Published on in Vol 6, No 5 (2022): May

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/37736, first published .
A Machine Learning Approach for Detecting Digital Behavioral Patterns of Depression Using Nonintrusive Smartphone Data (Complementary Path to Patient Health Questionnaire-9 Assessment): Prospective Observational Study

A Machine Learning Approach for Detecting Digital Behavioral Patterns of Depression Using Nonintrusive Smartphone Data (Complementary Path to Patient Health Questionnaire-9 Assessment): Prospective Observational Study

A Machine Learning Approach for Detecting Digital Behavioral Patterns of Depression Using Nonintrusive Smartphone Data (Complementary Path to Patient Health Questionnaire-9 Assessment): Prospective Observational Study

Journals

  1. Potier R. Revue critique sur le potentiel du numérique dans la recherche en psychopathologie : un point de vue psychanalytique. L'Évolution Psychiatrique 2022;87(4):729 View
  2. Choudhary S, Thomas N, Alshamrani S, Srinivasan G, Ellenberger J, Nawaz U, Cohen R. A Machine Learning Approach for Continuous Mining of Nonidentifiable Smartphone Data to Create a Novel Digital Biomarker Detecting Generalized Anxiety Disorder: Prospective Cohort Study. JMIR Medical Informatics 2022;10(8):e38943 View
  3. Choudhary S, Srinivasan G. The Importance of Using Binary Classification Models in Predicting Depression from a Machine Learning Perspective. Digital Medicine and Healthcare Technology 2022;2022:1 View
  4. Ahmed A, Ramesh J, Ganguly S, Aburukba R, Sagahyroon A, Aloul F. Investigating the Feasibility of Assessing Depression Severity and Valence-Arousal with Wearable Sensors Using Discrete Wavelet Transforms and Machine Learning. Information 2022;13(9):406 View
  5. Oudin A, Maatoug R, Bourla A, Ferreri F, Bonnot O, Millet B, Schoeller F, Mouchabac S, Adrien V. Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health. Journal of Medical Internet Research 2023;25:e44502 View
  6. Tapia J, Duñabeitia J. Rethinking Driving Assessment: A Hypothesis-Driven Proposal for Cognitive Evaluation. OBM Neurobiology 2023;07(04):1 View
  7. Zierer C, Behrendt C, Lepach-Engelhardt A. Digital biomarkers in depression: A systematic review and call for standardization and harmonization of feature engineering. Journal of Affective Disorders 2024;356:438 View
  8. dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View
  9. Imans D, Abuhmed T, Alharbi M, El-Sappagh S. Explainable Multi-Layer Dynamic Ensemble Framework Optimized for Depression Detection and Severity Assessment. Diagnostics 2024;14(21):2385 View
  10. Todd E, Orr R, Gamage E, West E, Jabeen T, McGuinness A, George V, Phuong-Nguyen K, Voglsanger L, Jennings L, Radovic L, Angwenyi L, Taylor S, Khosravi A, Jacka F, Dawson S. Lifestyle factors and other predictors of common mental disorders in diagnostic machine learning studies: A systematic review. Computers in Biology and Medicine 2025;185:109521 View
  11. Alves P, Marci C, Cohen-Stavi C, Whelan K, Boussios C. A machine learning model using clinical notes to estimate PHQ-9 symptom severity scores in depressed patients. Journal of Affective Disorders 2025;376:216 View
  12. Heckler W, Feijó L, de Carvalho J, Barbosa J. Digital phenotyping for mental health based on data analytics: A systematic literature review. Artificial Intelligence in Medicine 2025;163:103094 View
  13. Yang M, Ngai E, Hu X, Hu B, Liu J, Gelenbe E, Leung V. Digital Phenotyping and Feature Extraction on Smartphone Data for Depression Detection. Proceedings of the IEEE 2024;112(12):1773 View
  14. Zhong R, Wu X, Chen J, Fang Y. Using Digital Phenotyping to Discriminate Unipolar Depression and Bipolar Disorder: Systematic Review. Journal of Medical Internet Research 2025;27:e72229 View
  15. Garzón-Partida A, Magaña-Plascencia K, Martínez-Fernández D, García-Estrada J, Luquin S, Fernández-Quezada D. Development of a Cohesive Predictive Model for Substance Use Disorder Rehabilitation Using Passive Digital Biomarkers, Psychological Assessments, and Automated Facial Emotion Recognition: Protocol for a Prospective Cohort Study. JMIR Research Protocols 2025;14:e71374 View
  16. Shin Y, Kim A, Kim S, Shin M, Choi J, Lee K, Lee J, Byun S, Kim S, Lee H, Cho C. Development of prediction models for screening depression and anxiety using smartphone and wearable-based digital phenotyping: protocol for the Smartphone and Wearable Assessment for Real-Time Screening of Depression and Anxiety (SWARTS-DA) observational study in Korea. BMJ Open 2025;15(6):e096773 View
  17. Amin R, Schreynemackers S, Oppenheimer H, Petrovic M, Hegerl U, Reich H. Use of Mobile Sensing Data for Longitudinal Monitoring and Prediction of Depression Severity: Systematic Review. Journal of Medical Internet Research 2025;27:e57418 View
  18. Quiram N, Salam T, Sadjadpour F, Hosseinichimeh N, Jarvis L, Soghier L. A literature review of remote mental health screening: barriers, potential solutions, and tools. Frontiers in Digital Health 2025;7 View
  19. Tlachac M, Heinz M, Bryan A, LaPreay A, Dimas G, Zhao T, Jacobson N, Ogden S. Datasets of Smartphone Modalities for Depression Assessment: A Scoping Review. IEEE Transactions on Affective Computing 2025;16(4):2599 View

Conference Proceedings

  1. Solatidehkordi Z, Ramesh J, Pasquier M, Sagahyroon A, Aloul F. 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data View
  2. Feng G, Cheng G, Bai Y, Lin Y, Li S, Yang M. 2025 19th International Conference on Complex Medical Engineering (CME). Affective Disorder Recognition via Smartphone Sensing: A Non-Intrusive Approach on Campus View