Published on in Vol 9 (2025)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/65139, first published .
Comparative Evaluation of Consumer Wearable Devices for Atrial Fibrillation Detection: Validation Study

Comparative Evaluation of Consumer Wearable Devices for Atrial Fibrillation Detection: Validation Study

Comparative Evaluation of Consumer Wearable Devices for Atrial Fibrillation Detection: Validation Study

Journals

  1. Dial M, Hollander M, Vatne E, Emerson A, Edwards N, Hagen J. Validation of nocturnal resting heart rate and heart rate variability in consumer wearables. Physiological Reports 2025;13(16) View
  2. Joshi B, Chun Y, Chakraborty J, Thomas G, Bolaji P, Khan Tharin M, Adeyeye R, Adeyeye E, Azeta S. TIAS (Timing, Individualised, Amalgamated, Stepwise) Algorithm for Efficacious and Cost-Effective Cardiac Monitoring to Detect Atrial Fibrillation After Stroke. Cureus 2025 View
  3. Barrera N, Solorzano M, Jimenez Y, Kushnir Y, Gallegos-Koyner F, Dagostin de Carvalho G. Accuracy of Smartwatches in the Detection of Atrial Fibrillation. JACC: Advances 2025;4(11):102133 View
  4. Sollee J, Cheema B, Slotwiner D, Volodarskiy A, Desteghe L, Buyck C, Heidbuchel H, Stavrakis S, Pison L, Nuyens D, Rivero-Ayerza M, Van Herendael H, Thomas J. Fibricheck detection capabilities for atrial fibrillation (FDA–AF): a multicenter validation study. npj Digital Medicine 2025;8(1) View
  5. Cinotti E, Gragnaniello M, Parlato S, Centracchio J, Andreozzi E, Bifulco P, Riccio M, Esposito D. An Edge AI Approach for Low-Power, Real-Time Atrial Fibrillation Detection on Wearable Devices Based on Heartbeat Intervals. Sensors 2025;25(23):7244 View
  6. Bilson S, Cox M, Pustogvar A, Thompson A. A metrological framework for uncertainty evaluation in machine learning classification models. Metrologia 2025;62(6):064001 View