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Abstract

Background: A high number of patients who are hospitalized with COVID-19 develop acute respiratory distress syndrome
(ARDS).

Objective: In response to the need for clinical decision support tools to help manage the next pandemic during the early stages
(ie, when limited labeled data are present), we developed machine learning algorithms that use semisupervised learning (SSL)
techniques to predict ARDS development in general and COVID-19 populations based on limited labeled data.

Methods: SSL techniques were applied to 29,127 encounters with patients who were admitted to 7 US hospitals from May 1,
2019, to May 1, 2021. A recurrent neural network that used a time series of electronic health record data was applied to data that
were collected when a patient’s peripheral oxygen saturation level fell below the normal range (<97%) to predict the subsequent
development of ARDS during the remaining duration of patients’ hospital stay. Model performance was assessed with the area
under the receiver operating characteristic curve and area under the precision recall curve of an external hold-out test set.

Results: For the whole data set, the median time between the first peripheral oxygen saturation measurement of <97% and
subsequent respiratory failure was 21 hours. The area under the receiver operating characteristic curve for predicting subsequent
ARDS development was 0.73 when the model was trained on a labeled data set of 6930 patients, 0.78 when the model was trained
on the labeled data set that had been augmented with the unlabeled data set of 16,173 patients by using SSL techniques, and 0.84
when the model was trained on the entire training set of 23,103 labeled patients.

Conclusions: In the context of using time-series inpatient data and a careful model training design, unlabeled data can be used
to improve the performance of machine learning models when labeled data for predicting ARDS development are scarce or
expensive.

(JMIR Form Res 2021;5(9):e28028) doi: 10.2196/28028
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Introduction

Acute respiratory distress syndrome (ARDS) is a broadly
defined clinical syndrome associated with significant morbidity
and mortality [1,2]. ARDS has been critically misdiagnosed

and underdiagnosed despite the high ARDS-associated mortality
rates and high rates of related hospital resource use [2-4].
Confidence in ARDS diagnosis varies due to the heterogeneity
in disease presentation [5] as well as the heterogeneity in the
disease’s definition [6,7]. The identification of ARDS across
clinical settings remains subjective [8], and it can be difficult
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to diagnose the syndrome in patients with underlying conditions
that have similar symptom presentations, such as pneumonia
[9].

Early intervention is critical to improving patient outcomes, yet
there remains a need for clinical decision support tools that can
accurately predict ARDS development prior to onset. Per the
current Berlin definition of ARDS [10], a radiology report is
required to diagnose ARDS. However, rapid radiology reports
are often unavailable due to a lack of access to equipment or
the lack of the consideration of ARDS by clinicians [11]. The
variability in ARDS presentation also makes it challenging to
predict ARDS development by using standard machine learning
methods, which typically require large amounts of confidently
labeled data for supervised learning [12]. Semisupervised
learning (SSL) paradigms have been applied to the tasks of
biological data [13] classification and microRNA [14]
classification and to many similar classification tasks in the
domain of biotechnology [15-17] to address the dual issues of
poor label quality and limited data quantity. In the context of
early ARDS prediction, SSL is useful because it allows for the
implicit specification of a useful gold standard. An SSL model
schema that integrates information from many clinical features
(including radiology reports) during training but only requires
a small set of readily available clinical features to make
predictions based on test data may, in practice, be crucial to
improving early ARDS prediction. The aim of this study was

to provide a proof of concept that SSL may be useful for
predicting ARDS onset.

Methods

Data Sets
Data from 7 hospital systems were used in this study, including
data from patients who were monitored in emergency
department, inpatient ward, and intensive care unit settings. All
data were collected passively and deidentified in compliance
with the Health Insurance Portability and Accountability Act.
Patients with a length of hospital stay of at least 3 hours were
included, and positive encounters were defined by the gold
standard described in the Gold-Standard Labels section. The
data set was divided into hold-out test sets, training sets,
validation sets, and unlabeled sets, as shown in Figure 1. In
order to set aside an external hold-out test set, patients from 3
of the 7 hospital systems were considered to be a part of the test
set, and there was no overlap between the patients in this test
set and the patients from the remaining 4 hospital systems that
were used for the validation, training, and unlabeled sets. Of
the 25,670 patients from the nontest set, 2567 (10%) were set
aside for the validation set. Of the remaining 23,103
nonvalidation, nontest patients, 6930 (30%) were set aside for
the labeled data set, and 16,173 (70%) were set aside for the
unlabeled data set. The true label of the unlabeled data set, by
definition, was never revealed during the SSL process.

Figure 1. Sample size allocation in the data set. ARDS: acute respiratory distress syndrome; LOS: length of stay.

Gold-Standard Labels
A patient was defined as developing ARDS if a new diagnosis
of ARDS based on International Classification of Diseases
(ICD) codes appeared in the patient’s chart and if we could
verify (ie, by using the physiologic time-series data) that the
patient experienced respiratory failure. A new code was defined
as a code that appeared after admission and was not present
during the 1000 hours leading up to admission. In total, 7
outcomes were labeled for each patient, as follows:

1. A clinical diagnosis of ARDS was determined by using
ICD codes. The ARDS ICD codes used were J80, J96.0,
J96.2, J96.9, and 518.81.

2. Respiratory failure was defined according to the accepted
criteria for respiratory failure (a peripheral oxygen
saturation [SpO2] level of <92% or a partial pressure of
oxygen [PaO2]/fraction of inspired oxygen [FiO2] ratio of
<300) [18]. These were approximately corresponding points
on the oxygen-hemoglobin dissociation curve, and they
allowed us to identify the earliest possible time point in
which respiratory failure occurred, even when the PaO2

level had not been measured. The prediction of ARDS
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development leading to respiratory failure was the primary
task, and the area under the receiver operating characteristic
curve (AUROC) and area under the precision recall curve
(AUPRC) were computed and reported based on this label.
Although they were not the primary focus of this paper,
secondary auxiliary outcomes were used as well.

3. A COVID-19 diagnosis was defined as a positive
polymerase chain reaction test for new COVID-19 ICD
codes—U07.1, B97.21, B97.29, J12.81, and B34.2.

4. Acute kidney injury was defined by using the following
ICD codes: N17, N19, and R34.

5. A broad class of thrombosis was defined by using the
following ICD codes: I12, I26, I63, I67, I74, I80, I81, and
I82.

6. Sepsis was defined by using the following ICD codes: A40,
A41, R65.2, T81.12, T81.44, O85, and O86.04.

7. Patients were labeled according to whether—after a drop
in SpO2 (below 97%)—they were eventually placed on
mechanical ventilation.

Onset Time
The time point for which the algorithm prediction was outputted
was the first time point when the SpO2 level fell below the lower
range of normal (SpO2<97%). This was referred to as the
prediction time. The onset time for ARDS-positive encounters
was defined as the first time point at which any ARDS-related
ICD code was found in a patient’s electronic health record
(EHR). The onset time for respiratory failure was the first time
point when the SpO2 level fell below 92% or the PaO2/FiO2

ratio fell below 300. To find these time points, our data
processing function first analyzed all of the SpO2 values that
were measured for any given patient; if any measurements were
<97%, we saved the date-time entry. After this below-97%
measurement was collected, we proceeded to determine if the
following two later events occurred:

1. The addition of an ARDS ICD code into the EHR. If found,
the date-time entry for this event was saved, and the
date-time entry for the below-97% SpO2 event was
subtracted from that of the subsequent measuring event
before converting the time difference to hours and plotting
the data in a histogram.

2. The subsequent measuring of an SpO2 level of <92% or a
PaO2/FiO2 >ratio of <300. If found, the date-time entry for
this event was saved, and the date-time entry for the
below-97% SpO2 event was subtracted from it before
converting the time difference to hours.

Input Features
ARDS predictions were made by using a defined set of data
types or features across all hospitals, regardless of the data
availability at a particular hospital. Model input features were
chosen based on the efficiency at which the features could be
extracted from EHRs, feature availability, and consultation with
clinicians. For example, most definitions of ARDS require lung
findings to be present in the absence of heart failure [3]. The
feature availability for the data set is presented in Figure S1 in
Multimedia Appendix 1. The model input features consisted of
the following: age, gender, the initiation of antibiotics prior to

the prediction time, the initiation of supplemental oxygen prior
to the prediction time, a history of heart failure, systolic and
diastolic blood pressure, heart rate, temperature, respiratory
rate, SpO2 level (pulse oximetry), creatinine level, blood urea
nitrogen level, bilirubin level, glucose level, the international
normalized ratio, white blood cell count, red blood cell count,
platelet count, percent neutrophil count, percent lymphocyte
count, percent monocyte count, hematocrit level, lactate level,
aspartate transaminase level, and alanine transaminase level.
Not all features were required for the model to make a prediction
of ARDS onset.

Data Processing
The time-series data were organized as a matrix with rows that
represented features and columns that represented update time
steps. This method of organizing time-series clinical data was
the same method used by Che et al [19]. Each column
represented a time step in which an update had occurred for one
of the features. For simplicity, the first 6 rows represented the
following constant features: age, male gender, female gender,
the initiation of antibiotics prior to the prediction time, the
initiation of supplemental oxygen prior to the prediction time,
and a history of heart failure. Except for age, which was
normalized by using the mean and SD of the training set, the
remaining constant features were coded as 1 or 0. The time
series features each had 2 rows—one row contained missingness
masks (ie, measurements that were current for a given time step
were coded as 1; otherwise, they were coded as 0), and the other
row contained the normalized value of current measurements.
Further, a row was used to denote the minutes that had passed
since the last time step. This was normalized according to the
mean and SD of the duration of time between time steps in the
training set. To manage memory usage, we set a limit of 32 time
steps prior to the prediction time. For patients with less than 32
time steps prior to the prediction time, we performed
zero-padding and represented the resulting values as missing
data by using a 0 in the missingness mask row. Details of our
missing data processing methodology are presented in Table
S1 in Multimedia Appendix 1.

Machine Learning Models
The recurrent neural network (RNN) was implemented with the
PyTorch package (version 1.40) in Python 3.6 [20]. The
demographics and time series measurements were organized
into a sequence of vectors and normalized before being passed
to the RNN component of the model by using a normalization
layer, as follows:

n(v) = a ⊙ ([v – μ]/[σ + ε]) + b (1)

In equation 1, n(v) is a normalization function that learns the
parameters mean (μ), SD (σ), scaling factor a, and translation
factor b to normalize vector embeddings (v). The symbol “⊙”
is the Hadamard product (also known as the element-wise

product). ε was set to 1e−7 to prevent division-by-zero errors.
For the RNN, a sequence module—a 2-layer gated recurrent
unit (GRU) [21] with 64 hidden units—was used. A soft
attention module was used to assign scores to each time step in
the sequence. The attention score was a learned importance
weight for each time step. This weight was converted into a
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probability distribution and multiplied by each sequence’s
deepest hidden activation in the GRU to create a weighted sum
of the activations, which is called the context vector. We
concatenated the context vector to the final GRU embedding
and passed this vector to a 2-layer feed-forward neural network
to produce an output vector for classification. The output vector's
length (7 dimensions) was equal to the number of target labels.
The intermediate layer before the output logits was a 64D
representation of each patient, which was referred to as the
penultimate embedding. Similar to the method used by Bahdanau
et al [21], the score of the attention neural network was
parameterized by a feed-forward neural network, as follows:

score(l, h) = K ⋅ tanh (A ⋅ prelu(B ⋅ n([l, h]))) (2)

In equation 2, tanh and prelu denote the hyperbolic tangent
function and parameterized rectified linear unit nonlinearity
functions, respectively. l denotes the last value in the sequence
and the deepest hidden activation in the GRU, h denotes each

and any hidden activation in the deepest layer of the GRU in
the sequence, and [l, h] denotes the concatenation of and into a
longer vector (the length of the individual vectors were added
together). K, A, and B denote the learned matrix parameters of
the neural network. The symbol “⋅” denotes matrix
multiplication.

The whole GRU-RNN, attention module, and classification
module were end-to-end differentiable, which allowed for
optimization from input to output. The attention neural network
was a mechanism of the RNN that allowed for higher quality
learning. Rather than summarizing a time series of vectors, the
attention neural network assigned each vector a score according
to how important the vector was in terms of allowing the model
to make a prediction. As such, the attention network mechanism
allowed the RNN to focus on specific parts of the input, thereby
improving model performance. The RNN model schema is
presented in Figure 2.

Figure 2. RNN model schema. ARDS: acute respiratory distress syndrome; DiasBP: diastolic blood pressure; GRU: gated recurrent unit; HR: heart
rate; RespRate: respiratory rate; RNN: recurrent neural network; SpO2: peripheral oxygen saturation; SysBP: systolic blood pressure; Temp: temperature.

Each point in the RNN model schema was representative of a
neuron. The neurons received data input from vital signs and
laboratory measurements that were recorded in EHRs. At each
layer, the RNN combined information from the current and
previous time points to update the activations in the deepest
hidden layer of the GRU, which, when combined with the

importance-weighted average generated by the attention neural
network, created a summary of all time-series data—the context
vector. The last layer was a feed-forward neural network, which
used the activation size of the last deepest hidden state in the
GRU combined with the context vector (64+64=128) as input
data. With this RNN schema, the model was trained to predict
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the primary and auxiliary target labels simultaneously and to
evaluate a loss function based on all targets.

Model Training

Overview
Our method of SSL was a combination and adaptation of the
methodology that was previously developed by Li et al [22] and
Xie et al [23]. Rather than performing whole-document and
image classification, which were conducted in these prior
studies, our models were designed to perform their prediction
task by using multivariate time-series data. Our models were
tasked with predicting ARDS onset in both the general
population and patients with COVID-19.

Initial Pseudolabeling
Our methodology builds on our prior work [24]; we simplified
the prediction time and inputs for the model. The RNN was first
trained on the labeled training set, without making use of the
unlabeled set, until convergence occurred in the validation set
(keeping the model with the most minimal validation loss). The
first RNN was called the pseudolabeler or initial teacher. The
initial teacher was used to predict the probability of future
ARDS and auxiliary target development for every patient in the
unlabeled set. The mean probability was used as the threshold
for the temporary label (the pseudolabel). If the initial teacher
assigned a probability that was higher than twice the mean
probability for that sample, the sample was considered to be
positive and added to the SSL pseudolabeled data set for this
cycle of training. If the initial teacher assigned a probability
that was below the mean, the sample was considered to be

negative and added to the SSL pseudolabeled data set. The
remaining samples were not used for this cycle of training
because they were considered to be “unconfident.”

Semisupervised Relabeling
An RNN was used as the semisupervised learner or student
machine learning algorithm. For each cycle of SSL, the student
machine learning algorithm was trained on the combined labeled
and pseudolabeled training set. Afterward, it was fine-tuned on
the labeled training set. The student machine learning algorithm
then became the teacher for the next cycle of SSL by relabeling
the pseudolabeled (unlabeled) training set. The SSL training
setup was not meant to perform well on the auxiliary targets;
instead, the 6 auxiliary outcomes were used as a multitasking
form of regularization for the primary problem. The validation
set was used for both hyperparameter selection and the
prevention of overfitting only with respect to the ARDS outcome
and not with respect to the other outcomes. The pseudolabeling
and selection of “confident” labels for the next SSL cycle was
performed only with respect to the ARDS outcome and not with
respect to the other outcomes. A new RNN was initialized, and
the cycle was repeated. Models were trained for 40 epochs, and
the model with the best validation set performance was saved
(Figure 3).

RNN training was performed by using the Adam optimizer [25]
with a decay scheduler to scale down the learning rate (starting
from 0.001) by a factor of 0.9 when the multiclass binary
cross-entropy loss increased over 2 epochs. A batch size of 2048
was parallelized over 4 Nvidia Tesla M60 (Nvidia Corporation)
graphics processing units.

Figure 3. Semisupervised learning schema. The colored network represents the initiation of a new model.

Performance Evaluation
Following SSL training, the initial teacher and student models
were evaluated for their performance on a hold-out test set based
on the AUROC, AUPRC, sensitivity, specificity, positive

predictive value, and negative predictive value. The initial
teacher performance on the test set defined the baseline
performance that SSL was meant to improve upon. In addition
to reporting this SSL performance, to define a ceiling for
performance, we also compared SSL performance to the
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performance of a model that was trained on the labeled set and
unlabeled set by using the gold-standard labels for both sets
instead of the pseudolabels. This model, which was trained on
the nonvalidation, nontest patient data, was referred to as the
all data model. Principal component analysis and t-stochastic
neighbor embedding were used to conduct dimensionality
reduction and perform a cluster analysis on the RNN’s
intermediate representations.

Results

Demographically, patients with ARDS were similar to patients
without ARDS. Except for cardiovascular disease, including

heart failure, patients with ARDS had a higher incidence of
chronic pulmonary disease, hypertension, diabetes, and obesity
(Table 1).

The median time interval from the prediction time until the
onset of ARDS, which appeared as a diagnosis in patients’
EHRs, was 59 hours. The median time interval from the
prediction time until the onset of respiratory failure, which
appeared as a drop in 2/FiO2 ratio of <300, was 21 hours.
Histograms of the time intervals for the whole data set are shown
in Figure 4, and those for the test set are shown in Figure S2 in
Multimedia Appendix 1.

Table 1. Demographic information for the test population.

Patients without ARDS (n=74), n (%)Patients with ARDSa (n=3383), n (%)Demographic characteristics

Age (years)

3 (4.1)93 (2.7)18-30

5 (6.8)131 (3.9)30-39

6 (8.1)156 (4.6)40-49

8 (10.8)373 (11)50-59

14 (18.9)577 (17.1)60-69

34 (45.9)1886 (55.7)≥70

Sex

36 (48.6)1649 (48.7)Male

38 (51.4)1734 (51.3)Female

Race and ethnicity

3 (4.1)61 (1.8)Non-Hispanic White

1 (1.4)23 (0.7)Non-Hispanic Black

0 (0)1 (0)Non-Hispanic Asian

70 (94.6)3290 (97.3)Hispanic

0 (0)2 (0.1)Non-Hispanic other

0 (0)4 (0.1)Unknown race or ethnicity

Comorbidities

9 (12.2)126 (3.7)History of chronic pulmonary disease

19 (25.7)551 (16.3)History of cardiovascular disease

6 (8.1)158 (4.7)History of chronic heart failure

14 (18.9)242 (7.2)History of hypertension

11 (14.9)186 (5.5)History of diabetes

13 (17.6)343 (10.1)History of cancer

5 (6.8)73 (2.2)History of obesity

aARDS: acute respiratory distress syndrome.
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Figure 4. Prediction look-ahead times until (A) ARDS onset and (B) respiratory failure. The time until ARDS onset is the time after admission until
any care provider adds the International Classification of Diseases code for ARDS into the electronic health record. The time until respiratory failure
is the time after admission until the first measurement of an SpO2 level of <92% or a partial pressure of oxygen/fraction of inspired oxygen ratio of
<300. These samples reflect the total data set. ARDS: acute respiratory distress syndrome; SpO2: peripheral oxygen saturation.

The performance results of the initial teacher model and the
semisupervised RNN model on the test data set are provided in
Table 2. The best validation performance was achieved on cycle
3 of 4 during SSL training.

The results in Table 2 indicate that by using 16,173 unlabeled
samples, we were able to use SSL to improve the model that
was trained on the 6930 labeled samples. The amount of
improvement was nontrivial compared to the performance that
was possible when the model was trained on all data. The
AUROCs and AUPRCs for the teacher, SSL, and all data models
on the hold-out test set are presented in Figure 5. The same
curves for auxiliary targets are provided in Figure S3 in
Multimedia Appendix 1. Data on the subset of 489 patients with
COVID-19 in the test set are shown in Figure S4 in Multimedia
Appendix 1.

The attention weights generated by the RNN were probed to
visualize the signals that were attended to by the RNN. This
method was used to implicitly describe the importance that was
assigned to each feature by the model and provided some clues
about model interpretability. For each patient in the test set, the
time step with the greatest attention weight was extracted. This
was the focus time step. The feature vector at this time step was
interpreted as a z score for the subset of features that were
measured during this particular time step. For example, a value
of −0.5 in the heart rate dimension would denote that the heart
rate is half an SD lower than the mean. For each time varying
feature, we accumulated these directional inflections across all
focus time steps and plotted a normalized heat map (Figure 6).
Consistent with our intuition, the time steps with the greatest
attention weights had large negative inflections in SpO2 level
and large positive inflections in respiratory rate.

Table 2. Teacher and semisupervised learning model performance on test set.

All data model
Semisupervised
learning modelInitial teacher modelPerformance indicator

0.840.780.73Area under the receiver operating characteristic curve

0.0650.0450.035Area under the precision recall curve

0.780.780.76Sensitivity

0.720.610.55Specificity

0.0330.0230.020Positive predictive value

0.9960.9960.995Negative predictive value
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Figure 5. The (A) AUROCs and (B) AUPRCs for the predictions of acute respiratory distress syndrome onset made by the teacher, SSL, and all data
models on the hold-out test set. AUPRC: area under the precision recall curve; AUROC: area under the receiver operating characteristic curve; SSL:
semisupervised learning.

Figure 6. Feature inflection heat map. The mean z score of each time-varying feature at the time step with the greatest attention weight is shown. ALT:
alanine transaminase; AST: aspartate transaminase; BUN: blood urea nitrogen; DiasBP: diastolic blood pressure; HR: heart rate; INR: international
normalized ratio; RBC: red blood cell count; RespRate: respiratory rate; SpO2: peripheral oxygen saturation; SysBP: systolic blood pressure; Temp:
temperature; WBC: white blood cell count.

Discussion

Principal Findings
We present a method of SSL for the early prediction of ARDS
development. To address the challenges of poor label quality
and limited data quantity, which make it difficult to predict
ARDS development by using standard machine learning
methods, we developed a method of SSL whereby confidently
labeled data were assigned to a labeled data set and used for the

testing, validation, and training of the RNN machine learning
model. In the SSL scheme, the RNN model learned the latent
representation of ARDS that was present in unlabeled data and
expanded its own understanding of gold-standard labels. In
doing so, the model established a relational link between a small
set of commonly available clinical features and ARDS without
needing to explicitly learn the Berlin definition of ARDS. To
supplement the comparatively small labeled training data set,
an unlabeled data set was pseudolabeled by an initial teacher
RNN model. The pseudolabeled data were used for pretraining
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and were iteratively re-pseudolabeled by an evolving
RNN-based machine learning model after the model was
fine-tuned on the labeled training set. The SSL method was
capable of accurately predicting ARDS development and was
a considerable improvement over the baseline teacher model.
Since the model was constructed by using a small subset of
clinical features and outperformed a baseline model that was
trained only on the small subset of labeled data, in practice, the
model could be applied in settings where many clinical features
are not available and settings where existing ARDS labels are
incomplete or of low quality.

The paradigm described in this study differs from those in
similar published machine learning studies because we apply
an SSL methodology to the task of predicting the development
of a severe respiratory condition (ie, a complication of
COVID-19). In the case of other clinical conditions for which
similar methodologies have been implemented (eg, predicting
sepsis [26] and detecting microaneurysms and vascular lesions
[27-29]), elements of the clinical definitions of such conditions
can often be matched by using widely available EHR data.
However, in the case of ARDS, measurements that can be used
to create reliable gold-standard labels are not as widely
available. This lack of data availability is detrimental to the
supervised training of an ARDS prediction tool, as there may
be many patient encounters that cannot be labeled as those
involving ARDS and may in fact involve an episode of ARDS.
If we had restricted ourselves to a supervised learning approach,
which has been applied in the context of other clinical prediction
tasks [30-32], our options for working with unlabeled data would
have been limited. Alternatively, assigning these encounters a
label of non-ARDS would have undermined the interpretation
of performance metrics. We were therefore motivated to apply
an SSL methodology to the task of ARDS prediction not only
by the potential to improve upon our prior work [24] and to
address new clinically relevant applications of machine learning,
but also by the need to approach ARDS prediction in a
fundamentally new way to address the practical challenges
associated with a lack of reliably labeled retrospective data.
Importantly, the prediction tool developed in this study can be
used to accurately predict ARDS development without the
requirement of radiographic data or subjective interpretation.
Among general populations and COVID-19 populations in
settings where radiographic information may not be available,
the tool could be used to provide advance warning for ARDS
onset and may allow for timely intervention. This would be
particularly impactful for health care providers working in
regions of lower socioeconomic status, where funding for

advanced medical infrastructure and access to vaccines are
limited, as these regions are known to have a higher incidence
of burdens resulting from severe COVID-19 [33]. In addition,
the SSL approach can leverage a small amount of costly labeled
data (eg, during radiographic or manual adjudication by
physicians for pseudolabeling a large amount of training data)
to improve model performance.

There are several limitations to this study that lend themselves
to opportunities for future work. To make the model applicable
to a wide variety of clinical care settings, we simplified the
model input features. Over the course of testing the SSL model,
we also observed that model performance varied across clinical
settings. It is possible that some hospitals may have collected
features that were more important to making predictions or that
features may have been collected more frequently in some
hospitals than in others. In addition, most SSL methods involve
some form of data augmentation in addition to pseudolabeling,
and it remains an open question as to how to best perform data
augmentation with clinical time-series data. In future work, we
aim to determine if reinforcement learning is a suitable and
mathematically rigorous methodology for the augmentation of
clinical time-series data. Moreover, as we stressed earlier,
predicting true ARDS development by using the Berlin
definition requires radiology data. In the future, we would like
to include radiology data in our model and compare the model
presented in this study to the Berlin gold standard. On the other
hand, our attention weight heat map (Figure 6) aims to provide
insight about what signals were most attended to by the RNN.
Although it provides useful data, information such as temporal
change and the waveform of signals are lost in the heat map.
Finally, model performance was only assessed based on
retrospective patient data, and we were therefore unable to
determine how the models might perform in prospective settings.
Prospective validation is required to evaluate the impact of
model predictions on patient outcomes.

Conclusions
An SSL model was developed and externally validated for early
ARDS prediction in both the general population and patients
with COVID-19. Higher performance was achieved by the SSL
model compared to that of the baseline teacher model for the
general intensive care unit patient population. The
semisupervised machine learning methodology allowed for
early ARDS prediction in a manner that successfully mitigated
the challenges that are commonly associated with a lack of
reliably labeled data.
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