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Abstract

Background: Existing robust, pervasive device-based systems developed in recent years to detect depression require data
collected over along period and may not be effectivein caseswhere early detectioniscrucial. Additionally, dueto the requirement
of running systems in the background for prolonged periods, existing systems can be resource inefficient. As a result, these
systems can be infeasible in low-resource settings.

Objective:  Our main objective was to develop a minimalistic system to identify depression using data retrieved in the fastest
possible time. Another objective was to explain the machine learning (ML) models that were best for identifying depression.

Methods: We developed afast tool that retrieves the past 7 days' app usage datain 1 second (mean 0.31, SD 1.10 seconds). A
total of 100 students from Bangladesh participated in our study, and our tool collected their app usage data and responses to the
Patient Health Questionnaire-9. To identify depressed and nondepressed students, we developed a diverse set of ML models:
linear, tree-based, and neural network—based models. We selected important features using the stable approach, along with 3
main types of feature selection (FS) approaches: filter, wrapper, and embedded methods. We developed and validated the models
using the nested cross-validation method. Additionally, we explained the best ML modelsthrough the Shapley additive explanations
(SHAP) method.

Results: Leveraging only the app usage dataretrieved in 1 second, our light gradient boosting machine model used the important
features selected by the stable FS approach and correctly identified 82.4% (n=42) of depressed students (precision=75%,
F1-score=78.5%). Moreover, after comprehensive exploration, we presented a parsimonious stacking model where around 5
features sel ected by the all-relevant FS approach Borutawere used in each iteration of validation and showed amaximum precision
of 77.4% (balanced accuracy=77.9%). Feature importance analysis suggested app usage behavioral markers containing diurnal
usage patterns as being more important than aggregated data-based markers. In addition, a SHAP analysis of our best models
presented behavioral markers that were related to depression. For instance, students who were not depressed spent more time on
education apps on weekdays, whereas those who were depressed used a higher number of photo and video apps and also had a
higher deviation in using photo and video apps over the morning, afternoon, evening, and night time periods of the weekend.

Conclusions: Dueto our system’sfast and minimalistic nature, it may make aworthwhile contribution to identifying depression
in underdevel oped and devel oping regions. In addition, our detailed discussion about the implication of our findings can facilitate
the development of less resource-intensive systemsto better understand studentswho are depressed and take stepsfor intervention.

(IMIR Form Res 2023;7:€28848) doi: 10.2196/28848
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Introduction

Background

Depression is found in around 280 million people worldwide
[1]. Althoughit isacommon mental disorder, 80% of itsburden
is found in people from low- and middle-income countries
(LMICs) [2]. It is the most prevalent mental disorder among
adultsin Bangladesh [3]. Moreover, the depression rate among
Bangladeshi university studentsis higher than in other groups
[4]. It is linked with physical illness [5] and aso with
psychological problems, such asanxiety disorder [6]. However,
75% of people living in LMICs do not receive any treatment
for mental disorders[7]. In this case, social stigmaisabarrier
[7], which highlightsthe need for an unobtrusive way to identify
depression. In contrast, there are people with psychological
problemswho seek support from primary care providers (PCPs).
However, in more than 50% of cases, PCPs fail to recognize
depression [8,9]. Failing to identify depressed individuals at an
early stage may have devastating consequences asthisincreases
therisk of suicide [10]. Recent research has shown that 60% of
peoplewho committed suicide struggled with major depression
[11]. Therefore, there is a need to identify depression faster,
which may make a significant contribution to mitigating
depression through early intervention [12].

With the advent of computational models, extensive research
has been conducted on the development of machine learning
(ML) modelsfor depression identification. There are subjective
data—based studies in which to develop models, researchers
used demographic characteristics [13-16], information about
the family [14,15], lifestyle [15], mental health [13-17], etc,
and their findings demonstrated good accuracy of the models.
For instance, an ML model correctly identified 64% of depressed
participants [14]. However, the main limitation of subjective
studiesisthe use of self-reported data-based featuresfor models,
which makes the process obtrusive. Additionally, due to using
features such as gender [14,15], which remains constant, the
models may not be able to capture changes in depression over
time, which in turn may not work for remote monitoring and
faster diagnosis. Furthermore, since manual input is required,
these approaches can have fewer implications in
resource-constrained clinical settings.

To overcome these problems, researchers have explored
pervasive devices|everaging behavioral datato improve mental
health. Using Fitbit- and smartphone-sensed data, researchers
[18] explored the behavioral patternslinked with lonelinessand
identified students with loneliness with an accuracy of 80.2%.
A previous study [19] constructed 2 different data sets with
behavioral datafor over 100 days and predicted depression with
an F;-score of over 80%. Another study [20] presented a
personal behavioral model to predict depression that correctly
identified over 80% of depressed students using data from 10
and 16 weeks. Although wearabl e technol ogy shows promising
performance, these systems need to run for the whole period of
data collection (eg, for over 100 days[19,21]). Thus, the need
for a long data collection period may not facilitate early
intervention. In addition, the high price of wearable devicescan
make them unaffordable for people of low income [22], which
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in turn may make the approaches infeasible for low-resource
settings, where usage of wearable devices, such asFithit, islow.

Smartphones have become affordable [23] and are available to
the majority of adults in emerging and developing countries
[24]. Smartphone usage has a significant relationship with
depression [25-28] and loneliness [29-31]. Moreover, there
remain significantly different use patterns between depressed
and nondepressed individuals in terms of communication [25]
and social media [26] app categories, which indicates that app
usage data can be important predictors for identifying
depression. Based on only phone usage data, an ML model in
previousresearch [21] showed a sensitivity of 45% in predicting
postsemester depression, whereas another study [27] achieved
asendgitivity of 55.7% in identifying participantswith depressive
symptoms. To develop ML models, some studies have used
sensed data[19,21,27,32,33], along with smartphone usage data.
In other studies [34-36], researchers have used
smartphone-sensed data incorporating self-reported data to
extract features for ML models. Studies have also relied solely
on smartphone-sensed location data [37-40]. However, like
studies based on wearabl es, in existing smartphone data—based
studies, systems (ie, apps) need to run in the background for
the whole data collection period, which may cause severa
problems. For example, due to running in the background for
along time (eg, 12 weeks [28], 16 weeks [19-21]) as well as
sensors consuming too much battery power [41], these
smartphone-sensed data-based systems may not be energy
efficient, which can be a barrier to obtaining quality data from
low-resource settings. Although some studies (eg, [40]) were
conducted to develop energy-efficient systems for depression
identification, the systems may ill not facilitate early
intervention since a long data collection period is required. In
addition, due to having a system tracking data continuously
from the phone, users may feel reluctant, which may introduce
research reactivity problems (eg, the Hawthorne effect [42]),
causing biases in app usage data.

Objective

To overcome the aforementioned limitations, such as the high
price of wearables, the need to run the system in the background,
and the need for long-term data, our primary objective was to
develop a system, named Mon Majhi (in English, Mind
Navigator), that can identify depression unobtrusively following
aminimalistic approach and in real time. Another objectivewas
to explain the best ML models that can facilitate a better
understanding of depressed students among mental health care
professionals and help them take steps in intervention.

Methods
A Tool to Retrieve App Usage Data I nstantly

Development of a Data Collection Tool

Self-reported app usage data do not represent actual behavior
[43]. Inreporting app usage, users overestimate or underestimate
data, which varies by type [44]. For instance, Facebook usage
duration is overestimated, while the frequency of launching
Facebook isunderestimated [44]. Therefore, to obtain the exact
app usage behavioral data of users, we developed an app [45]
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for the Android platform, which isused by 95.9% of smartphone
users in Bangladesh [46]. To instantly (see the Time Required
to Retrieve App Usage Data section) obtain raw app usage data
(foreground and background events), we used some functions
of the Java class UsageStatsManager. However, app usage
events are kept for a few days in Android [47], and thus, our
tool can instantly retrieve app usage data for the previous 7
days, while aggregated app usage data (eg, total time spent on
an app over 14 days) for longer than 7 days can be accessed by
a Java application programming interface (API). Although the
list of used apps can be accurately retrieved through the Java
function queryUsageStats (interval Type, beginTime, endTime),
the usage duration datawhen the data coll ection period exceeded
7 days were not accurate, aswe found by testing Mon Majhi in
multiple ways. We tested the app by setting different values
(eg, INTERVAL_WEEKLY, INTERVAL_MONTHLY) of the
parameter interval Type as well as by properly changing the
values of other parameters. By experimenting through the
trial-and-error method, we found inaccuracy in the app usage
duration when compared to the manually calculated app usage
duration. In addition, while testing other phones, the users of
the phones marked the data as inaccurate based on their best
guess. Furthermore, except for usage duration, other data, such
as frequency of launching, as well as raw data cannot be
retrieved through the API, which hindersthe extraction of more
informative features, as presented in the Pipeline of ML Models
section. Therefore, inthisstudy, we used 7 days' app usage data
aswe found it to be accurate.

Once Mon Majhi (Figure A1 of Multimedia Appendix 1) is
installed, with the user’s consent, the app retrieves the past 7
days app usage data. We chose to use Google Firebase as a
database since it is secure and easy to integrate with maobile
apps. We released the app [45] on the Google Play Store; since
this platform is known to Android users, participants may feel
more comfortable installing apps from there.

Testing the Data Collection Tool

To check whether our app can accurately retrieve app usage
data, we tested the app using the following 3 steps. We found
that in each step, our app can calculate the past 7 days' app
usage data, such as duration, and launch accurately.

«  Step 1. We manualy calculated the core app usage data
duration and frequency of launch. We compared the
manually calculated data with the app usage dataretrieved
by our data collection tool.
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- Step 2: We compared the data retrieved by our app to the
available apps [48,49] in Google Play that are required to
be run in the background to cal cul ate app usage data.

- Step 3: Smartphones function differently depending on
various conditions, including the manufacturer and
smartphone model. To determine the generalizable
performance of our app, we tested it on 9 different
smartphones.

Time Required to Retrieve App Usage Data

To estimate the time required by our app to retrieve the past 7
days’ app usage data, we cal culated the time difference between
the start and the end of programs that were written to retrieve
app usage data. To estimate a generalizable required time, we
tested our app on 20 smartphones of 19 different models, with
8 different versions of Android operating systemsand 7 different
smartphone manufacturers. Our app retrieved the past 7 days
app usage data 500 times from each of those phones. In total,
it calculated the required time 10,000 (500x20) times. On
average, it retrieved 7447.61 (SD 4986.62, median 6641,
minimum=306, maximum=24,297) foreground and background
app usage events (Figure 1a). The average time required was
307.94 ms (SD 110391, median 211, minimum=13,
maximum=61,087 ms; Figure 1b). We found that among the
10,000 instances, only 97 had a retrieval time above 1 second
(Table A1 of Multimedia Appendix 1).

In retrieving data, there may be some factors affecting the time
required. We explored the possible factors by performing a
correlation of the required time with the 20 phones API level
and the number of retrieval events. We did not find any
significant correlation between the Android API level and the
time required (rs=0.18, P=.44; Figure 1c). In exploring the
relationship with the number of events, we used the average
number of events and the averagetime required for each phone;
within each phone, there was almost no variation in the number
of retrieved events (Figure 1a). We found the number of events
had a significant positive relationship with the time reguired to
retrieve data (r=0.56, P=.009; Figure 1d). Next, to estimatethe
plausible number of events in a student’s phone, we used the
data set that was constructed for thisresearch. On average, there
were 8174.04 events (SD 4972.50) retrieved from each of the
100 students' phones. In the 10,000 times data was retrieved,
the number of retrieved app usage events was more than 8000
in the case of 4500 instances. To retrieve this large number of
events, our app needed an average of 430.31 (SD 1596.46) ms.
This reveals that, on average, our app can retrieve the past 7
days app usage datain less than 1 second.
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Figure 1. Performance of Mon Magjhi in retrieving data. (2) Number of retrieved foreground and background events, (b) time required to retrieve data.
Kernel density estimation shows the relationship of time with (c) API level and (d) number of foreground and background events. API: application

programming interface.
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Ethical Considerations

The study was approved by the Center for Research &
Development at Eastern University. In our app, there was a
consent form where we mentioned study details, and all
participants provided their consent before their voluntary data
donation. Except for the app usage data, our app does not collect
any other data, such asmessages. All datawere kept anonymous,
and access to the database was limited to the researchers of this
project only.

The Center for Research & Development (CDR) at Eastern
University is the only section regarding research at Eastern
University that takes care of everything needed for research.
Thereisno other separate section like an ethics board to review
research.

Data Collection and Participants Demographic
Characteristics

Considering the high prevalence of depression (ie, 69.5% [50])
among university students in Bangladesh as well as their high
adoption of smartphones (86.6% use smartphones [51]), we
decided to use them as samplesin this study. We collected data

(c) Relationship of required
time with API level

(d) Relationship of required
time with the number of events

from July to October 2020 and reached participants through the
snowball sampling method. Several participantswere recruited
through university teachers, and others were recruited through
researchers close connections. To ensure the participants
comfort, we arranged a discussion session, where we described
the study objective, types of data collected, etc. Since the study
was conducted during the COVD-19 pandemic, we conducted
the meeting mostly using virtual platforms based on participants
preferences and availability. To provide data, participants
installed the app via Google Play. In total, 100 students from
12 different ingtitutes of higher education and 7 different
departments, including arts, law, medica science, and
engineering faculties, participated.

The participants were from 36 districts and 7 divisions, which
covered 56.3% of districtsand 87.5% of divisionsin Bangladesh
(Figure 2a). There were 87 (87%) male participants and 13
(13%) female participants (Figure 2b). The participants age
varied from 19 to 30 years, and most participants’ age was below
25 years (Figure 2c). Although a few participants had a family
income of more than 100,000 Bangladeshi Taka (BDT) (US
$942.32), most participants reported a family income of up to
BDT 50,000 (US $471.16; Figure 2d).

Figure?2. Participants demographic characteristics. (a) Pushpins present thelocation of districts, and bold text presents the division name. Participants’
(b) gender, (c) age, and (d) monthly family income. BDT: Bangladeshi Taka.
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Categorization of Depressed and Nondepr essed
Individuals

To assess depression among participants, different versions of
theclinically validated Patient Health Questionnaire have been
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widely used [25,27,28,32,33,40, 52]. We used the Patient Health
Questionnaire-9 (PHQ-9) [53] inthisstudy. In our app, thescale
was available in English and in the native language Bengali
(details about scale trandation are available in section B of
Multimedia Appendix 1). The PHQ-9 contains 9 items. Based
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on each participant’s experiences in the past 14 days, they
responded to each item using 1 of 4 options: not at al (0),
several days (1), morethan half of the days(2), and nearly every
day (3). A PHQ-9 score of 10 or more showed a sensitivity and
specificity of 88% for measuring major depression [53].
Therefore, following previous studies[25,26,28,53], we grouped
participants who had a PHQ-9 score of at least 10 into the
depressed group and those with a PHQ-9 score of <10 into the
nondepressed group.

Pipeline of ML Models

Feature Extraction

From the 100 students' smartphones, our app retrieved 817,404
foreground and background events carried out in 1129 unique
apps. The mean number of retrieved events from each phone
was 8174.2 (SD 4972.53; median 7849; minimum=70,
maximum=29,113). Using theretrieved dataon foreground and
background events, we extracted the frequency of launching
apps, usage duration, and the following behavioral markers to
use as featuresin the ML models: number of used unique apps,
diurnal usage, app usage sessions, entropy, hamming distance,
data of app categories, and number of extracted features.

Number of Unique Apps Used

To count the number of unique apps used, we counted the
number of app package names. The main motivation for using
package names instead of app names was that among the 1129
apps (detailsare available in the Usage Data of App Categories
section), 127 (11.2%) had duplicate names. For example, among
the 8 apps in the Weather category, 7 (87.5%) app names were
“Weather” and 1 (12.5%) app was nhamed “Windy.” However,
each app’s package name was unique.

Diurnal Usage Data

The depressed and nondepressed groups had significantly
different diurnal usage patterns [25,26]. Hence, we divided a
day into 4 equal periods following previous studies [25,26].
During the calculation of app usage data, we found foreground
and background events of several appsthat occurred in different
periods, and we added the duration in the respective period
through the use of adelimiter. For example, if an app is opened
at 11:30 AM (morning) but closed at 12:20 PM (afternoon),
then by setting 12:00 PM (noon) as a delimiter, we added 30
minutes to the morning period and 20 minutes to the afternoon
period. Moreover, following aprevious study [54], in such cases,
we counted the frequency of launch in the time range (eg,
morning in this example) during which the app was opened:

« Night: 12:01 AM to 06:00 AM

« Morning: 06:01 AM to 12:00 PM
«  Afternoon: 12:01 PM to 6:00 PM
« Evening: 06:01 PM to 12:00 AM

App Usage Sessions

The Javafunction we used to retrieve the past 7 days' app usage
data does not provide the phone lock and unlock data (eg, the
time when the phone was locked or unlocked), which makes it
difficult to identify a session. Hence, we followed previous

studiesto define asession. Wang and Mark [55] used the median
break length of 40 secondsfor grouping visitsto Facebook into
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asingle session. Other studies[56,57] have used athreshold of
60 seconds to identify a session of Facebook use. A threshold
of 30 seconds has also been used to define the sequence of app
usageinto asingle on [58-60]. However, using 30 seconds
can identify sessionswith lessaccuracy [61]. Instead, van Berkel
et al [61] suggested using athreshold of 45 seconds, which was
found to be more accurate. Therefore, in our study, we grouped
app usage into a single session if there was no more than a
45-second gap between the last used app and the newly opened
app. After that, depending on the time spent in each session,
we defined 3 different types of sessions following previous
studies[62,63]:

Microsession: A session was defined as a microsession if
a participant spent a maximum of 15 seconds on an app
[63].

Review session: A session was defined as areview session
if a participant interacted with an app for up to 60 seconds
[62]. However, due to the concept of microuse, we counted
asession as areview session if a participant was found to
spend between 15 seconds and 60 seconds on an app.
Engage session: Following Banovic et a [62], we counted
this session if the participant spent more than 60 seconds
using apps on a smartphone.

Entropy

Using Shannon’'s entropy formula [64], we calculated the
entropy of every participant’s app usage, which presents the

app usage pattern:

n
E® = - ) p() loglog p()
j=1
where p(j) indicates the probability of use of the j-th app by the
i-th participant and

() _ _ usageqyrationli)
puJ= n ()
Z]=l usagedqyration ()

where usage duration(j) presents the i-th participant’s usage
duration on the j-th app. Having an unequal usage duration on
each app will result in lower entropy, E. Inthat case, the pattern
of app usage will be skewed, and from that, we can infer that
the participant has a preference for certain apps. If aparticipant
uses a single app, the entropy (E) will be 0. Having an equal
usage duration for every app will result in higher entropy.

Hamming Distance Ratio

App signatures vary according to the group of people studied
(eg, femalevsmale[65]). Depressed and nondepressed students
have different app signatures, which makes them uniquely
reidentifiable [26]. This difference is seen in app category as
well [26]. Accordingly, we believe that uniquenessin terms of
apps as measured by the hamming distance [66] can be agood
metric to classify depressed and nondepressed students. For
participant i, first, we calculated the distance from all the
depressed participants:

D;; = (AR, U AP) — (AP, n APR),
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where Dj; denotes the distance of the i-th participant from the
j-th depressed participant and AP; and AP, denote the set of apps
used by the i-th and j-th participants, respectively. Next, we
found the minimum distance of participant i from al (n)
depressed participants: D;=min{D;;, D5, D3, . . . , Diy}-
Similarly, we calculated the minimum distance of participant i
in the nondepressed group, ND;. After that, instead of using the
distances (D;, ND;) separately as features, we used the ratio of

thedistances/RHJ _i = D_i/ {NDJ _i Themotivationbehind
using theratio isthat it would provide uswith information about
how much more or less unique a participant is among the
depressed group compared to the nondepressed group, and
intuitively, this is more informative. Considering application
in the real-world scenario where we have only app usage data,
we did not use the information about the participant’s (ie,
participant i) category (depressed or nondepressed) during the
calculation of the hamming distance ratio, which makes the
feature unbiased.

Usage Data of App Categories

To calculate the usage data of an app category, we summed up
the usage data of each app in that category. We took severa
stepswhile categorizing the apps. For instance, in Google Play,
developers set the category of their app. For the apps used by
the participants of our study, we retrieved the developers
referred category by using the app package nameandan HTML
parser. However, there were apps used by the participants that
were not available in Google Play. To categorize those apps,
we explored the app features from the online app stores (eg,
APKMonk, APKMirror) and the developers websites. For
instance, participants used the Photo Editor app, available in
the Samsung Galaxy Store, which we verified by matching the
app’s unique package name. After exploring the app, we found
features (eg, adding effects on photos) regarding photography,
and this directed us to keep the app in the Photo and Video app
category. To categorize the apps, we aso followed the app
categorization processin previous studies [58,67]. In addition,
we discussed this with 2 students who graduated from the
computer science and engineering department. In the case of
appswhere there was disagreement among the categorizers, we
discussed with 2 more students and used the majority rule to
select a category. Due to having asmall number of participants
in each subcategory of the Games category, we grouped al the
subcategories (eg, arcade, puzzle) into the Games category. In
addition, since during the COVID-19 pandemic, students
attended classes through apps, such as Zoom and Google Meet
[68], we kept such apps in the Education category as all
participants were students. After categorizing the 1129 appsthe
students used, we found that most (n=359, 31.8%) apps were
in the Tools category and the least number of apps was in the
Art and Design category (Table C1 of Multimedia Appendix
1). Moreover, wefound more than 50 appsin the Games, Photo
and Video, Books and Reference, Communication, and
Productivity categories (Table C1 of Multimedia Appendix 1).

Calculation of the Number of Extracted Features

To simply show the calculation, we kept the data in different
sets. A set of data presents the total smartphone usage
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(regardless of the app category) and 27 app categories:
app_category = {artsand design, . . . , weather, smartphone}.

Since app usage behavior varies by weekdays and weekends
[26,65], instead of using aggregated 7 days (weekday +
weekend) data, we used the weekday and weekend data
separately as a feature. The set of the days was days =
{Weekdays, Weekends}.

The sets of core data and session data were core data =
{duration, launch, number of apps, entropy, hamming distance}
and session_data = {total number of sessions, microsession,
review session, engage session}. We calculated the data for the
whole day. In addition, we calculated the mean and SD for
diurnal usage data consisting of morning, afternoon, evening,
and night periods. We denoted these by the set of data
characteristics: data_characteristics = {mean, D, total data}.

In total, we extracted 864 features: (28 items in app_category
x 2 items in days x 5 items in core data x 3 items in
data_characteristics) + (regardless of the app category: 2 items
in days x 4 items in session data x 3 items in
data_characteristics). There were several app categories (eg,
Art and Design, Auto and Vehicles) where the number of users
was low. Having anonuser creates a sparse matrix that may not
demonstrate enough variance. We excluded all such features
where the percentage of userswas less than 50%. This resulted
in 219 features (Table C2 of Multimedia Appendix 1) going
through the feature selection (FS) step.

Feature Selection

Broadly, FS approaches are categorized into 3 groups: (1)
wrapper, (2) filter, and (3) embedded methods[69]. We explored
all 3 approaches. Moreover, we used the stable FS algorithm
[70] asdescribed later. In addition, to make the model s unbiased
tothefeatureshaving larger values, we scaled the featureswhere
we performed standard scaling as some of the data contained
outliers and standardization is less sensitive to outliers than
min-max scaling [71].

The Filter Method

We used the information gain (IG) agorithm as the filter
method. Unlike the Boruta algorithm, the 1G algorithm does
not inform a fixed set of features that can be optimal for
classification. Hence, to select a set of top-scoring features, we
set the lower bound by using the 1-in-10 rule [72] approach
where the top 5 features were selected due to there being 51
depressed participants (see the Depression Among Participants
section) in our study. Gradually, we increased the number of
features to 20 to avoid the possibility of having an overfitted
model with alarge number of features.

The Wrapper Method

Unlike minimal-optimal methods, al-relevant features are
selected in Boruta[ 73], where the random forest (RF) algorithm
iswrapped. To implement this, we used the BorutaPy package
[74], which works by correcting the P values in 2 steps rather
than the 1-step Bonferroni correction, which is conservative.
We changed the maximum depth of the RF from 3to 7 [74], as
suggested by the authors of the package.
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The Embedded Method

The embedded method combines the strategies of thefilter and
wrapper methods. We used the RF as the embedded method.
In selecting the number of features based on the score of feature
importance, we used the same approach as we did for thefilter
method.

The Stable Method

In our study, we extracted 219 features from each of the 100
participants app usage data. Due to a small number of
participants, there may be unstable features where features may
vary across different samples. The stable FS approach [70] was
found to perform well in this scenario as many bootstrapped
samplesare created and thefinal set of featuresis selected based
on athreshold (Tg;,), which presentsthe percentage of subsamples
containing afeature. We created 1000 bootstrapped subsamples
and used a logistic regression (Logit) classifier as the base
estimator that fit on the bootstrapped subsamples. In previous
studies of depression identification, researchers have used
random thresholds (eg, 0.25 [75], 0.75 [ 76]) to select features.
Sincethereisno evidence of getting optimal performance using
only those threshol ds, we performed an empirical investigation
to present the optimal threshold. We started from a threshold
of 0.5, whichindicatesthat 50% of the bootstrapped subsamples
contain a particular feature. Gradually, we increased the
threshold by 0.01 up to athreshold where no more featureswere
selected.

Development and Validation of the Models

Asthereisno one-model-fits-all solution, we used adiverse set
of ML agorithms, including those that are widely used in the
medical informatics field, as shown in previous systematic
reviews: decision tree (DT) [77], RF, support vector machine
(SVM) [77-79], and Logit [78,79] agorithms. Moreover, we
used other ML algorithms to increase the diversity of the
models: Gaussian Naive Bayes, K-nearest neighbor (KNN),
support vector classifier (SVC), AdaBoost, extratree, multilayer
perceptron (MLP) [71], light gradient boosting machine
(LGBM) [80], CatBoost [81], and gradient boost (GB) [82]. As
the baseline classifier, we used a dummy classifier. To develop
and validatethe ML models, we used the nested cross-validation
(CV) method. In the outer loop wasthe |eave-one-participant-out
cross-validation (LOPOCYV), and in theinner loop wasa 20-fold
CV, where 19 folds were used for tuning the hyperparameters
and the remaining 1 fold was used for validation. LOPOCV

https://formative.jmir.org/2023/1/e28848
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maximizes the number of samples in training, where in each
iteration, (N — 1) samples are used for training and 1 sampleis
used for testing (Figure 3). We took steps to prevent the
possibility of overfitting the models. We used the nested CV
method, which shows unbiased performance [83] and is used
asthe state-of -the-art method to restrain modelsfrom overfitting
and overestimation [35]. Additionally, in the outer loop of nested
CV, we used LOPOCYV, which has a lower variance [84] and
is used to minimize overfitting [21].

Hyperparameters in ML models play a role in enhancing
performance. To tune the hyperparameters (the list of explored
hyperparametersfor the 13 ML algorithmsisavailablein Table
D1 of Multimedia Appendix 1), we used the Bayesian search
optimization technique, which uses an informed search
technique and worksfaster than the uninformed search technique
(eg, grid search CV). It isworthwhileto mention that to devel op
unbiased ML models (Figure 3), the sample used in the testing
was neither present in FS nor in the hyperparameter tuning steps.
During model development, we maximized the F;-score as it
isbased on the sensitivity and precision score, where sensitivity
informed how many of the depressed participantswere correctly
classified and precision informed how many of the predicted
depressed participants were truly depressed. After finding the
best-performing models, we selected the top 5 agorithms as
the base estimators to develop a stacking model, which works
based on the wisdom of the crowd concept. To train the
meta-learner Logit model of the stacking classifier, we used
10-fold CV. It isworthwhile to mention that in the case of each
CV, we used the stratified technique so that the proportion of
participants in each group remained the same in the training
and testing parts, which ensured the unbiasedness of the model
toward aparticular group. For ML model development, we used
Python packages, including hyperopt [85] and sklearn [86].

To evaluate the performance of the classification models, we
used the evaluation metrics precision, F;-score, and accuracy.
However, an overfitted model can predict only a single class
without being able to predict the other class. At that time, we
will obtain ~50% accuracy in our data set as there was almost
an equal number of participants in each group. Therefore, in
addition to other evaluation metrics, to understand the
performance in classifying the students in each group, we also
calculated the sensitivity and specificity. Specificity informed
us how many of the nondepressed participants were accurately
classified.
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Figure 3. Pipeline of Mon Majhi in identifying the depressed and nondepressed participants. DT: decision tree; GB: gradient boost; KNN: K-nearest
neighbor; LGBM: light gradient boosting machine; LOPOCV: |eave-one-participant-out cross-validation; MLP: multilayer perceptron; PHQ-9: Patient
Health Questionnaire-9; RF: random forest; SVM: support vector machine; XGB: X GBoost.
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Explanation of the Models

Explaining the models can be insightful for mental health
professionals to understand depressed students. Additionally,
thiscan help inthe reproducibility of ML models. To understand
how different features affect the probability of remaining in a
particular group, we used the Shapley additive explanations
(SHAP) [87] approach.

Results

Depression Among Participants

Of the 100 participants in our study, 51 (51%) had depression
and 49 (49%) did not. The PHQ-9 score of the depressed group

Remaining 1 participant's data for test who
was not in feature selection and training

ranged from 10 to 27, whereas that of the nondepressed group
varied from 1 to 9 (Figure 44a). After exploring differencesin
the 9 symptoms of the PHQ-9, we found that, on average,
depressed students were bothered by each symptom for around
more than half of the daysin the past 14 days (score=2; Figure
4b). However, nondepressed students were not bothered by the
symptoms at all, except symptom 1 (little interest or pleasure
in doing things), where the average score was around 1 (several
days; Figure 4b).

Figure4. Depression score of the participants. (a) PHQ-9 score of the depressed and nondepressed participants. (b) Symptoms 1-9 of the PHQ-9 scale.
Scores of 0, 1, 2, and 3 correspond to "not at al," "several days," "more than half of the days," and "nearly every day," respectively. PHQ-9: Patient

Health Questionnaire-9.
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participants (P52-P100).

Perfor mance of the Modelsin I dentifying Depression

In this section, we present the performance of ML models that
are promising for identifying depressed and nondepressed
participants. In Tables E1 to E4 of Multimedia Appendix 1, we
present all 13 classifiers' performancein detail for model s based
on important features selected by the filter (1G), wrapper
(Boruta), embedded (RF), and stable FS methods, respectively.
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a) PHQ-9 score of each depressed (P1-P51) and nondepressed

(b)Frequency of symptoms’ appearance in
depressed and nondepressed students.

Performance of ML Modelsin the Stable Feature
Selection Approach

In finding the optimal threshold for the stable FS approach, we
started from a threshold of 0.5 where a feature was selected if
it was present in at least 50% of the 1000 bootstrapped
subsamples. At a threshold of 0.5, on average, 61.9 features
(SD 2.6) were selected in each iteration of LOPOCV (Figure
5a). We found the AdaBoost classifier performed the best in
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the selected features at this threshold, where precision,
sensitivity, and specificity were 72.5%, 72.5%, and 71.4%,
respectively (Figure 5b). When we increased the threshold by
0.01, gradually, the number of selected features decreased and
reached O at a threshold of 0.98. At a threshold of 0.6, the
number of selected features was 28.6, which was less than half
of the number of features selected at athreshold of 0.5 (Figure
5a). However, from a threshold of 0.5 to 0.6, the models
performance did not vary largely (Figure 5b). In fact, the
precision of the best models at each threshold was above 70%.
In terms of precision, we found the best model at a threshold
of 0.65, where the LGBM model—predicted depressed group

Ahmed & Ahmed

was correct in 78% (n=39) of cases, and the sensitivity of 76.5%
and specificity of 77.6% were a so higher. Although an average
of only 11.1 (SD 0.9) features were selected at a threshold of
0.77, in terms of sensitivity (82.4%) and the F;-score (78.5%),
the best performance was found at this threshold. However, the
least number of features was selected at a threshold of 0.97,
wherein each iteration of LOPOCV, an average of 1.3 (SD 0.5)
features were selected (Figure 5a) and the LGBM model’s
predictions were the most accurate (precision=63.3%,
sensitivity=60.8%, specificity=63.3%; Figure 5b) at this
threshold.

Figure 5. (a) Number of selected features and (b) performance of the best models at each threshold of the stable FS approach. The text at the end of
the dotted lines presents the best models. FS: feature selection; Light GBM: light gradient boosting machine; LOPOCV: |eave-one-participant-out

cross-validation; ML: machine learning; MLP: multilayer perceptron.
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(b) At different thresholds, the best ML model's precision, sensitivity, and spedificity score

Performance of ML Modelsin the Boruta Feature
Selection Approach

Unlike all other FS approaches, in the wrapper method Boruta,
we found all-relevant features showing higher performance for
prediction tasks. To find the optimal performance of the models,
we tuned the base estimator RF's maximum depth, which is
wrapped in Boruta. On average, around 5 features were sel ected
by Boruta when we varied the maximum depth from 3 to 7
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(Figure 6a). Although the number of features did not vary, the
set of selected features varied (Table F1 of Multimedia
Appendix 1), which wasreflected in the performance of the ML
models (Figure 6b). We found the maximum sensitivity and
F,-score when depth was 4, where the KNN agorithm-based
model showed a sensitivity of 82.4% and an F,-score of 76.4%.
However, the specificity (65.3%) of the model was below 70%.
We found a better-performing model at a maximum depth of
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6, where the GB algorithm model accurately identified 74.5%
(n=38) of the depressed participants (sensitivity=74.5%), and
the predicted depressed group was also correct in 73.1% (n=38)

Ahmed & Ahmed

cases (precision=73.1%), with a specificity of 73.8% (Figure
6b).

Figure 6. (a) Number of selected features and (b) ML models’ performance at different depths of the estimator of the Boruta algorithm. GB: gradient
boost; KNN: K-nearest neighbor; LOPOCYV: leave-one-participant-out cross-validation; ML: machine learning.
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Comparison of the Feature Selection Approaches

We compared the performance of the FS approaches by selecting
the same number of features in each approach. In the filter
method |G and the embedded method RF, we selected a subset
of top-scoring features, wherethelower and upper boundswere
set following a process as described in the Feature Selection
section. Unlike the filter and embedded methods, in the stable
and aso in the wrapper method Boruta, there was a variation
inthe number of selected featuresin each iteration of LOPOCV.
Thus, for those 2 methods, we selected the best model by
rounding the average number of selected featuresin LOPOCV
so that the number of features becomes comparable. We found
that using 5 features selected by the |G, the DT model performed
better than the other 13 ML classifiers, where the precision,
sensitivity, and specificity were 65.5%, 74.5%, and 69.7%,
respectively (Table 1). Using the 5 features selected by the
embedded and stable methods, CatBoost’s (precision=64.9%,
sensitivity=72.5%,  specificity=59.2%) and the RF's
(precision=69.1%, sensitivity=74.5%, specificity=65.3%)
performance was higher, respectively (Table 2). However, the
models based on the 5 features selected by Boruta outperformed
the models based on the 5 features selected by the other 3 FS
approaches (Tables 1 and 2). As mentioned previously, the GB
model using 5 features selected by Boruta had a sensitivity,
specificity, and Fj-score of 74.5%, 71.4%, and 73.8%,
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(b) The best-performing ML models in varying
features.

respectively (Table 1). In addition, it was interesting to observe
that the same performance was found when using 6 and 7
features selected by the IG, 9 and 10 features selected by the
RF, and 14 features selected by the stable FS approach (Tables
1 and 2). Thus, the GB model, developed by the 5 selected
features of the all-relevant FS method, can be called the
parsimonious model due to having a better predictive ability
with asmaller number of features.

The optimal performance of the ML models varied by the
number of selected features, as shown in Tables 1 and 2. For
example, in the |G, the best performance was found using 9
features  (DT: precision=76.6%, sensitivity=70.6%,
specificity=77.6%), whilein the RF FS approach, wefound the
best performance using 15 features (GB: precision=74.1%,
sensitivity=78.4%, specificity=71.4%). Considering the
performance of all models of all FS approaches, a model with
the maximum F;-score and sensitivity was found by using
around 11 features of the stable FS approach (LGBM:
precision=75%, sensitivity=82.4%, F-score=78.5%,
specificity=71.4%). However, athough the models' performance
varied by the number of features, it appeared that in up to 10
features that were selected by each FS approach, there were
several setsof features based on which the models’ scoreswere
around 70% when the sensitivity, specificity, precision, and
F,-score were calculated (Tables 1 and 2).
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Table 1. Performance of the best models while selecting n featuresin the filter and wrapper FS? approaches.

Ahmed & Ahmed

Features, N Fjjter method (1G?) Wrapper method (Borute®)
Bestmodel Precision  Sensitivity Fj-score  Specificity Bestmodel Precision — Sensitivity Fq-score  Specificity

5 pTd 0.655 0.745 0.697 0.592 GB® 0.731 0.745f 0.738 0.714f
6 XGBY 0.731f 0.745' 0.738' 0.714f KNNP 0.69 0.784 0.734 0.633
7 CatBoost (731 0.745f 0.738f 0.714f —H — — — —

8 bT 0.750 0.706% 0.727¢ 0.755 — — — — —

9 bT 0.766' 0.706' 0.735 0.776' — — — — —

10 LGBM™ 0695 0.804 0.745 0.633 — — — — —

11 LGBM 0.712 0.725 0.718 0.694 — — — — —

12 XGB 0.691 0.745 0.717 0.653 — — — — —

13 XGB 0.702 0.784 0.741 0.653 — — — — —

14 GB 0.698 0.725 0.712 0.673 — — — — —

15 LGBM 0.714 0.686 0.700 0.714 — — — — —

16 GB 0.700 0.686 0.693 0.694 — — — — —

17 DT 0.778 0.686 0.729 0.796 — — — — —

18 LGBM 0.704 0.745 0.724 0.673 — — — — —

19 XGB 0.712 0.725 0.718 0.694 — — — — —

20 XGB 0.720 0.706 0.713 0.714 — — — — —

8FS: feature selection.
b1G: information gan.
®The number of features selected by Boruta and stable FS was rounded to make it comparable to the other FS approaches.
9DT: decision tree.

€GB: gradient boost.

fLow—pen‘orming (rank 3) classifiersin each approach.

9XGB: XGBoost.

PKNN: K-nearest neighbor.

IN/A: not applicable.
JIn the Boruta method, the number of maximum important selected features was 5.5, so we set all values for 7-20 selected features as N/A.
KM edium-performing (rank 2) classifiersin each approach.

IHigh—pen‘ormi ng (rank 1) classifiersin each approach.
M_GBM: light gradient boosting machine.
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Table 2. Performance of the best models while selecting n features in the embedded and stable FS? approaches.

Features, N Empedded method (RF?) Stable method®
Bestmodel Precision  Sensitivity Fj-score  Specificity Bestmodel Precision — Sensitivity Fq-score  Specificity

5 CatBoost  0.649 0.725 0.685 0.592 RF 0.691 0.745 0.717 0.653
6 %GBY 0.679 0.706 0.692 0.653 LeBME 0773 0.667 0.716 0.796
7 ca' 0.707 0.804 0.752 0.653 LGBM 0.760 0.745 0.752 0.755
8 DTO 0.735 0.706 0.720 0.735 LGBM 0.704 0.745 0.724 0.673
9 LGBM 073" 0745 0.738" 0.714h LGBM 0.690 0.784 0.734 0.633
10 LGBM 0.731h 0.745 0.738" 0.714" LGBM 0.737 0.824 0.778 0.694
11 LGBM 0.755 0.725 0.740 0.755 LGBM 0.750 0.824 0.785 0.714
12 LGBM 0.755 0.725 0.740 0.755 LGBM 0.750" 0.765" 0.757" 0.735"
13 DT 0.735 0.706 0.720 0.735 LGBM 0,750 0.765" 0.757" 0735
14 KNNK 0.720 0.706 0.713 0.714 LGBM 0.731 0.745 0.738 0.714
15 GB 0.741) 0.784 0.762 0.714 LGBM 0.740 0.725 0.733 0.735
16 LGBM 0.712 0.725 0.718 0.694 LGBM 0.765 0.765 0.765 0.755
17 RF 0.696 0.765 0.729 0.653 LGBM 0.680 0.667 0.673 0.673
18 DT 0.660 0.686 0.673 0.633 DT 0.700 0.686 0.693 0.694
19 LGBM 0.729 0.686 0.707 0.735 LGBM 0.698 0.725 0.712 0.673
20 GB 0.712 0.725 0.718 0.694 LGBM 0.725 0.725 0.725 0.714

9FS: feature selection.
bRF: random forest.

“The number of features selected by Boruta and stable FS was rounded to make it comparable to the other FS approaches.

4XGB: XGBoost.

®LGBM: light gradient boosting machine.

fGB: gradient boost.

9DT: decision tree.

hLow-performing (rank 3) classifiersin each approach.
iMedium-performi ng (rank 2) classifiersin each approach.
jHigh—pen‘ormi ng (rank 1) classifiersin each approach.

KK NIN: K-nearest neighbor.

Performance of the Stacking Models

After finding the optimal set of features for each FS approach,
we built stacking models based on the top 5 classifiers. While
selecting classifiers based on the embedded method’s features,
we found that although a model based on 15 features
demonstrated the maximum F,-score (Tables 1 and 2), most
classifiers’ performance remained higher whileusing 12 features
(see Table 3; for comparison, see Table E3 of Multimedia
Appendix 1). However, in the |G, Boruta, and stable methods,
the best set of top 5 classifiers was found in 9 features, at the
base estimator’'s maximum depth of 6, and at a threshold of
0.77, respectively (for details, see Tables E1, E2, and E4 of
Multimedia Appendix 1).

Interestingly, from the top 5 classifiers of each FS approach, it
was gpparent that boosting model s can find important behavioral
patternsthat make their predictions more accurate, keeping most

https://formative.jmir.org/2023/1/e28848

of theminthetop 5 classifierslist (Table 3), athough we used
a baseline dummy classifier and 13 different ML algorithms
where linear and nonlinear a gorithms were present. We found
at least one variation of the GB models remained as one of the
top 2 classifiers. The LGBM model in particular performed
better across different sets of features. The LGBM model
showed good performance consistently on most feature sets
selected by the stable FS approach (Tables 1 and 2). Even when
the number of features remained constant, the LGBM model
remained one of thetop 5 classifiersin each FS approach (Table
3).

The stacking models based on features selected by the filter,
wrapper, and embedded methods had precision, sensitivity,
specificity, and F;-score val ues of morethan 70%. The stacking
model based on the features selected by the wrapper method
Borutacorrectly identified 80.4% (n=41; sensitivity=80.4%) of
depressed participants. The predicted depressed group was al so
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accurate in 77.4% (n=41) of cases (precision=77.4%), making
this the most accurate model among all 4 stacking classifiers,
as presented in Table 4. However, it was surprising to see that
the stable method—sel ected feature-based stacking model had a
precision and specificity lower than 70% (Table 4), athough
thismethod’s sel ected feature set at athreshold of 0.77 produced
the LGBM model with ahigher sensitivity (82.4%) and F,-score

https://formative.jmir.org/2023/1/e28848
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(78.5%) than any other individual model (Table 3). Additionally,
we found the LGBM model had a relatively lower balanced
accuracy— (sensitivity + specificity/2)—than the best stacking
model: (82.4% + 71.4%)/2 = 76.9% for the LGBM model (Table
3) versus (80.4% + 75.5%)/2 = 77.9% for the Boruta-selected
feature-based stacking model (Table 4).

JMIR Form Res 2023 | vol. 7| €28848 | p. 13
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR FORMATIVE RESEARCH Ahmed & Ahmed

Table 3. Top 5 classifiers and the baseline classifier’s performance based on the performance of the best set of features of each FS? approach.

Method and model name Precision Sensitivity F1-score Specificity

Filter method (IGb; n=9 features)

DTC 0.766 0.706 0.735 0.776
crd 0.717 0.745 0.731 0.694
AdaBoost 0.729 0.686 0.707 0.735
LGBM® 0.704 0.745 0.724 0.673
xGBf 0.692 0.706 0.699 0.673
Baseline (dummy) 0.510 1.000 0.675 0
Wrapper method (Boruta; base estimator’s maximum depth=6)

GB 0.731 0.745 0.738 0.714
KNNY 0.707 0.804 0.752 0.653
XGB 0.725 0.725 0.725 0.714
AdaBoost 0.696 0.765 0.729 0.653
LGBM 0.714 0.686 0.700 0.714
Baseline (dummy) 0.510 1.000 0.675 0

Embedded method (RF"; n=12 features)

GB 0.732 0.804 0.766 0.694
LGBM 0.755 0.725 0.740 0.755
Logiti 0.750 0.706 0.727 0.755
DT 0.729 0.686 0.707 0.735
KNN 0.706 0.706 0.706 0.694
Baseline (dummy) 0.510 1.000 0.675 0
Stable method (threshold=0.77)

LGBM 0.750 0.824 0.785 0.714
XGB 0.745 0.745 0.745 0.735
DT 0.706 0.706 0.706 0.694
GB 0.706 0.706 0.706 0.694
CatBoost 0.691 0.745 0.717 0.653
Baseline (dummy) 0.510 1.000 0.675 0

8FS: feature selection.

B1G: information gan.

°DT: decision tree.

dGB: gradient boost.

€L GBM: light gradient boosting machine.
"X GB: XGBoost.

9K NN: K-nearest neighbor.

PRF: random forest.

iLogit: logistic regression.

https:/formative.jmir.org/2023/1/e28848 JMIR Form Res 2023 | vol. 7| €28848 | p. 14
(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR FORMATIVE RESEARCH

Ahmed & Ahmed

Table 4. Performance of the stacking classifiers based on the top 5 classifiers of the best set of features of each FS* method.

FS method Precision Sensitivity  Fq-score Specificity  aAycPscore  Accuracy
Filter method (1GS n=9 features) 0.735 0.706 0.72 0.735 0.72 0.72
Wrapper method (Boruta; maximum depth=6) 0.774 0.804 0.788 0.755 0.78 0.78
Embedded method (RF%: n=12 features) 0.725 0.725 0.725 0.714 0.72 0.72
Stable method (threshold=0.77) 0.65 0.765 0.703 0.571 0.668 0.67

FS: feature selection.
BAUC: area under the curve.
CIG: information gain.

9RF: random forest.

Important Features and Explanation of the Models

Although each FS approach works differently, we found several
common features as being important (Figure 7). There were 3
entropy-based features that were used more than 80% of the
time among all iterations of LOPOCV in each of the 4 FS
approaches. These features included two that measure the
entropy based on the app usage of weekdays and weekends
spanning a24-hour period, aswell asthe featurethat cal culated
the average entropy of weekdays during 4 time intervals
(morning, afternoon, evening, and night; Figure 7). Although
we used 12 different types of data, 40% (n=14) of the top 35
important features (all features are presented in Table F2 of
Multimedia Appendix 1) were based on entropy, hamming
distance, and session data (Figure 7). In fact, at a threshold of
0.97 of the stable FS approach, 98% of iterations of LOPOCV
c ontaimned t h e
Weekday Communication_Ratio_of Hamming_6 Hour_Mean
feature (Table F3 of Multimedia Appendix 1), which is also
based on hamming distance data. The hamming distance presents
the app usage uniqueness, whereas entropy presents the app
usage pattern, which decreases with higher inequality in app
usage data. This reveals that complex app usage patterns can
reflect better differentiable behavior, which can output higher
classification accuracy.

In our extracted features, there were diurnal features presenting
the app usage behavior in 6-hour intervals, as well as features
based on the whole day. However, compared to thewhole day’s
app usage, we found a larger number of important features
regarding diurnal app usage behavior (n=19, 54.3%, for diurnal
usage vs n=16, 45.7%, for 24-hour usage; Figure 7). In
particular, ahigher number of features (n=12, 34.3%) regarding
the deviation of app usage behavior over the night, morning,
afternoon, and evening periods was selected as important. We
also found that although only 22.9% (n=8) of thetop 35 features
were based on overall smartphone usage data (regardless of the
app category), 77.1% (n=27) were based on different app
categories. We found the Communication, Social, and Tools
app category—based features to be especially superior (Figure
7).

To explain the features' impact on the ML models’ output, we
used the SHAP approach. To check consistency, we explored
the features' impact on the training as well as the test data for
the best individual model (LGBM; Figure 8a,b) and the best

https://formative.jmir.org/2023/1/e28848

stacking model (Figure 8c,d). InLOPOCYV, (N — 1) participants
data were used for training and the remaining 1 participant’s
data were used for testing purposes. Therefore, a participant
appeared n times during the training, whereas during the testing,
a participant appeared only onetime. This scenario is reflected
in Figure 8, wherethere are more feature valuesin the summary
plot based on training data. Interestingly, we observed
consistency in the impact of the features on the model output.
In the case of both training and testing data—based summary
plots of the LGBM and stacking models, higher entropy in
smartphone usage during the weekdays over a 24-hour period
showed a negative impact (shifting the prediction toward the
nondepressed group), while lower entropy showed a positive
impact (moving toward the depressed group; Figure 8a-d).
However, a higher mean entropy based on 4 time periods (ie,
night, morning, afternoon, and evening) demonstrated an impact
in the reverse direction (Figure 8a,b).

We also found in the Communication category that having a
higher mean ratio of hamming distances in the 4 time periods
during weekdaysincreased the predicted probability toward the
depressed group, showing a positive impact (Figure 8ab).
Similarly, we found that higher Photo and Video app usage on
the weekends moved the predicted probability toward the
depressed group (Figure 8ab). However, in the Education
category, more time spent on weekdays appeared to increase
the probability toward the nondepressed group (Figure 8a,b).

By local interpretations, weinvestigated how each participant’s
class probability was impacted by different features. As a
sample, we presented 2 participants group prediction
approaches by the LGBM and stacking models, in which cases
the prediction was accurate. We found that in the case of the
nondepressed participant (ID 77), smartphone entropy based
on a 24-hour period during the weekdays was 1.204 (Figure
9d), whereas in the case of the depressed participant (ID 46),
this feature’s value was —0.148 (Figure 9a), which was much
lower. This finding indicates the same relationship as that
presented in the summary plot in Figure 8. Moreover, the higher
SD over the day in the number of photo and video appsin the
case of depressed participants (Figure 9a) compared to
nondepressed participants (Figure 9c) reflected the findings
demonstrated in Figure 8, where we found the higher SD
classifying the predicted group as depressed. From Figure 9, it
is also apparent that to predict the group of this participant, a
relatively smaller number of features were used in the
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for the same participant, the Boruta-sel ected feature-based model
used only 5 features (Figure 9b), although both the models

feature-based LGBM model used 8 features (Figure 98), whereas  predictions were correct.

Figure 7. Top 35 features among the features used for the best set of top 5 classifiers based on the filter method I1G (n=9 features), wrapper method
Boruta (base estimator’s maximum depth=6), embedded method RF (n=12 features), and stable method (threshold=0.77). Here, features are ranked
based on the mean appearance in the FS methods. The smartphone denotes data regardless of the app category. The values present the percentage of
times (among dl iterations of LOPOCV) a feature appeared. FS: feature selection; 1G: information gain; LOPOCV: |eave-one-participant-out
cross-validation; RF: random forest.
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Figure 8. Summary plot showing theimpact of features on the output of the LGBM model and the stacking model: (a, ¢) training dataand (b, d) testing
data. Features are ranked by importance, which is calculated based on Shapley values. Here, we present the features that appeared in al iterations of
LOPOCV. LGBM: light gradient boosting machine; LOPOCV: |eave-one-participant-out cross-validation; SHAP: Shapley additive explanations.
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Figure 9. Force plot showing the identification of a participant with depression (participant 1D 46) and a participant without depression (participant
ID 77) by the LGBM (a, c) and stacking (b, d) models. Text in bold color shows the probability of remaining in the respected class (depressed,
nondepressed). (a, b) Text in blue color shows the features moving the predicted classto 1 (depressed), whiletext in red color shows the features moving
the predicted class to O (nondepressed). (c, d) The direction is reversed. Numerical values after each feature present the standardized feature value in
the case of the participant that was used in model development. LGBM: light gradient boosting machine.
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(d) Identification of a nondepressed participant (ID 77) identification by the stacking model

Discussion

Principal Findingsand Comparison With Prior Work

In this study, we presented Mon Majhi, a pervasive smartphone
technology that aims to detect depression following a
minimalistic approach in terms of data collection and detection
time. It retrieves the past 7 days app usage behaviora data
within 1 second (mean 307.94, SD 1103.91 ms). Compared to
the existing promising systems that leverage various data,
including sensed data [19,20,28,32,36,87], phone usage
[19,20,27,28,32,35,36], and network traffic [89], our system is
faster and minimalistic, as presented in Table 5. For instance,
an existing state-of-the-art systems [20] required 106 days to
collect data of an equal number of days, and using those data,
the model correctly identified 84.7% of depressed participants.
However, using only our system’sinstantly (<1 second) accessed
7 days' data, our LGBM model correctly identified 82.4% of
depressed participants. In addition, although previous studies
have developed promising models to identify depressed
participants, the systems in most studies rely on sensors, such
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as accelerometers [28,32], audio [28,32,88], Bluetooth
[19,20,28], and GPS [19-21,28,32,36,88]. Using such sensors
may be energy inefficient due to high power consumption (eg,
by GPS [41]), which significantly reduces the battery life [41].
In addition, the need for current phone data—based systems
[19-21,27,28,32,35,88,89] to run in the background may create
reluctance as users want a long battery life [90] and running
services in the background increases power consumption [91].
Moreover, students may not use systems for assessing mental
health that negatively impact battery life [92]. Our system, on
the other hand, does not use any such sensors or run in the
background. We also do not need to run any resource-intensive
systems (eg, a conversation classifier [32] or an audio signa
processor [88]) to extract behavioral data. Instead, we perform
simple mathematical calculations for feature extraction, which
makes our system cheap, minimalistic, and largely scalable for
resource-constrained settings. Our system can aso be
complementary to existing systems where faster detection can
be followed by other systems for long-term evaluation. The
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minimalistic design opens opportunities for this system to be
used in low-resource settings, such asan LMIC like Bangladesh.

Based on all evaluation metrics, our best stacking model had a
performance of over 75%, while the robust models in a study
[35] based on phone usage and internet connectivity had a
performance of over 85% with a maximum accuracy of 98.1%.
However, in addition to the general limitations discussed before,
their model swere limited by several other factors. For example,
when classifying responses and considering that approximately
50% of participants had more than one response, it becomes
possible for the same participants' responses to appear in both
the training and testing data sets. This introduces the potential
for biased models and overestimated performance [93].
Similarly, compared to a study by Leigh et a [27] where
researchers devel oped ML models solely based on phone usage
data, our stacking model demonstrated 18.4% higher sensitivity
than their best model. There can be several reasons behind this
enhanced performance. For instance, our feature importance
analysis showed that a higher number of features pertaining to
diurnal usage data are more important than the 24-hour
aggregated data, which was unexplored by Leigh et a [27]. In
the SHAP analysis, we found that a higher entropy based on
smartphone usage in 24 hours of weekdays increased the

https://formative.jmir.org/2023/1/e28848
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model’s predicted probability toward the nondepressed group,
while an increase in average entropy in the 4 time periods of a
day increased the predicted probability toward the depressed
group. This also indicates that the diurnal usage pattern is
different from the whole day’s behavior. Additionally, in our
study, features regarding entropy, hamming distance, and session
data appeared asimportant, which also remained unexploredin
the previous study [27]. At athreshold of 0.77 of the stable FS
approach, a feature regarding the hamming distance appeared
in each iteration of LOPOCV, where we found the best
individual model: LGBM (precision=77%, sensitivity=82.4%).
In addition, we found that a higher number of features based
on app categories was important compared to the aggregated
data regardless of app category. Behaviora markers of the
particular app categories are associated with depression [ 25,26]
and also with the rhythmic patterns of our body [95], as
presented by researchers through conventional statistical
methods [25,26,94] and aso by a qudlitative study [94].
Therefore, our findings suggest that while developing ML
models, instead of leveraging only the aggregated phone usage
data, as in the previous studies [19-21,27,28,32,35],
incorporation of the features regarding app categories and
extraction of features such as hamming distance may improve
the performance of the ML models.
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Table 5. Comparison of our system’s performance with that of previous studies using pervasive devices to identify depressed and nondepressed
participants. Researchers used binary classification in the included studies. The time required to collect data in each study based on the description of
the data collection tool is reported.

Reference and Samplesize  Collecteddata System Dura=  Time Accura Preci-  Senstiv- Speci- pAyc? F1-score
country (if avail- for models, N needs to tionof tore- cy sion ity ficity score
able) runinthe  ex- trieve

back- plored data

ground data

Xu et al [19], United States

Dataset 1 138 Fithit sensed,  Yes 106 106  0.807 0.765 0.886 _b — 0.821
phone sensed, days days and and and and
usage 0.818 0.843 0.843 0.843
Data set 2 212 Fitbit sensed, Yes 113 113 0689- 0.757- 0.779- — — 0.768-
phone sensed, days days 0.840 0.877 0.907 0.881
usage
Xu et al [20], United States
Dataset 1 138 Fitbit sensed, Yes 106 106  0.825 0.862 0.847 — — 0.855
phone sensed, days days
usage
Dataset 2 169 Fithit sensed, Yes 166 166 0.791 0.814 0854 — — 0.833
phone sensed, days days
usage
Wangetal [32], 83 Microsoft Yes 63 days 63 — 0.691 0.815 — 0.809 —
United States Band sensed, (9-week days
phone sensed, terms)
usage
Saebetad [27], 21 (for phone Phoneusage Yes 1l4days 14 Mean — Mean Mean — —
United States usage data- days 0.742 0.640 0.839
based analy- (SD
Sis) 0.034)
Nickelsetal [28], 186and 197  Phonesensed, Yes 84days 84 — — — — Mean —
United States usage days 0.620 (SD
0.062) and
mean 0.656
(SD 0.079)
Opoku et al [35], 629 Phoneusage, Yes Mean Men 0.964- 0.856- 0.922- — 0.947- 0.887-
mostly developed internet, de- 221 221 0.981 0.925 0.956 0.991 0.940
countries mography (Sb (SD
17.9) 17.9)
days days
Opoku et al [36] 54 Demograph-  Yes Mean Men 0.814 Dep®: 0.505 0.924 0.823 Dep:
ics, Ouraring 28.21 2821 0.699 0.58
sensed, phone days days Nor- Non-
sensed, usage den:
d. ep:
dep': 0.88
0.841

Dogrucu et al [88]

PHQ-9%cut- 294 Contacts, Yes 1l4days — 0.588 0.599 0554 0623 — 0.575
off score=10 GPS, call log,
and under- social media,
sampling voice record-
ing
PHQ-9cut- 96 Contacts, Yes 1l4days — 0.771 0.783 0.75 0.792 — 0.766
off score=20 GPS, cal log,
and under- social media,
sampling voice record-
ing

Yueet al [89], United States
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Reference and Samplesize  Collecteddata System Dura- Time Accura Preci- Sensitiv-  Speci-  pAyc? F-score
country (if avail- for models, N needs to tionof tore- cy sion ity ficity score
able) runinthe  ex- trieve
back- plored data
ground data
iOS users 40 Network traf-  Yes Severd Sev- — 0.71 0.71 0.63 — 0.71
fic months  era
nots
Android 13 Network traf-  Yes Severa  Sev- — 0.75 0.86 0.77 — 0.80
users fic, screen on- months  era
off nmots
This study, Bangladesh
Performance 100 Phoneusage  No Past7  Men .770 0.750 0.824 0.714 0.769 0.785
of our best data days A
singleclassi- (SD
fier—based jie:2)]
model: ms
LGBM'
Performance 100 Phoneusage No Past7  Mean 0.780 0.774 0.804 0.755 0.780 0.788
of our best data days A
stacking (SD
model based )
onthetop5 ms
classifiers

BAUC: area under the curve.

®Not available.

’Dep: depressed.

dNondep: nondepressed.

€PHQ-9: Patient Health Questionnaire-9.
fLeBM: light gradient boosting machine.

Implications of Study Findings

In the stable FS approach, starting from athreshold of 0.5, we
gradually increased the threshold by 0.01 until there remained
0 features and we found the best model in selecting the features
that appeared at least 77% of the time among the 1000
bootstrapped subsamples. This finding highlights the need for
empirical investigation of the threshold while using the stable
FS approach. This finding also extends previous studies that
have used random thresholds of 0.25[75] and 0.75[76] to select
features for depression identification and also in other contexts
(eg, Ing et a [95] used athreshold of 0.90 in neurobehavioral
symptom identification). While comparing FS approaches, we
found that to achieve the same performance (precision=73.1%,
sensitivity=74.5%) as an ML model developed using around 5
features selected by Boruta, we need 6, 9, and ~14 features of
the filter, wrapper, and stable approaches, respectively. In fact,
using those 5 features of Boruta, our stacking model performed
the best (precision=77.4%, balanced accuracy=77.95%). Unlike
other FS approaches, selecting all-relevant features in Boruta
[73], instead of selecting minimal-optimal features, can be a
plausible reason for having better performance. Higher
performance with a relatively lower number of features
demonstrates the development of a parsimonious model that
can have potential for resource-constrained settings where the
usage of a higher number of features can increase the
computational models complexity and use relatively more
resources. Additionally, the parsimonious model, based on
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all-relevant featuresin particular, can have potential implications
in presenting plausible behavioral markers for intervention.

After comparing the performance of the ML models, we found
the GB-based models GB, XGB, and LGBM to be superior,
although we developed models using a baseline dummy
classifier and 13 different classification algorithms, including
the support vector, KNN, Logit, and neural network (MLP)
algorithms, where each model was devel oped based on features
selected by 4 different FS methods. In the GB ML models, the
weak learners are converted to strong learners by correcting the
predecessors through the gradient descent algorithm [82], and
GB can effectively handle a complex relationship with
nonlinearity [96]. Thisis reflected in the findings of our study,
where we found better performance among GB-based models
compared to linear models, such as Logit. In particular, we
found the LGBM to beone of thetop 5 classifiersamong models
based on features selected by each of the 4 methods. Infact, the
best individual ML model was based on the LGBM algorithm,
as mentioned before. A plausible reason for having better
performanceistheleafwise growth of the LGBM, which makes
the model complex and aso increases the complex
relation-learning capability. Although complexity increasesthe
possibility to have an overfitted model, we used the nested CV
method, which is used for overfitting prevention and has an
unbiased performance [83]. Our findings suggest that while
using behavioral data for developing ML models to identify
depression, GB-based ML algorithms, particularly the LGBM,
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may be apreferable choice, considering their lower consumption
of memory and higher speed in computation [80].

While explaining the LGBM model through the SHAP method
[87], it appeared that the greater the time spent on apps in the
Education category during the weekday, the lower the
probability of being depressed. In this study, apps including
Zoom, Google Meet, and Google Classroom were in this
category, and in Bangladesh, these apps have been used for
onlinelearning since the start of the COVID-19 pandemic [68].
Using these apps, students can support and communicate with
their classmates and teachers. The positive impact of peer
support on mental health [97] explains the plausible reason for
the association with a lower probability of being depressed. A
SHAP analysis of the model a so showed that the higher number
of photo and video apps used and also the higher deviation over
the day in terms of the number of apps used in this category on
the weekends increase the predictive probability toward the
depressed group. The photos of depressed users are different,
where their photos appear to be grayer, bluer, and darker [98].
In addition, studies have shown that those with mental health
problems post photos on social media [99] and watch videos
on YouTube [100] to share thoughts and seek support to
overcome their problems. Therefore, as different apps have
different features, the usage of a higher number of photo and
video apps by depressed individuals can present their
support-seeking behavior, which they prefer to do in aparticular
period of the day as there is a higher deviation over the day.
Extending the previous studies [99,100], these findings show
that in addition to visual attributes in social media, the
behavioral features regarding the number of photo and video
apps can also distinguish people who are or are not depressed.
Meanwhile, in the case of the Communication category, we
found that a higher ratio of hamming distances in
communication appsislikely to increase the probahility of being
depressed, which denotes that depressed individuals are more
likely to use a higher number of different communication apps.
This finding is in line with a previous study [26] conducted
using the conventional statistical method, which demonstrated
the diverse nature of app usage among depressed people
presenting their support-seeking behavior. Thus, going beyond
depression identification, these explanations through SHAP
analysis have the potentia to help mental health care
professional s better understand depressed individuals and take
steps for intervention accordingly.

Strengths and Limitations

Through our developed system Mon Majhi, we have contributed
to the mobile and ubiquitous health research area in the
following ways:

« Using only data retrieved in 1 second (mean 307.94, SD
1103.91 ms), our ML model correctly identified 82.4% of
depressed individuals. To the best of our knowledge, in
identifying apsychological problem, our approach isfaster
and more minimalistic than any other existing smartphone
data—based systems, which can enable our system to be
largely scalable in resource-constrained settings, such as
in LMICs.

https://formative.jmir.org/2023/1/e28848
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«  We presented important behaviora markers and the best
ML models after selecting features via 3 main types of FS
approaches along with the stable approach and also after
developing ML models based on 13 different classification
algorithms. Due to the large exploration, our findings can
have real-world implications. In addition, after a
comprehensive exploration, we presented a parsimonious
model based on features selected by the al-relevant FS
method Boruta, which showed better predictability with a
lower number of features. This can have potential for future
studies to develop parsimonious computational models to
identify psychological problems in low-resource settings
leveraging behavioral data.

- Through explainable ML techniques, we interpreted the
models where we demonstrated how different behavioral
features impact predicting depression and also discussed
the implications that can have potential for understanding
the smartphone usage behavior of depressed students and
in taking steps for intervention.

Our study was limited by the small sample size (N=100).
Although there was diversity among the participants in terms
of regions, institutions, and departments, and we used
state-of -the-art methods to evaluate ML models, due to having
a small sample size comprising mostly male participants,
evaluation of a large sample is needed before applying the
system in the real world. Additionally, while translating the
PHQ-9 [53], we removed the word “dead” from the ninth item
(eg, considering the students' concerns about the word “dead”
[92]) through a process that is described in detail in section B
of Multimedia Appendix 1. It should be noted that even after
weremoved the ninth item completely and considered the cutoff
score of the 8-item Patient Health Questionnaire-8 (score >10:
depressed) [101], all the depressed participants were till
categorized as depressed. It isworthwhile to mention that since
we constructed the data set of this study amid the COVID-19
pandemic in 2020 when classes were online, it was difficult to
reach out to a large number of participants. However, we have
been conducting a countrywide study where we have overcome
the aforementioned limitations and constructed a large-scale
data set. In our future work, we expect to present amore robust
system to the research community.

Conclusion

The performance of our system Mon Majhi showed that
depressed and nondepressed students can be classified
accurately, faster, and unobtrusively with minimal data.
Although we developed models using a diverse set of ML
algorithms, wefound that the LGBM model using only instantly
accessed data (<1 second) can correctly identify 82.4% of
depressed students, with a precision of 75%. Additionally, we
found the all-relevant FS approach Boruta-based stacking model
(sensitivity=80.4%, precision=77.4%) as aparsimonious model
due to higher performance with a lower number of features.
Through a SHAP analysis, we also demonstrated how different
app usage behaviora markersimpact the models. Thesefindings
are novel and show the feasibility of our minimal system for
faster depression prediction. Hence, we believe that our system
can facilitate minimization of depression ratesin low-resource
settings.
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