Published on in Vol 7 (2023)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/28848, first published
.

Journals
- Ahmed M, Hasan T, Islam S, Ahmed N. Investigating Rhythmicity in App Usage to Predict Depressive Symptoms: Protocol for Personalized Framework Development and Validation Through a Countrywide Study. JMIR Research Protocols 2024;13:e51540 View
- dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View
- Turjo M, Mundada K, Haque N, Ahmed N. Predicting the Transition From Depression to Suicidal Ideation Using Facebook Data Among Indian-Bangladeshi Individuals: Protocol for a Cohort Study. JMIR Research Protocols 2024;13:e55511 View
- Azad M, Leeon S, Khan R, Mohammed N, Momen S. SAD: Self-assessment of depression for Bangladeshi university students using machine learning and NLP. Array 2025;25:100372 View
- Todd E, Orr R, Gamage E, West E, Jabeen T, McGuinness A, George V, Phuong-Nguyen K, Voglsanger L, Jennings L, Radovic L, Angwenyi L, Taylor S, Khosravi A, Jacka F, Dawson S. Lifestyle factors and other predictors of common mental disorders in diagnostic machine learning studies: A systematic review. Computers in Biology and Medicine 2025;185:109521 View
- Schaab B, Calvetti P, Hoffmann S, Diaz G, Rech M, Cazella S, Stein A, Barros H, Silva P, Reppold C. How do machine learning models perform in the detection of depression, anxiety, and stress among undergraduate students? A systematic review. Cadernos de Saúde Pública 2024;40(11) View
- Shui X, Xu H, Tan S, Zhang D. Depression Recognition Using Daily Wearable-Derived Physiological Data. Sensors 2025;25(2):567 View
- Mumenin N, Abu Yousuf M, Alassafi M, Mostafa Monowar M, Abdul Hamid M. DDNet: A Robust, and Reliable Hybrid Machine Learning Model for Effective Detection of Depression Among University Students. IEEE Access 2025;13:49334 View
- Souza E, Quirino M, Dendasck C, Dias C. Design centrado no humano aliado aos projetos de inteligência artificial para suporte na área de saúde mental e bem-estar: uma revisão sistemática. Revista Científica Multidisciplinar Núcleo do Conhecimento 2025:126 View
- Souza E, Quirino M. O uso da Inteligência Artificial aliada ao Design Centrado no Humano para intervenções tecnológicas na área de saúde mental. DAT Journal 2025;10(2):22 View
- Hoang H, Ha H, Nguyen H, Watton P, Ngo L. Advancing mental health diagnostics: a review on the role of smartphones, wearable devices, and artificial intelligence in depression and anxiety detection. Biomedical Engineering Letters 2025;15(6):1003 View
- Tlachac M, Heinz M, Bryan A, LaPreay A, Dimas G, Zhao T, Jacobson N, Ogden S. Datasets of Smartphone Modalities for Depression Assessment: A Scoping Review. IEEE Transactions on Affective Computing 2025;16(4):2599 View
Books/Policy Documents
Conference Proceedings
- Amiludin N, Rosli M, Ibrahim N, Hammood W. 2025 International Conference on Advanced Machine Learning and Data Science (AMLDS). Mental Health Prediction Using Ensemble Learning Approaches with Rebalancing Technique View
- Kaushik D, Yadavalli R. 2025 International Conference on Information, Implementation, and Innovation in Technology (I2ITCON). Federated Explainable Mental Health Analytics (FEMHA): A Sustainable Framework for SDG-Aligned Risk Prediction and Emerging Challenges View
