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Abstract

Background: The cannabis product and regulatory landscape is changing in the United States. Against the backdrop of these
changes, there have been increasing reports on health-related motives for cannabis use and adverse events from its use. The use
of social media data in monitoring cannabis-related health conversations may be useful to state- and federal-level regulatory
agencies as they grapple with identifying cannabis safety signalsin a comprehensive and scal able fashion.

Objective: Thisstudy attempted to determine the extent to which amedical dictionary—the Unified Medical Language System
Consumer Health Vocabulary—could identify cannabis-related motivations for use and health consequences of cannabis use
based on Twitter postsin 2020.

Methods: Twitter posts containing cannabis-related terms were obtained from January 1 to August 31, 2020. Each post from
the sample (N=353,353) wasclassified into at least 1 of 17 apriori categories of common health-rel ated topics by using arule-based
classifier. Each category was defined by the termsin the medical dictionary. A subsample of posts (n=1092) was then manually
annotated to help validate the rule-based classifier and determineif each post pertained to health-related motivations for cannabis
use, perceived adverse health effects from its use, or neither.

Results: The validation process indicated that the medical dictionary could identify health-related conversations in 31.2%
(341/1092) of posts. Specifically, 20.4% (223/1092) of posts were accurately identified as posts related to a heath-related
motivation for cannabis use, while 10.8% (118/1092) of posts were accurately identified as posts related to a health-related
consequence from cannabis use. The health-related conversations about cannabis use included those about issues with the
respiratory system, stress to the immune system, and gastrointestinal issues, among others.

Conclusions: The mining of social media data may prove helpful in improving the surveillance of cannabis products and their
adverse health effects. However, future research needs to develop and validate a dictionary and codebook that capture cannabis
use-specific health conversations on Twitter.
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Introduction

The cannabis product and regulatory landscape is changing in
the United States. A total of 34 states have legalized medical
cannabis, and 10 states have legalized cannabis for adult
recreational use (ie, for people aged 21 years or older) [1].
Against the backdrop of these changes, there have been
increasing reports on health-related motives for cannabis use
[2,3] and adverse events from its use [4]. Examples of
motivationsfor cannabis useinclude treatment for clinical health
conditions (eg, glaucoma, nausea, AlDS-associated anorexia,
epilepsy, multiple sclerosis, and chronic pain) [5,6]—a use
supported by the US Food and Drug Administration (FDA).
Additionally, studies have shown that motivations for cannabis
use have been based on the perceived benefits of its use,
including its use as a sleep aid [2] and an aid for coping with
stressor anxiety [3]. Thelow perception of harm from cannabis
use when compared to that from other psychoactive drugs has
also been documented as a motivation for itsuse [7]. However,
cannabis use has been associated with adverse events, such as
impaired short-term memory, impaired motor coordination,
paranoia, and psychosis[6]; increased levels of depression and
anxiety over time; symptoms of chronic bronchitis; addiction;
and altered brain development [3,5,6]. Although the literature
on the motivationsfor and effects of cannabis useisdevel oping,
medical experts recommend establishing a centralized federal
agency for reporting, researching, and regulating cannabis
products asatimely public health surveillance strategy [4]. The
surveillance of the adverse health effects of cannabisis also a
key priority of the US FDA [8]. The FDA's MedWatch program
conducts the surveillance of serious adverse effects from
cannabis use, but doubts have been raised over how effective
this surveillance system is in identifying reports of cannabis
safety signals[9].

The surveillance of health-related behaviorsincludesthe use of
digital data sources [10]. Publicly accessible data from
individualswho post to social mediaplatforms, such as Twitter,
have been used to capture and describe the context of cannabis
use[11,12]. However, health-related conversations surrounding
its use have been understudied, and there has been a lack of
cannabis-related studies that use social mediadata. The mining
of social media data permits the collection and analysis of
gualitative information, is noninvasive (ie, no demand effect),
minimizesrecall error, and allowsfor datato be capturedin real
time. Twitter has been a growing tool in health research, and it
has been used for various purposes, including content analysis,
surveillance, recruitment, intervention, and network analysis
[13]. Twitter in particular reflects the views, attitudes, and
behaviors of millions of people and isused by 22% of US adults
(24% of men, 21% of women, 21% of White Americans, 24%
of African Americans, and 25% of Hispanic Americans), with
42% of individuals using the platform daily [14].

This study attempted to determine the extent to which amedical
dictionary—the Unified Medical Language System Consumer
Health Vocabulary (CHV) [15]—could accurately identify
cannabis-related motivations for use and health consequences
of cannabis use based on Twitter posts in 2020. The findings
may be useful to state- and federal-level regulatory agencies as

https://formative.jmir.org/2022/2/€35027

Allemet a

they grapple with identifying cannabis safety signals in a
comprehensive and scalable way.

Methods

Study Design

Twitter posts containing the cannabis-related terms blunt, bong,
budder, cannabis, cbd, ganja, hash, hemp, indica, kush,
marijuana, marihuana, reefer, sativa, thc, and weed were
obtained from January 1 to August 31, 2020. Thesetermswere
informed by prior research that focused on comprehensively
collecting cannabis-related posts on Twitter [11]. To treat each
observation as independent, retweets were removed, leaving a
total of 16,703,751 unique posts that contained these terms
during this time. We used the following two dictionaries: (1)
the Unified Medical Language System CHV [15], which
comprises 13,479 medical terms (symptoms and diseases) that
are used by consumers and health care professional sto describe
health conditions, and (2) a list of 177 colloquial terms that
were generated collaboratively by 2 trained coders and were
related to the CHV terms when pertinent (eg, the colloquia
expression of inebriation isdrunk). The CHV has been used in
prior research for the surveillance of health discussions about
e-cigarette use or vaping on Twitter [16]. CHV terms are
available at no cost to applicants who have alicense, which is
assigned upon the completion of a web-based application
process. A sample of 609,227 cannabis-related posts referenced
at least 1 of these terms.

We then identified and removed posts from social bots (ie,
automated Twitter accounts) to reliably describe the public's
health-related motivations for cannabis use or the perceived
health effects of its use [17]. In order to distinguish nonbots
from social bots, we relied upon Botometer (Observatory on
Social Media) [18,19]. This program analyzes the features of a
Twitter account and provides a score based on how likely the
account isto be a socia bot. The Botometer threshold was set
to 24 on an English rating scale of 1to 5. All Twitter accounts
were screened after data were collected (ie, not in real time).
During this process, 127,140 accounts responsible for the tweets
inour datawere deleted from Twitter. Asaresult, these accounts
could not be processed through Botometer, and their postswere
removed from our data. Of the 261,134 available accounts,
15,245 were marked as bots and removed. The final analytic
sample contained 353,353 posts from 245,889 unique nonbot
accounts.

Each post from the final sample was classified into at least 1 of
17 apriori health-related categories [16] by using a rule-based
classifier. Each category was defined by the terms in the two
dictionaries. The 17 hedth-related categories included 14
categories from prior research [16] and 3 additional categories
that were unique to this study, accounting for the potential
psychoactive effects of cannabisuse (the* Cognitive” category),
topical cannabis products (the“ Dermatological” category), and
theintersection of cannabisand food additives (the “ Poisoning”
category). A post could belong to multiple categories. The 17
categories, example keywords, and prevalence of keywords
from each category can be found in Table 1.
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A dtratified random sample of posts (n=1092) was extracted
from the corpus (n=353,353) based on the original classifications
of the posts by using the rule-based classifier. A coding
procedure (Multimedia Appendix 1 contains the complete
codebook) was used to determine if each post pertained to a
health-related motivation for cannabis use, a perceived adverse
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health effect of cannabis use, or neither. Two trained coders
double coded each post independently, with k values ranging
from 0.790 to 0.856. Discrepancies were resolved by the two
coders and the first author. This analysis served as avalidation
procedure for the rule-based classifier.

Table 1. Health categories, example keywords, and the frequency of occurrence on Twitter (N=353,353).

Health categories Example keywords Frequency, n (%)
Cancer Cancer, tumor, and malignant 13,834 (3.92)
Cardiovascular Stroke, heart attack, and blood pressure 1810 (0.52)
Cognitive Unconscious and attention 8807 (2.49)
Death Die, kill, and lost life 31,590 (8.95)
Dermatological Itchy, acne, and blister 1557 (0.44)
Gastrointestinal Belly, belch, vomit, and puke 10,434 (2.95)
Immune System Flu, common cold, and allergy 12,229 (3.46)
Injury Injury, rupture, wound, and bruise 19,490 (5.52)
Mental health PTSD, ADHD, and jittery 100,155 (28.34)
Neurological Coma, dizzy, and lightheaded 56,347 (15.95)
Other Anemia, jaundice, and mumps 44,111 (12.48)
Pain Painful, achy, and cramping 38,335 (10.85)
Poisoning Toxic, poisonous, and noxious 8345 (2.36)
Pregnancy or in utero Pregnant, preggers, and miscarriage 4760 (1.35)
Respiratory Cough, wheeze, and black lung 16,616 (4.70)
Stress Stressed and cortisol 13,372 (3.78)
Weight Fat, obese, weight, and stoutness 5888 (1.67)

Ethical Consider ations

All analyses relied on public, anonymized data; adhered to the
terms and conditions, terms of use, and privacy policies of
Twitter; and were performed under ingtitutional review board
approval from the authors' university. To protect privacy, no
tweets were reported verbatim in this report.

https://formative.jmir.org/2022/2/€35027

RenderX

Results

The validation process indicated that the medical dictionary
could identify health-related conversationsin 31.2% (341/1092)
of posts (Table 2). Specifically, 20.4% (223/1092) of postswere
identified as posts related to a health-related motivation for
cannabis use, while 10.8% (118/1092) of posts were identified
as posts related to a health-related consequence from cannabis
use. The health-related conversations about cannabis use
included those about issues with the respiratory system, stress
to theimmune system, and gastrointestinal issues, among others.
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Table 2. The validation results for the rule-based classifier.?

Category Motivations, n (%) Conseguence, n (%) Neither, n (%) Total®, n

Medical term
Cancer 15 (42.9) 4(11.4) 16 (45.7) 35
Cardiovascular 1(20) 1(20) 3(60) 5
Cogpnitive 5(18.5) 3(11.2) 19 (70.3) 27
Death 4(4) 7(8) 79 (88) 90
Dermatological 0(0) 0(0) 4 (100) 4
Gastrointestinal 6(21) 1(3) 22 (76) 29
Immune system 2 (6) 2 (6) 31 (88) 35
Injury 1(2) 5(9) 49 (89) 55
Mental health 89 (31.8) 19 (6.7) 172 (61.4) 280
Neurological 18(11.3) 40 (25) 102 (63.7) 160
Other 33(26.6) 7(5.6) 84 (67.8) 124
Pain 28 (25.7) 3(2.8) 78 (71.5) 109
Poison 2(8.3) 6(25) 16 (66.7) 24
Pregnant 2(14.3) 2(14.3) 10 (71.4) 14
Respiratory 0(0) 17 (36.2) 30 (63.8) 47
Stress 17 (44.7) 1(2.6) 20(52.7) 38
WEight 0(0) 0(0) 16 (100) 16

Total 223 (20.4) 118 (10.8) 751 (68.8) 1002¢

#The values in the Motivations, Consequence, and Neither columns show the number and percentage of posts related to health-related motivations for
cannabis use, health-related consequences from cannabis use, or neither, respectively, for each medical term.

BThe Total column refersto the total number of tweets coded per medical term.
“Thevaluesin the Total row show the number and percentage of postsrelated to health-related motivationsfor cannabis use, health-related consequences

from cannabis use, or neither, respectively, for all medical terms.
%The total number of tweets in the subgroup.

Discussion

Principal Findings

This study determined the extent to which a commonly used
medical dictionary of health effects could accurately identify
cannabis-related motivations for use and health consequences
of cannabis use based on Twitter postsin 2020. Thisisthefirst
study to date to use a high-quality medical dictionary of
consumer-oriented health terms to capture the public's
expressions of health concepts and thereby identify health
conversations about cannabis use. The findings suggest that a
medical dictionary alone is limited in its ability to identify
health-related conversations in a cannabis context. The posts
discussed the respiratory system, stress to the immune system,
and gastrointestinal problems. The posts also discussed mental
health, pain, injuries, and poisonings, among other potential
health effects.

Previous research has identified motivations for cannabis use,
including using cannabis to treat chronic conditions (eg,
glaucoma, nausea, AlDS-associated anorexia, epilepsy, multiple
sclerosis, and chronic pain) [2,5,6], using it as asleep aid [2],
and using it to help improve mental health (eg, stress, anxiety,
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and depression) [3]. Previousresearch has also identified adverse
reactions associ ated with cannabis consumption based on search
engine queries and found that such queries revealed many of
the known adverse effects of cannabis use, such as coughing
and psychotic symptoms, as well as plausible reactions that
could be attributed to cannabis use, such aspyrexia[20]. A prior
content analysis of 5000 tweets about “dabbing” (the use of a
high-potency cannabis-related product) from a 30-day period
in 2015 showed that the most common physiol ogic effectsfrom
this form of cannabis use were the loss of consciousness and
respiratory effects, such as coughing [21]. Our study
compliments prior research by using aprofessionally used term
dictionary. It also indicates that the public made varied
health-related references in their conversations about cannabis
on Twitter. However, if the mining of social media data is to
be proven helpful in the surveillance of cannabis products and
their adverse health effects, the use of a standardized medical
term dictionary alone will not suffice in the identification of
cannabis safety signals. Future research will need to develop a
codebook and term dictionary that incorporate apriori categories
and data-driven inductive approaches that capture nuanced
cannabis and health-related conversations on Twitter.
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Limitations

This study focused on posts to Twitter, and the findings may
not extend to other social media platforms. Additionally, the
posts in this study were collected from an 8-month period in
2020; thus, the findings may not extend to other time periods.
The data collection process relied on Twitter's Streaming
application programming interface, which prevented the
collection of posts from private accounts. As such, the findings
may not generalizeto all Twitter users or to the US population.
The people responsible for each post in this study were not
examined, and as a result, we could not describe the
demographics of the Twitter usersin thisstudy. Further, Twitter
posts can contain misspellings, and our lexicon-based exact
matching approach likely missed these expressions. The CHV
has al so not been updated since 2011, which may in part explain
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substances or medications, which may impact perceived health
effects.

Conclusions

Medical experts and regulatory agencies have called for the
improved surveillance of cannabis products and the adverse
health effects from cannabis use. Until the limitations with
syndromic surveillance and hospital data systems for cannabis
(eg, accessihility of dataand timeliness) areresolved, the mining
of social media data may clarify the public’s experiences with
cannabis use. The development of a validated dictionary and
codebook that capture cannabis-specific health conversations
may be key to advancing future efforts in the surveillance of
Twitter data. A robust, national-level surveillance system for
cannabis-related health effects may benefit from using real-time
social media surveillance data on health effects and should

its limited ability to identify health-related conversationsin a
cannabis context. Finally, thisstudy could not determine modes
of cannabis use or whether cannabis use was coupled with other

consider using data from other sources (eg, emergency room
visits and survey data).
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