Published on in Vol 5, No 9 (2021): September

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/28028, first published .
Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study

Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study

Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study

Carson Lam   1 , MD ;   Chak Foon Tso   1 , PhD ;   Abigail Green-Saxena   1 , PhD ;   Emily Pellegrini   1 , MEng ;   Zohora Iqbal   1 , PhD ;   Daniel Evans   1 , MS ;   Jana Hoffman   1 , PhD ;   Jacob Calvert   1 , MSc ;   Qingqing Mao   1 , PhD ;   Ritankar Das   1 , MSc

1 Dascena, Inc, Houston, TX, United States

Corresponding Author:

  • Carson Lam, MD
  • Dascena, Inc
  • Suite B, Private Mailbox 65148
  • 12333 Sowden Rd
  • Houston, TX, 77080
  • United States
  • Phone: 1 7149326188
  • Email: clam@dascena.com