Published on in Vol 5, No 10 (2021): October

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/32656, first published .
Detecting Subclinical Social Anxiety Using Physiological Data From a Wrist-Worn Wearable: Small-Scale Feasibility Study

Detecting Subclinical Social Anxiety Using Physiological Data From a Wrist-Worn Wearable: Small-Scale Feasibility Study

Detecting Subclinical Social Anxiety Using Physiological Data From a Wrist-Worn Wearable: Small-Scale Feasibility Study

Journals

  1. Chakrabarti S, Biswas N, Jones L, Kesari S, Ashili S. Smart Consumer Wearables as Digital Diagnostic Tools: A Review. Diagnostics 2022;12(9):2110 View
  2. Adler D, Wang F, Mohr D, Choudhury T, Chen C. Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies. PLOS ONE 2022;17(4):e0266516 View
  3. Paula L, Pfeiffer Salomão Dias L, Francisco R, Barbosa J. Analysing IoT Data for Anxiety and Stress Monitoring: A Systematic Mapping Study and Taxonomy. International Journal of Human–Computer Interaction 2024;40(5):1174 View
  4. Abd-alrazaq A, AlSaad R, Aziz S, Ahmed A, Denecke K, Househ M, Farooq F, Sheikh J. Wearable Artificial Intelligence for Anxiety and Depression: Scoping Review. Journal of Medical Internet Research 2023;25:e42672 View
  5. Chard I, Van Zalk N, Picinali L. Virtual reality exposure therapy for reducing social anxiety in stuttering: A randomized controlled pilot trial. Frontiers in Digital Health 2023;5 View
  6. Choudhary S, Thomas N, Alshamrani S, Srinivasan G, Ellenberger J, Nawaz U, Cohen R. A Machine Learning Approach for Continuous Mining of Nonidentifiable Smartphone Data to Create a Novel Digital Biomarker Detecting Generalized Anxiety Disorder: Prospective Cohort Study. JMIR Medical Informatics 2022;10(8):e38943 View
  7. Gomes N, Pato M, Lourenço A, Datia N. A Survey on Wearable Sensors for Mental Health Monitoring. Sensors 2023;23(3):1330 View
  8. Al-Saedi A, Boeva V, Casalicchio E, Exner P. Context-Aware Edge-Based AI Models for Wireless Sensor Networks—An Overview. Sensors 2022;22(15):5544 View
  9. Hirten R, Suprun M, Danieletto M, Zweig M, Golden E, Pyzik R, Kaur S, Helmus D, Biello A, Landell K, Rodrigues J, Bottinger E, Keefer L, Charney D, Nadkarni G, Suarez-Farinas M, Fayad Z. A machine learning approach to determine resilience utilizing wearable device data: analysis of an observational cohort. JAMIA Open 2023;6(2) View
  10. Anmella G, Corponi F, Li B, Mas A, Sanabra M, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Giménez-Palomo A, Garriga M, Agasi I, Bastidas A, Cavero M, Fernández-Plaza T, Arbelo N, Bioque M, García-Rizo C, Verdolini N, Madero S, Murru A, Amoretti S, Martínez-Aran A, Ruiz V, Fico G, De Prisco M, Oliva V, Solanes A, Radua J, Samalin L, Young A, Vieta E, Vergari A, Hidalgo-Mazzei D. Exploring Digital Biomarkers of Illness Activity in Mood Episodes: Hypotheses Generating and Model Development Study. JMIR mHealth and uHealth 2023;11:e45405 View
  11. Wang Z, Larrazabal M, Rucker M, Toner E, Daniel K, Kumar S, Boukhechba M, Teachman B, Barnes L. Detecting Social Contexts from Mobile Sensing Indicators in Virtual Interactions with Socially Anxious Individuals. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2023;7(3):1 View
  12. Abd-alrazaq A, AlSaad R, Harfouche M, Aziz S, Ahmed A, Damseh R, Sheikh J. Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis. Journal of Medical Internet Research 2023;25:e48754 View
  13. Sun T, Hwee J, Kim J. Exploring individual physiological correlates of procrastination with a deadline rush model. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2023;67(1):2210 View
  14. Sahu N, Gupta S, Lone H. Wearable Technology Insights: Unveiling Physiological Responses During Three Different Socially Anxious Activities. ACM Journal on Computing and Sustainable Societies 2024;2(2):1 View
  15. dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View

Books/Policy Documents

  1. Gray M, Majumder S, Nelson K, Munbodh R. From Data to Models and Back. View