e.g. mhealth
Search Results (1 to 3 of 3 Results)
Download search results: CSV END BibTex RIS
Skip search results from other journals and go to results- 1 JMIR Cancer
- 1 JMIR Formative Research
- 1 JMIR Medical Education
- 0 Journal of Medical Internet Research
- 0 Medicine 2.0
- 0 Interactive Journal of Medical Research
- 0 iProceedings
- 0 JMIR Research Protocols
- 0 JMIR Human Factors
- 0 JMIR Medical Informatics
- 0 JMIR Public Health and Surveillance
- 0 JMIR mHealth and uHealth
- 0 JMIR Serious Games
- 0 JMIR Mental Health
- 0 JMIR Rehabilitation and Assistive Technologies
- 0 JMIR Preprints
- 0 JMIR Bioinformatics and Biotechnology
- 0 JMIR Challenges
- 0 JMIR Diabetes
- 0 JMIR Biomedical Engineering
- 0 JMIR Data
- 0 JMIR Cardio
- 0 Journal of Participatory Medicine
- 0 JMIR Dermatology
- 0 JMIR Pediatrics and Parenting
- 0 JMIR Aging
- 0 JMIR Perioperative Medicine
- 0 JMIR Nursing
- 0 JMIRx Med
- 0 JMIRx Bio
- 0 JMIR Infodemiology
- 0 Transfer Hub (manuscript eXchange)
- 0 JMIR AI
- 0 JMIR Neurotechnology
- 0 Asian/Pacific Island Nursing Journal
- 0 Online Journal of Public Health Informatics
- 0 JMIR XR and Spatial Computing (JMXR)

Importantly, it was only by working together that the analytic team and SAB were able to produce an LGBTQ+ term dictionary with a pairwise agreement of 95%. This finding highlights the importance of centering the LGBTQ+ community in research involving LGBTQ+ cancer survivor outcomes, even if the chosen methodology may seem to not align with community-engaged equity-based methods, such as web-scraping and multivariate modeling.
JMIR Cancer 2023;9:e51605
Download Citation: END BibTex RIS

The BING dictionary was first designed around the domain of e-commerce customer reviews [12]; AFINN was created for synthesizing Twitter microblogs [13]; and NRC was a large, crowdsourced lexicon geared toward a more generalized domain [14]. We reported the number of unique words in each lexicon and the number of unique words labeled by each lexicon within our text data.
JMIR Med Educ 2023;9:e41953
Download Citation: END BibTex RIS

The validation process indicated that the medical dictionary could identify health-related conversations in 31.2% (341/1092) of posts (Table 2). Specifically, 20.4% (223/1092) of posts were identified as posts related to a health-related motivation for cannabis use, while 10.8% (118/1092) of posts were identified as posts related to a health-related consequence from cannabis use.
JMIR Form Res 2022;6(2):e35027
Download Citation: END BibTex RIS