Published on in Vol 6, No 9 (2022): September
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/36118, first published
.
Journals
- Garg M. Towards Mental Health Analysis in Social Media for Low-resourced Languages. ACM Transactions on Asian and Low-Resource Language Information Processing 2024;23(3):1 View
- Zhang W, Kong L, Lee S, Chen Y, Zhang G, Wang H, Song M. Detecting mental and physical disorders using multi-task learning equipped with knowledge graph attention network. Artificial Intelligence in Medicine 2024;149:102812 View
- Turjo M, Mundada K, Haque N, Ahmed N. Predicting the Transition From Depression to Suicidal Ideation Using Facebook Data Among Indian-Bangladeshi Individuals: Protocol for a Cohort Study. JMIR Research Protocols 2024;13:e55511 View
- Khan A, Ali R. Unraveling minds in the digital era: a review on mapping mental health disorders through machine learning techniques using online social media. Social Network Analysis and Mining 2024;14(1) View
- Hoque M, Salma U, Uddin M, Shampa S. Depression Intensity Identification using Transformer Ensemble Technique for the Resource-constrained Bengali Language. Journal of Engineering Advancements 2024:27 View
- van Buchem M, de Hond A, Fanconi C, Shah V, Schuessler M, Kant I, Steyerberg E, Hernandez-Boussard T. Applying natural language processing to patient messages to identify depression concerns in cancer patients. Journal of the American Medical Informatics Association 2024;31(10):2255 View
- Alhuzali H, Alasmari A, Alsaleh H. MentalQA: An Annotated Arabic Corpus for Questions and Answers of Mental Healthcare. IEEE Access 2024;12:101155 View
- Akter Asma S, Akhter N, Sharmin S, Rahman M, Sanwar Hosen A, Lee O, Ra I. Hierarchical Explainable Network for Investigating Depression From Multilingual Textual Data. IEEE Access 2024;12:131915 View
- Myee M, Rebekah R, Deepa T, Zion G, Lokesh K. Detection of Depression in Social Media Posts using Emotional Intensity Analysis. Engineering, Technology & Applied Science Research 2024;14(5):16207 View