence or an ARIA
system–generated, attention heatmap highlighted probable DR
lesions in the retina.

The key findings were that the ARIA system developed using
a DL strategy was able to classify referable vs nonreferable
cases with an area under the receiver operating characteristic
curve (AUROC) of 98%, a sensitivity of 95.1%, and a specificity
of 91.5% for international patient cases. There was an AUROC
of 98.3%, a sensitivity of 95.2%, and a specificity of 90% for
Mexican patient cases. For Mexican patient cases, the ARIA
system performance was more successful than the average
performance of the 17 ophthalmologist participants in the study.
Moreover, we found that the ARIA system can be useful as an
assistive tool, as we found significant improvement in the
specificity in the experimental condition where participants
were able to consider the answer of the ARIA system as a
second opinion (87.3%), compared with the specificity of the
condition where participants assessed the images independently
(93.3%; P=.05).

Hence, this study aimed to demonstrate the high potential value
of the use of ARIA systems, in both independent and assistive
schemes, toward the goal of effective mass screening for the
early detection of DR in developing countries such as Mexico.

Methods

ARIA System

ARIA System Design
The ARIA system consists of an image preprocessing module
and an image analysis module that returns a binary referable
and nonreferable DR classification; the level of confidence of
that classification; and an attention map that shows, pixel-wise,
the indicative features for referable DR according to the model
(Figure 1). The models constituting the ARIA system were
implemented using the Keras library with the Tensorflow
backend [30] in Python 3.5 [31].

Images from all datasets were annotated by ophthalmic
specialists for 5-class identification according to the
International Clinical Diabetic Retinopathy Severity Scales
(ICDRSS) and subsequently labeled as nonreferable or referable
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DR [32]. Table 1 describes the classification, and Figure 1A
provides a graphical example. The gold standard classification

used for the experimental phase of the study was provided by
3 retina specialists, as described in the following subsections.

Figure 1. Deep learning–based automated retinal image analysis system. (A) Example of classified retinal fundus images according to the International
Clinical Diabetic Retinopathy Severity Scale used for the training data. (B) Flow chart describing the design of the automated retinal image analysis
system; the data used for training, validation, and testing; and the algorithm’s outputs. DR: diabetic retinopathy; NPDR: nonproliferative diabetic
retinopathy; PDR: proliferative diabetic retinopathy.

Table 1. International Clinical Diabetic Retinopathy Severity Scale and its classification for the automated retinal image analysis system [32].

Ophthalmoscopy findingsDRb severity scaleARIAa system classification

No abnormalitiesNo apparent retinopathy (no DR)Nonreferable

Microaneurysms onlyMild nonproliferative DR (mild DR)

More than just microaneurysms but less than severe nonpro-
liferative diabetic retinopathy

Moderate nonproliferative DR (moderate DR)Referable

≥20 intraretinal hemorrhages in each of 4 quadrants, definite
venous beading in 2 quadrants, or prominent intraretinal mi-
crovascular abnormalities in 1 quadrant. No signs of prolifer-
ative retinopathy.

Severe nonproliferative DR (severe DR)

Neovascularization or vitreous/preretinal hemorrhage.Proliferative DR

aARIA: automated retinal image analysis.
bDR: diabetic retinopathy.

Preprocessing
Before classifying the images and training the algorithms, a
preprocessing procedure was applied. The procedure consisted
of cropping the background to eliminate noninformative areas,

padding the image to guarantee consistent squared image ratios,
resizing the image to 224×224 pixels, and normalizing pixel
values to the range 0-1.
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Image Classification Model
The model used for image classification consisted of a deep
convolutional neural network [33,34]. The network architecture
developed for this project consisted of 16 convolutional layers,
a dense layer of 1024 neurons, 2 dropout layers to avoid
overfitting, and a binary classification layer of a single unit with
sigmoid activation. This architecture took the VGG model
published by Simonyan and Zisserman [34] as a starting point.
Hence, the model output is a value between 0 and 1, which may
be interpreted as the confidence of the model regarding a
referable DR classification. Lastly, a threshold of 0.5 was used
to classify nonreferable (<0.5) and referable (≥ 0.5) DR.

The model was trained on an international dataset, of which
most images were taken in primary care clinics in California,
United States [35]. The training subset had 57,146 images
(16,458/57,146, 28.80% with referable DR; 45,602/57,146,
79.80% gradable), and the evaluation subset had 8,790 images
(694/8790, 7.90% with referable DR; 7067/8790, 80.40%

gradable). The training and test subsets followed the same
distribution used by Voets and colleagues [36]. Considering
real-life scenarios, the training and validation datasets included
images from different types of cameras and of different qualities
(ie, with artifacts, out of focus, underexposed, or overexposed).

Attention Heatmaps
Attention heatmaps were developed to show lesion areas in the
image by highlighting each pixel according to their importance
to a referable DR classification, according to the model. These
heatmaps were obtained by applying one of the most effective
methods for building saliency maps on images, the layer-wise
relevance propagation method, with an alpha-beta rule [37,38].
In essence, the layer-wise relevance propagation method
redistributed the output value throughout the layers until the
input layer (input image) was reached. Figure 2 shows examples
of fundus images and the heatmaps generated using the
methodology described.

Figure 2. Attention heatmaps for 2 referable images. Green and yellow colors indicate regions in the image that provide information to the algorithm
to classify the image as referable.

Study Populations
We had 17 ophthalmologists from the Mexican ophthalmic
hospital participating in the experimental study, and 3 retina
specialists from the same institution participated in the
generation of the gold standard. The 17 ophthalmologists
evaluated 45° macula-centered fundus images from 100 Mexican
patients, where 50% (50/100) had nonreferable DR and 50%
(50/100) had referable DR levels. Each ophthalmologist
evaluated 45 retinal images, in order for each image to be

evaluated more than once. The ophthalmologists were retina
specialization resident students, where 3 residents were in their
second year, 12 were in their third year, and 2 were in their
fourth year of residency.

Experimental Design

Overview of Study Design
We conducted a randomized controlled experiment to assess
the performance of the ARIA system in comparison with
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ophthalmic doctors from the Mexican ophthalmic hospital and
to evaluate the potential benefits of using the system as an
assistive tool for doctors. To achieve this, a web-based
experiment platform was developed where ophthalmologists
evaluated fundus retinal images under 3 different

conditions—solo, ARIA answer, and ARIA
explanation—described below. The platform was developed
based on the Empirica framework [39]. Figure 3 displays the
main screens of the web platform used in this experiment.

Figure 3. Web-platform design for patient-case classification. (A) Visual indicators and components of the classification window. (B) Visualization
of the 3 experimental conditions. ARIA: automated retinal image analysis; DR: diabetic retinopathy.

Gold Standard and Image Quality
To generate a gold standard, the fundus images of all patient
cases used in the experiment were graded by 3 retina specialists
of the ophthalmic hospital, and a majority rule was used (ie, if
there was a disagreement in the nonreferable/referable label,
the label selected by 2 of 3 experts was considered the gold
standard). We used the same web-based platform described in
Figure 3 for image grading. The retina specialists also graded
the image quality, and images graded as bad quality were not
considered for the experiment. From the remaining images, 50
images from patients with referable DR and 50 images from
patients with nonreferable DR were selected at random to be
used for the study. According to the ICDRSS, the selected
images had the following distribution: 49 with no apparent
retinopathy, 1 with mild DR, 33 with moderate DR, 12 with
severe nonproliferative DR, and 5 with proliferative DR. Since
these images were taken at an ophthalmic hospital, most patients
with DR were under treatment and therefore had more advanced
DR stages (moderate, severe, and proliferative DR).

Experimental Conditions
The experiment followed a within-subjects design, where each
ophthalmologist evaluated 45 randomly selected fundus images

(from 45 different patients), 15 for each of the 3 treatment
conditions: solo, ARIA answer, and ARIA explanation. The
ophthalmologists were first asked to evaluate 15 fundus retinal
images in the solo condition, followed by 30 images that
randomly alternated between the ARIA answer and the ARIA
explanation conditions. The 15 images in each condition subset
were randomly selected for each participant without replacement
from all images available for the experiment, generating a rough
balance in the proportion of referable and nonreferable images
across conditions. In particular, the average proportion of
referable images was 49.8% (127/255) for the solo condition,
52.5% (134/255) for the ARIA answer condition, and 46.7%
(119/255) for the ARIA explanation condition. In addition,
Multimedia Appendix 1 reports the average number of
observations of each ICDRSS class for each treatment condition.

In the solo condition, participants responded to the task in
isolation, without any exposure to the ARIA system. In contrast,
in the ARIA answer condition, participants were exposed to the
binary answer of the ARIA system (ie, nonreferable or
referable), as a second opinion, and then asked to submit their
postexposure answer. The ARIA explanation condition was
identical to the ARIA answer condition, with the exception that

JMIR Form Res 2021 | vol. 5 | iss. 8 | e25290 | p. 6https://formative.jmir.org/2021/8/e25290
(page number not for citation purposes)

Noriega et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


participants were shown not only the binary answer of the ARIA
system but also its level of confidence and attention heatmap.

Finally, after completing all the classification tasks, the
ophthalmologists were asked to submit an optional feedback
survey about their experience.

The study was reviewed and approved by the Committee on the
Use of Humans as Experimental Subjects at the Massachusetts
Institute of Technology, and all participants provided explicit
consent prior to their participation.

Results

ARIA’s Independent Performance
The ARIA system was first tested in a large dataset of
international cases. It achieved an out-of-sample area under the
receiver operating characteristic curve (AUROC) of 98%
(Multimedia Appendix 1). In particular, using a given
acceptance threshold, the ARIA system achieved a sensitivity
of 95.1% and a specificity of 91.5%. Most importantly, the
ARIA system also displayed high accuracy classifying images
from patients from the Mexican ophthalmic hospital, where it
had an AUROC of 98.3%, a sensitivity of 95.2%, and specificity
of 90% (Figure 4).

Figure 4. Receiver operating characteristic curve of the ARIA system compared with the ophthalmologist’s accuracy under the 3 experimental conditions
(solo, ARIA answer, and ARIA explanation). Grey lines indicate 95% CIs for the solo condition. ARIA: automated retinal image analysis; AUC: area
under the curve.

ARIA’s Assistive Performance
Figure 4 shows the sensitivity and false positive rate (false
positive rate = 1 – specificity) for each condition—solo, ARIA
answer, and ARIA explanation—and compares them with the
receiver operating characteristic curve of the ARIA system. The
average sensitivity in the solo condition across the 17
participants was 87.3%, and the average specificity was 86.8%.
In comparison, the average sensitivity and specificity across
the 17 participants for the ARIA answer condition were 93.3%
and 89.3%, respectively, and the average sensitivity and
specificity across participants for the ARIA explanation
condition were 91.5% and 79%, respectively.

The joint analysis of the ARIA system performance for Mexican
patients, compared with the 3 experimental conditions involving
ophthalmologist assessments, showed that the ARIA system is
more accurate than the average accuracy of participants under
any of the exposure conditions. In particular, the ARIA system
increased sensitivity from 87.3% to 93.3% (P=.05; vertical
movement between the dark blue dot and the green line in Figure
4) while maintaining participants’ specificity at 86.8%.
Compared with the solo condition, the ARIA system also
increased specificity to 100% while maintaining participants’
average sensitivity at 87.3% (horizontal movement from the
dark blue dot leftwards to the green line in Figure 4).
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Most interestingly, Figure 4 shows that exposure to the ARIA
system was able to improve the performance of human experts,
particularly, in the ARIA answer condition, which significantly
improved the sensitivity and specificity compared with the solo
condition (distance between dark blue and light blue dots in
Figure 4). However, performance in the ARIA explanation
condition had mixed results, showing improved sensitivity but
worse specificity (distance between dark blue and orange dots
in Figure 4).

Figure 5 provides more detail on the effect that exposure to
information of the ARIA system had on the performance of

ophthalmologists. In particular, it shows that the accuracy (%
of correct answers) of the 17 experts consistently improved in
the ARIA answer condition, shifting the distribution upwards
and decreasing the variance across participants. For example,
while only 2 participants had a perfect score in the solo
condition, up to 6 participants had a perfect score in the ARIA
answer condition. However, the ARIA explanation condition
had mixed beneficial and detrimental effects on participants’
accuracy and increased the variance of performance across
participants compared with the solo condition.

Figure 5. Influence of the ARIA system on the ophthalmologists’ decisions: ophthalmologists’ performance after exposure to the ARIA answer or the
ARIA explanation condition outputs. ARIA: automated retinal image analysis.

Discussion

Principal Findings
The number of people living with diabetes by 2045 is projected
to reach 700 million people worldwide [7,40]. This means that
routine eye screening might prevent vision loss in approximately
230 million patients. Just in Mexico, the prevention of DR would
implicate savings of up to US $10 million for the 3 main public
health care institutions [41]. The development of ARIA systems
represents a possible solution to the increasing demand of eye
screenings in health care systems, particularly, in
limited-resource settings. However, it has been shown that
acceptance of the human factors involved in the field processes
are critical for the effective implementation of screening systems
[42,43].

In this study, we successfully developed and evaluated a
DL-based ARIA system to determine its performance as an
independent decision-making system, as well as a supportive
tool for health care professionals. As an independent
decision-making tool, the ARIA system outperformed the
average ophthalmologist participant in the experiment. On the
other hand, as a supportive tool, the ARIA system exerted a
strong influence on the opinion of human participants. However,

its effect depended on the output’s format, highlighting the
importance of a well-designed platform that has been user-tested
with final users.

ARIA’s Independent Performance
The DL-based ARIA system presented in this work was
evaluated with a subset of retinal images from international
patient cases and an image set of patients from a Mexican
ophthalmic hospital. In both datasets, the ARIA system
outperformed the average sensitivity and specificity of 17
ophthalmology residents of retina specialty.

The sensitivities (95.1% and 95.2% for the international and
Mexican datasets, respectively) are comparable to those reported
for 7 other automated DR screening systems assessed in a
systematic review, whose sensitivity values were between 87%
and 95% [44]. On the other hand, the specificities reached by
our ARIA system (91.5% and 90% for the international and
Mexican datasets, respectively) were higher than the average
specificity values of between 49% and 69% reported by
Nørgaard and Grauslund [44]. Also, our system’s sensitivity
and specificity were comparable with those reported for
commercial DR screening technologies with DL features, whose
sensitivity and specificity values were 85%-99.3% and
68.8%-97.9%, respectively [45]. Compared with these
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commercial DR screening technologies, our ARIA system has
one of the best balances between sensitivity and specificity,
with both measurements above 90%.

ARIA Assistive Performance
Besides the sensitivity and specificity assessment, the ARIA
system evaluation included 2 hybrid decision schemes, either
assistive or a combination of human and AI. The experimental
design was developed to reflect that in real-world applications,
results of an automated system are reviewed and confirmed by
health care professionals to choose the most adequate therapeutic
protocol for each patient. In these assistive evaluations, we
confirmed the existence of significant synergies derived from
the interaction among the human and AI dyads.

The ARIA output’s influence on ophthalmologists’ overall
precision depended on its format. A simplified output (ie,
nonreferable or referable classification) resulted in the most
successful sensitivity and specificity for ophthalmologists’
inputs. On the other hand, a more complex output (ie, with a
confidence bar and attention map) partially improved
ophthalmologists’decisions, increasing their sensitivity but also
increasing the incidence of false positive classifications.

These results are coherent with some of the ophthalmologists’
feedback submitted after the classification tasks, where some
expressed that even when attention heatmaps were useful, the
bar showing the confidence of the ARIA system was confusing.

Limitations
Future pilot studies with a larger number of patients and
ophthalmologists will be useful to confirm the ARIA system’s
accuracy. Also, future studies might include direct
ophthalmoscopy by retina specialists as the gold standard, in
order to avoid errors related to image quality.

Additional experiments with alternative platform designs might
be useful to generate a suitable screening tool that optimizes
patient evaluations and referrals in 2 stages. In the first stage,
an ARIA system might be useful to identify patients with a
higher probability of developing DR. In the second stage,
ophthalmologists would be able to evaluate the retinal images
of high-risk patients, in combination with the ARIA system
output, to make a first decision about the disease stage and
treatment, sending referrals to retina specialists only for patients
with an advanced disease.

Conclusions
The results of this study demonstrate a substantial opportunity
for Latin American countries such as Mexico toward developing
efficient mass screening systems for early detection of
diabetes-related blindness, considering the short supply of
ophthalmologists in their public health care system.

The web-based platform developed for this study was designed
for the implementation of the ARIA system as an automatic
screening tool and as a telemedicine platform to confirm or
reject the ARIA system’s output with assessment of an
ophthalmologist or retina specialist. The platform was useful
for this study and can be easily adapted for future studies that
include the collection of additional information about other eye
diseases detectable by image analysis (ie, glaucoma, age-related
macular degeneration, or coat disease).

The conclusion of these results suggests the proposed ARIA
system is valuable in an independent or assistive condition and
can be useful to increase and improve DR diagnosis, as well as
other ophthalmic diseases in the future. However, special
attention to the design of an explanatory platform is required
for successful implementation of the system.

Acknowledgments
The authors gratefully thank the retina specialists and the ophthalmologists from the APEC Hospital involved in this study for
their evaluations of the retina fundus images. This project was carried out thanks to the fellowships received by individual members
of the team, including fellowships of the Massachusetts Institute of Technology and the National Council of Science and Technology
(CONACYT).

Authors' Contributions
AN conceived and designed the experiments, analyzed data, and contributed to the discussion and review of the paper. DC trained
the models, performed the experiments, analyzed data, and contributed to the discussion of the paper. DM contributed to the
experimental design, image classification, and discussion of the paper. JE contributed with data analysis and paper writing,
including the discussion. HQM, VMC, AA, and AP contributed to various aspects of the paper, including experimental design,
machine learning strategies, medical feedback, image evaluations, and the discussion.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Average number of observations according to the International Clinical Diabetic Retinopathy Severity Scales classification, for
each set of 15 retina images in each treatment condition: solo, ARIA answer, and ARIA explanation.
[DOC File , 58 KB-Multimedia Appendix 1]

JMIR Form Res 2021 | vol. 5 | iss. 8 | e25290 | p. 9https://formative.jmir.org/2021/8/e25290
(page number not for citation purposes)

Noriega et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v5i8e25290_app1.doc&filename=d7614117cd9e1816b86e71b643d72115.doc
https://jmir.org/api/download?alt_name=formative_v5i8e25290_app1.doc&filename=d7614117cd9e1816b86e71b643d72115.doc
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 2
CONSORT-EHEALTH checklist (V 1.6.1).
[PDF File (Adobe PDF File), 407 KB-Multimedia Appendix 2]

References

1. Zhang X, Saaddine JB, Chou C, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United
States, 2005-2008. JAMA 2010 Aug 11;304(6):649-656 [FREE Full text] [doi: 10.1001/jama.2010.1111] [Medline:
20699456]

2. SIGMA Type 2 Diabetes Consortium T, Williams AL, Jacobs SBR, Moreno-Macías H, Huerta-Chagoya A, Churchhouse
C, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 2014 Feb
06;506(7486):97-101 [FREE Full text] [doi: 10.1038/nature12828] [Medline: 24390345]

3. Caballero AE. Understanding the Hispanic/Latino patient. Am J Med 2011 Oct;124(10 Suppl):S10-S15. [doi:
10.1016/j.amjmed.2011.07.018] [Medline: 21939793]

4. Secretaría de Salud. 2016. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016 (Ensanut MC 2016). Cuernavaca:
INSP; 2016. URL: https://www.gob.mx/cms/uploads/attachment/file/209093/ENSANUT.pdf [accessed 2019-11-08]

5. Institute for Health Metrics and Evaluation. 2017. Country profiles (Mexico). URL: http://www.healthdata.org/results/
country-profiles [accessed 2019-08-24]

6. Barcelo A, Arredondo A, Gordillo-Tobar A, Segovia J, Qiang A. The cost of diabetes in Latin America and the Caribbean
in 2015: Evidence for decision and policy makers. Journal of Global Health 2017 Dec;7(2):020410 [FREE Full text] [doi:
10.7189/jogh.07.020410] [Medline: 29163935]

7. International Diabetes Federation. 2019. IDF Diabetes Atlas Ninth edition. 2019. URL: https://diabetesatlas.org/upload/
resources/material/20200302_133352_2406-IDF-ATLAS-SPAN-BOOK.pdf [accessed 2019-11-15]

8. Gómez EJ. Political party ambitions and type-2 diabetes policy in Brazil and Mexico. Health Econ Policy Law 2020
Apr;15(2):261-276. [doi: 10.1017/S1744133118000415] [Medline: 30394254]

9. Deshpande A, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther
2008 Nov;88(11):1254-1264 [FREE Full text] [doi: 10.2522/ptj.20080020] [Medline: 18801858]

10. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. The Lancet 2010 Jul;376(9735):124-136. [doi:
10.1016/S0140-6736(09)62124-3]

11. Secretaría de Salud. Diagnóstico y Tratamiento de Retinopatía Diabética. Evidencias y Recomendaciones. Catálogo Maestro.
Guías de Práctica Clínica. México: CENETEC; 2011. URL: http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/
171_GPC_RETINOPATIA_DIABETICA/Imss_171RR.pdf [accessed 2019-07-19]

12. Jaime CL. RETINOPATÍA DIABÉTICA DESDE LA PREVENCIÓN. INTEGRAR LA PESQUISA EN LOS CENTROS
DE DIABETES. Revista Médica Clínica Las Condes 2016 Mar;27(2):195-203. [doi: 10.1016/j.rmclc.2016.04.009]

13. Barría VF, Martínez CF. Clinical Practice Guide for Diabetic Retinopathy for Latin America for Ophthalmologists and
Healthcare Professionals. 2011. URL: https://www.iapb.org/wp-content/uploads/
2011-Clinical-Practice-Guide-for-DR-for-Latin-America.pdf [accessed 2020-08-21]

14. Cavan D, Makaroff L, da Rocha Fernandes J, Sylvanowicz M, Ackland P, Conlon J, et al. The Diabetic Retinopathy
Barometer Study: Global perspectives on access to and experiences of diabetic retinopathy screening and treatment. Diabetes
Res Clin Pract 2017 Jul;129:16-24. [doi: 10.1016/j.diabres.2017.03.023] [Medline: 28499163]

15. Jiménez Báez M, Márquez González H, Bárcenas Contreras R, Morales Montoya C, García Espinosa L. EARLY DIAGNOSIS
OF DIABETIC RETINOPATHY IN PRIMARY CARE. Colombia Médica 2015 Jan 01;46(01):14-18 [FREE Full text]
[doi: 10.25100/cm.v46i1.1681]

16. Carrillo-Alarcón L, Ávila-Pozos R, López LE, Cruz-Castillo R, Ocampo-Torres M, Alcalde-Rabanal J. Projection of
Diabetic Patients Retinopathy in Hidalgo State-México, through 2030. EC Ophthalmology 2017;5(2):73-80.

17. Thomas RL, Halim S, Gurudas S, Sivaprasad S, Owens D. IDF Diabetes Atlas: A review of studies utilising retinal
photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract 2019
Nov;157:107840. [doi: 10.1016/j.diabres.2019.107840] [Medline: 31733978]

18. Hong H, Mújica OJ, Anaya J, Lansingh VC, López E, Silva JC. The Challenge of Universal Eye Health in Latin America:
distributive inequality of ophthalmologists in 14 countries. BMJ Open 2016 Nov 18;6(11):e012819 [FREE Full text] [doi:
10.1136/bmjopen-2016-012819] [Medline: 27864248]

19. Martinez J, Hernandez-Bogantes E, Wu L. Diabetic retinopathy screening using single-field digital fundus photography at
a district level in Costa Rica: a pilot study. Int Ophthalmol 2011 Apr;31(2):83-88. [doi: 10.1007/s10792-010-9413-9]
[Medline: 21274593]

20. Salamanca O, Geary A, Suárez N, Benavent S, Gonzalez M. Implementation of a diabetic retinopathy referral network,
Peru. Bull World Health Organ 2018 Oct 01;96(10):674-681 [FREE Full text] [doi: 10.2471/BLT.18.212613] [Medline:
30455515]

JMIR Form Res 2021 | vol. 5 | iss. 8 | e25290 | p. 10https://formative.jmir.org/2021/8/e25290
(page number not for citation purposes)

Noriega et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v5i8e25290_app2.pdf&filename=dce300fd6c6749ac4da7015e9e9219c6.pdf
https://jmir.org/api/download?alt_name=formative_v5i8e25290_app2.pdf&filename=dce300fd6c6749ac4da7015e9e9219c6.pdf
http://europepmc.org/abstract/MED/20699456
http://dx.doi.org/10.1001/jama.2010.1111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20699456&dopt=Abstract
http://europepmc.org/abstract/MED/24390345
http://dx.doi.org/10.1038/nature12828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24390345&dopt=Abstract
http://dx.doi.org/10.1016/j.amjmed.2011.07.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21939793&dopt=Abstract
https://www.gob.mx/cms/uploads/attachment/file/209093/ENSANUT.pdf
http://www.healthdata.org/results/country-profiles
http://www.healthdata.org/results/country-profiles
https://doi.org/10.7189/jogh.07.020410
http://dx.doi.org/10.7189/jogh.07.020410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29163935&dopt=Abstract
https://diabetesatlas.org/upload/resources/material/20200302_133352_2406-IDF-ATLAS-SPAN-BOOK.pdf
https://diabetesatlas.org/upload/resources/material/20200302_133352_2406-IDF-ATLAS-SPAN-BOOK.pdf
http://dx.doi.org/10.1017/S1744133118000415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30394254&dopt=Abstract
http://europepmc.org/abstract/MED/18801858
http://dx.doi.org/10.2522/ptj.20080020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18801858&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(09)62124-3
http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/171_GPC_RETINOPATIA_DIABETICA/Imss_171RR.pdf
http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/171_GPC_RETINOPATIA_DIABETICA/Imss_171RR.pdf
http://dx.doi.org/10.1016/j.rmclc.2016.04.009
https://www.iapb.org/wp-content/uploads/2011-Clinical-Practice-Guide-for-DR-for-Latin-America.pdf
https://www.iapb.org/wp-content/uploads/2011-Clinical-Practice-Guide-for-DR-for-Latin-America.pdf
http://dx.doi.org/10.1016/j.diabres.2017.03.023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28499163&dopt=Abstract
https://doi.org/10.25100/cm.v46i1.1681
http://dx.doi.org/10.25100/cm.v46i1.1681
http://dx.doi.org/10.1016/j.diabres.2019.107840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31733978&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=27864248
http://dx.doi.org/10.1136/bmjopen-2016-012819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27864248&dopt=Abstract
http://dx.doi.org/10.1007/s10792-010-9413-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21274593&dopt=Abstract
http://europepmc.org/abstract/MED/30455515
http://dx.doi.org/10.2471/BLT.18.212613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30455515&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Rachapelle S, Legood R, Alavi Y, Lindfield R, Sharma T, Kuper H, et al. The cost-utility of telemedicine to screen for
diabetic retinopathy in India. Ophthalmology 2013 Mar;120(3):566-573. [doi: 10.1016/j.ophtha.2012.09.002] [Medline:
23211635]

22. 2016. From $600 M to $6 Billion, Artificial Intelligence Systems Poised for Dramatic Market Expansion in Healthcare.
2016. URL: https://ww2.frost.com/news/press-releases/
600-m-6-billion-artificial-intelligence-systems-poised-dramatic-market-expansion-healthcare/ [accessed 2019-12-01]

23. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in
medicine. Nat Med 2019 Jan;25(1):30-36. [doi: 10.1038/s41591-018-0307-0] [Medline: 30617336]

24. Arenas-Cavalli J, Ríos S, Pola M, Donoso R. A Web-based Platform for Automated Diabetic Retinopathy Screening.
Procedia Computer Science 2015;60:557-563 [FREE Full text] [doi: 10.1016/j.procs.2015.08.179]

25. Yang Y, Li T, Li W, Wu H, Fan W, Zhang W. Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep
Convolutional Neural Networks. In: Lecture Notes in Computer Science. Switzerland: Springer Nature; 2017 Presented at:
20th Medical Image Computing and Computer Assisted Intervention - MICCAI 2017; September 11-13; Quebec City,
Canada p. 533-540 URL: https://doi.org/10.1007/978-3-319-66179-7_61 [doi: 10.1007/978-3-319-66179-7_61]

26. Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala MG, Sadda S, et al. Automated Diabetic Retinopathy Screening
and Monitoring Using Retinal Fundus Image Analysis. Journal of Diabetes Science and Technology 2016 Feb
16;10(2):254-261 [FREE Full text] [doi: 10.1177/1932296816628546] [Medline: 26888972]

27. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep
Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016 Dec
13;316(22):2402-2410. [doi: 10.1001/jama.2016.17216] [Medline: 27898976]

28. Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated Diabetic Retinopathy Image
Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology 2017
Mar;124(3):343-351 [FREE Full text] [doi: 10.1016/j.ophtha.2016.11.014] [Medline: 28024825]

29. Dutz M, Almeida R, Packard T. The Jobs of Tomorrow: Technology, Productivity, and Prosperity in Latin America and
the Caribbean. Washington DC: World Bank Group; 2018:1-71.

30. Chollet F, others. Keras. 2015. URL: https://keras.io [accessed 2018-12-01]
31. Van RG, Drake JF. Python Tutorial Release 2. 2001. URL: https://docs.python.org/2.0/tut/tut.html [accessed 2018-12-01]
32. Wilkinson C, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Global Diabetic Retinopathy Project Group. Proposed

international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003
Sep;110(9):1677-1682. [doi: 10.1016/S0161-6420(03)00475-5] [Medline: 13129861]

33. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation Applied to Handwritten Zip
Code Recognition. Neural Computation 1989 Dec;1(4):541-551. [doi: 10.1162/neco.1989.1.4.541]

34. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv
2015;1409.1556v6:1-14 [FREE Full text]

35. Cuadros J, Bresnick G. EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. Journal of Diabetes
Science and Technology 2009 May 01;3(3):509-516 [FREE Full text] [doi: 10.1177/193229680900300315] [Medline:
20144289]

36. Voets M, Møllersen K, Bongo L. Reproduction study using public data of: Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS One 2019;14(6):e0217541 [FREE Full
text] [doi: 10.1371/journal.pone.0217541] [Medline: 31170223]

37. Samek W, Montavon G, Binder A, La-puschkin S, Muller KR. Interpreting the Predictions of Complex ML Models by
Layer-wise Relevance Propagation. ArXiv 2016;1611.08191v1:1-5 [FREE Full text]

38. Bach S, Binder A, Montavon G, Klauschen F, Müller K, Samek W. On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation. PLoS One 2015 Jul;10(7):e0130140 [FREE Full text] [doi:
10.1371/journal.pone.0130140] [Medline: 26161953]

39. Almaatouq A, Becker J, Houghton JP, Paton N, Watts DJ, Whiting ME. Empirica: a virtual lab for high-throughput
macro-level experiments. Behavior Research Methods 2021 Mar 29:1-14 [FREE Full text] [doi: 10.3758/s13428-020-01535-9]
[Medline: 33782900]

40. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, IDF Diabetes Atlas Committee. Global and regional
diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation
Diabetes Atlas, 9 edition. Diabetes Res Clin Pract 2019 Nov;157:107843 [FREE Full text] [doi:
10.1016/j.diabres.2019.107843] [Medline: 31518657]

41. Barquera S, Campos-Nonato I, Aguilar-Salinas C, Lopez-Ridaura R, Arredondo A, Rivera-Dommarco J. Diabetes in Mexico:
cost and management of diabetes and its complications and challenges for health policy. Global Health 2013 Feb 02;9:3
[FREE Full text] [doi: 10.1186/1744-8603-9-3] [Medline: 23374611]

42. Raumviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, et al. Deep learning versus human graders
for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digit Med 2019;2:25 [FREE Full text]
[doi: 10.1038/s41746-019-0099-8] [Medline: 31304372]

JMIR Form Res 2021 | vol. 5 | iss. 8 | e25290 | p. 11https://formative.jmir.org/2021/8/e25290
(page number not for citation purposes)

Noriega et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.ophtha.2012.09.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23211635&dopt=Abstract
https://ww2.frost.com/news/press-releases/600-m-6-billion-artificial-intelligence-systems-poised-dramatic-market-expansion-healthcare/
https://ww2.frost.com/news/press-releases/600-m-6-billion-artificial-intelligence-systems-poised-dramatic-market-expansion-healthcare/
http://dx.doi.org/10.1038/s41591-018-0307-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30617336&dopt=Abstract
https://doi.org/10.1016/j.procs.2015.08.179
http://dx.doi.org/10.1016/j.procs.2015.08.179
https://doi.org/10.1007/978-3-319-66179-7_61
http://dx.doi.org/10.1007/978-3-319-66179-7_61
http://europepmc.org/abstract/MED/26888972
http://dx.doi.org/10.1177/1932296816628546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26888972&dopt=Abstract
http://dx.doi.org/10.1001/jama.2016.17216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27898976&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0161-6420(16)32018-8
http://dx.doi.org/10.1016/j.ophtha.2016.11.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28024825&dopt=Abstract
https://keras.io
https://docs.python.org/2.0/tut/tut.html
http://dx.doi.org/10.1016/S0161-6420(03)00475-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=13129861&dopt=Abstract
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1409.1556v6
http://europepmc.org/abstract/MED/20144289
http://dx.doi.org/10.1177/193229680900300315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20144289&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0217541
https://dx.plos.org/10.1371/journal.pone.0217541
http://dx.doi.org/10.1371/journal.pone.0217541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31170223&dopt=Abstract
https://arxiv.org/abs/1611.08191v1
http://dx.plos.org/10.1371/journal.pone.0130140
http://dx.doi.org/10.1371/journal.pone.0130140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26161953&dopt=Abstract
https://link.springer.com/article/10.3758%2Fs13428-020-01535-9
http://dx.doi.org/10.3758/s13428-020-01535-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33782900&dopt=Abstract
https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(19)31230-6/fulltext
http://dx.doi.org/10.1016/j.diabres.2019.107843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31518657&dopt=Abstract
https://globalizationandhealth.biomedcentral.com/articles/10.1186/1744-8603-9-3
http://dx.doi.org/10.1186/1744-8603-9-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23374611&dopt=Abstract
https://doi.org/10.1038/s41746-019-0099-8
http://dx.doi.org/10.1038/s41746-019-0099-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304372&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


43. Beede E, Baylor E, Hersch F, Iurchenko A, Wilcox L, Ruamviboonsuk P, et al. A Human-Centered Evaluation of a Deep
Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. : Association for Computing Machinery;
2020 Apr Presented at: 2020 CHI Conference on Human Factors in Computing Systems (CHI '20); April 25-30; Honolulu
p. 1-12 URL: https://doi.org/10.1145/3313831.3376718 [doi: 10.1145/3313831.3376718]

44. Nørgaard MF, Grauslund J. Automated Screening for Diabetic Retinopathy - A Systematic Review. Ophthalmic Res
2018;60(1):9-17 [FREE Full text] [doi: 10.1159/000486284] [Medline: 29339646]

45. Grzybowski A, Brona P, Lim G, Ruamviboonsuk P, Tan G, Abramoff M, et al. Artificial intelligence for diabetic retinopathy
screening: a review. Eye (Lond) 2020 Mar;34(3):451-460 [FREE Full text] [doi: 10.1038/s41433-019-0566-0] [Medline:
31488886]

Abbreviations
AI: artificial intelligence
ARIA: automated retinal image analysis
AUROC: area under the receiver operating characteristic curve
DL: deep learning
DR: diabetic retinopathy
ICDRSS: International Clinical Diabetic Retinopathy Severity Scales
NPDR: nonproliferative diabetic retinopathy

Edited by G Eysenbach; submitted 18.11.20; peer-reviewed by G Lim, Y Li; comments to author 24.02.21; revised version received
12.04.21; accepted 19.05.21; published 26.08.21

Please cite as:
Noriega A, Meizner D, Camacho D, Enciso J, Quiroz-Mercado H, Morales-Canton V, Almaatouq A, Pentland A
Screening Diabetic Retinopathy Using an Automated Retinal Image Analysis System in Independent and Assistive Use Cases in Mexico:
Randomized Controlled Trial
JMIR Form Res 2021;5(8):e25290
URL: https://formative.jmir.org/2021/8/e25290
doi: 10.2196/25290
PMID:

©Alejandro Noriega, Daniela Meizner, Dalia Camacho, Jennifer Enciso, Hugo Quiroz-Mercado, Virgilio Morales-Canton,
Abdullah Almaatouq, Alex Pentland. Originally published in JMIR Formative Research (https://formative.jmir.org), 26.08.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2021 | vol. 5 | iss. 8 | e25290 | p. 12https://formative.jmir.org/2021/8/e25290
(page number not for citation purposes)

Noriega et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://doi.org/10.1145/3313831.3376718
http://dx.doi.org/10.1145/3313831.3376718
https://www.karger.com?DOI=10.1159/000486284
http://dx.doi.org/10.1159/000486284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29339646&dopt=Abstract
http://europepmc.org/abstract/MED/31488886
http://dx.doi.org/10.1038/s41433-019-0566-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31488886&dopt=Abstract
https://formative.jmir.org/2021/8/e25290
http://dx.doi.org/10.2196/25290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

