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Abstract
Background: Commercial wearable devices allow for continuous heart rate (HR) monitoring in daily life. Their accuracy
under ecologically valid conditions, however, remains insufficiently independently tested, especially during irregular activity,
cognitive stress, and variable climates.
Objective: This study evaluated the HR accuracy of 10 commercially available wearables under controlled variations in
physical activity, cognitive stress, and temperature. We hypothesized that physical activity irregularity, cognitive stress, and
thermal climate conditions would affect measurement accuracy.
Methods: Forty-five healthy adults (21‐68, mean 34, SD 12 y) completed a standardized protocol in climate-controlled
chambers simulating neutral (23 °C), hot (36 °C), and cold (10 °C) conditions. Tasks included rest, cognitive stress (Montreal
Imaging Stress Task), steady walking, and intermittent walking. Each of the 10 devices (Fitbit Charge 6, Fitbit Inspire 3,
Garmin Vivosmart 5, Garmin Vivoactive 5, Apple Watch SE, Google Pixel Watch 2, Polar Ignite 3, Polar Pacer, Xiaomi
Watch 2, and Oura Ring Gen 3) was compared against electrocardiogram-derived HR from a Zephyr BioHarness chest
strap. Accuracy was assessed using mean absolute error (MAE), mean absolute percentage error (MAPE), repeated-measures
concordance correlation coefficient (CCC), and Bland-Altman analysis.
Results: Significant variability across the devices was observed. Fitbit Charge 6 (MAE 4.5 bpm, MAPE 5.5%, CCC 0.93) and
Google Pixel Watch 2 (MAE 4.9 bpm, MAPE 6.7%, CCC 0.87) showed strong agreement with the gold standard. In contrast,
Fitbit Inspire 3, Polar Ignite 3, Polar Pacer, and Oura Ring displayed larger errors (MAE 9‐14 bpm, MAPE 11%‐16%)
and lower CCC values (0.45‐0.66). The climate conditions did not significantly affect the measurement accuracy of the test
devices. The activity type, however, did have a significant effect: intermittent walking increased errors for multiple devices.
Conclusions: Wearable HR measurement accuracy is device-specific and context-dependent. Moderate climates did not
impair performance, but irregular movement reduced accuracy. Fitbit Charge 6 and Google Pixel Watch 2 demonstrated
the highest reliability, supporting their use in health and sports monitoring. Careful device selection and context-aware
interpretation remain critical for applied and clinical applications.
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Introduction
Commercial wearable devices have become increasingly
embedded in everyday life, enabling continuous physiologi-
cal monitoring across a range of real-world contexts. Optical
heart rate (HR) monitoring via photoplethysmography (PPG)
is now a standard feature in many wearable devices. These
wearables offer the potential for unobtrusive health track-
ing, behavior change interventions, and remote monitoring
of chronic conditions [1,2]. However, their practical utility
hinges on the accuracy of the measurements they provide,
especially in dynamic and ecologically valid conditions.

Despite the rapid expansion of the wearable technology
market, the pace of independent scientific validation lags
significantly behind device release cycles. Most commer-
cial wearables are launched without peer-reviewed evi-
dence supporting their measurement accuracy or reliability
under diverse conditions [3-5]. This creates a critical gap
between consumer expectations and clinical or research-grade
data quality, particularly in domains such as health promo-
tion, personalized exercise prescription, and digital health
interventions [6].

HR is a core variable in wearable monitoring, often
used as a proxy for different physiological processes such
as physical exertion, emotional stress, or recovery status [7,
8]. PPG-based HR measurements can, however, be affec-
ted by several external and physiological factors. These
include motion artifacts from limb movement, which have
been shown to lead to mean absolute percentage errors
(MAPE) of over 20% during vigorous intensity exercise [9].
Sensor placement and poor contact can similarly introduce
errors [10]. Variations in skin tone affect the absorption and
scattering of the light used in PPG, which can contribute to
errors. This has been shown in the past for darker-skinned
users of different smartwatch brands that HR was underesti-
mated by 10‐15 bpm at rest and by more than 20% dur-
ing vigorous activity [11]. Finally, changes in blood flow
due to vasoconstriction, vasodilation, or muscle tension also
influence signal quality. For instance, significant changes in
direct current and alternating current amplitudes of the PPG
pulse have indicated that mild cold exposure has a substan-
tial effect on finger blood circulation [12]. These authors
suggested that mild cold exposure may have a delayed effect
on the pulse transit time and, therefore, could be a poten-
tial source of error. Consequently, device performance may
vary across activity types, from seated rest to vigorous or
irregular movement, and may also be sensitive to environ-
mental factors, such as temperature and humidity, which
influence peripheral blood circulation [9].

To date, most validation studies of wearable HR mon-
itoring have focused on standardized physical activities
(eg, steady treadmill walking or cycling) under control-
led laboratory conditions [13-15]. In these study designs,
validation is performed across discrete, sustained activities,
eg, walking at a certain intensity for 5 minutes. While
such protocols provide valuable benchmarks, they often fail
to capture the variability and unpredictability of everyday

human movement. Moreover, few studies have systematically
tested devices across a range of environmental conditions,
despite growing interest in outdoor, occupational, or climate-
sensitive applications of wearable monitoring [16]. Similarly,
validation protocols rarely include cognitively demanding
or stressful conditions, although wearables are increasingly
applied for stress detection and mental health monitoring.

In this study, we evaluated the HR accuracy of 10
commercially available wearable devices across a standar-
dized experimental protocol that varied in activity type,
cognitive stress, and climate condition. The devices were
selected based on their potential for use in research and
commercial applications. The main selection criteria were
cost, usability, and data availability.

Our goal was to assess how real-world influences, such
as movement, cognitive stress, and ambient thermal envi-
ronment, affect optical HR accuracy. We hypothesized that
devices would show greater error during more vigorous and
nonsteady-state activities due to increased motion artifacts.
Additionally, acute cognitive stress was expected to reduce
HR accuracy due to increased HR, cardiac contractility,
systolic blood pressure, and peripheral vasoconstriction [17],
all of which may affect PPG signal quality and accuracy
[18]. Moreover, we hypothesized that exposure to extreme
temperatures (hot or cold) would impair accuracy due to
peripheral vasoconstriction or vasodilation affecting PPG
signal quality.

Methods
Wearables
The following devices were included: Fitbit Charge 6, Fitbit
Inspire 3, Garmin Vivosmart 5, Garmin Vivoactive 5, Apple
Watch SE, Google Pixel Watch 2, Polar Ignite 3, Polar Pacer,
Xiaomi Watch 2, and Oura (Gen 3). Thus, this selection
contained 9 watches and 1 ring. The Zephyr BioHarness 3.0
chest strap was used as the gold standard reference measure.
The Zephyr BioHarness 3.0 allows for collecting the raw
electrocardiogram data and therefore to evaluate the data
quality of the derived HR time series. It has demonstrated
validity across many exercise modalities and contexts [19].
Study Design and Participants
A total of 45 healthy adult volunteers (23 male, 22 female)
participated in this study. The participants ranged in age from
21 to 68 years, with a mean age of 34 (SD 12) years. All
participants were free from known cardiovascular, metabolic,
or musculoskeletal conditions that could interfere with data
collection or affect physiological responses. The participants
completed an hour-long experimental protocol. During each
session, participants wore 2 watches and 1 chest strap. To
ensure that there was no optical or electromagnetic cross-
interference, only 2 watches were worn at any time, 1 on
the left wrist and 1 on the right wrist. The independent
operation and data storage of all devices also mitigated any
potential data interference. They were instructed to wear the
smartwatch snugly, just above the wrist bone, ensuring the
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optical sensor maintained direct skin contact. In addition, 10
individuals wore the Oura ring on their nondominant hand.
The ring (size 10) was worn on the finger that ensured
stable sensor contact. Each of the 10 wearable devices was
tested 10 times across different participants, yielding a total
of 100 unique testing sessions (10 per device). To control
for potential placement effects, the location of the devices
was counterbalanced across the left and right hands. This
sample size balanced device coverage against the logistical
constraints of the multisession environmental protocol.
Ethical Considerations
The study was approved by the Social and Societal Ethics
Committee of KU Leuven (case G-2024-8195-R4(AMD)).
Written informed consent was obtained from all study
participants prior to participation after the nature and
possible consequences of the studies were explained. To
ensure privacy and confidentiality, all participant data
were deidentified and stored on secure, password-protec-
ted institutional servers. No compensation was provided to
participants.
Experimental Protocol
All participants performed a standardized protocol in each
of 3 environmental chambers: a neutral condition (23 °C,
50% relative humidity), a hot condition (36 °C, 70% relative
humidity), and a cold condition (10 °C, 40% relative
humidity). The 3 climate chambers were dimensionally

identical (3.6 m by 2.4 m) and were located adjacent to
one another, allowing for rapid participant transition. Half
of the participants completed the protocol in the sequence
neutral-hot-cold, while the other half followed the sequence
neutral-cold-hot.

Within each environmental condition, participants
completed six tasks lasting in total 22 minutes: (1) a 6-
minute seated resting phase to acclimate to the chamber, (2)
a 4-minute cognitive stress task (Montreal Imaging Stress
Task [MIST] [20]) performed at a desk using a PC, (3)
a 2-minute seated recovery phase, (4) a 4-minute steady
walking task on a treadmill (Focus Fitness Jet 1) at 6
km/h, (5) a 4-minute intermittent walking task involving
alternating 30-second walking and standing intervals, and
(6) a final 2-minute standing rest phase. The sequence of
these 6 tasks was fixed for all participants to maintain a
standardized progression from rest to increasing cognitive
and physical exertion, allowing for direct comparison of
device performance across the controlled states. To mitigate
systematic carry-over effects (eg, fatigue or learning) that
might accumulate over the testing day, the order of the 3 main
environmental conditions was systematically counterbalanced
across participants. This experimental protocol was designed
to simulate a range of ecologically valid use cases including
cognitive and physical stressors, steady-state and intermittent
movement, and environmental variation. The timeline of the
research protocol is visualized in Figure 1.

Figure 1. Timeline of the research protocol. MIST: Montreal Imaging Stress Task.

Data Collection and Processing
HR data from the Zephyr BioHarness and each wearable
device were recorded continuously throughout all tasks. The
data were exported using manufacturer-provided software
platforms or application programming interfaces. This yielded
the HR data at the highest possible sampling frequency for
each device. The Polar Ignite 3, Polar Pacer, and Oura
collected data at 1 Hz. For the other devices, the sampling
frequency was variable with the intervals varying from 1
to 7 seconds. To ensure alignment, HR time series from
each wearable were synchronized with the reference series
using timestamp-based matching. Any reference data points
that could not be matched due to sparse wearable sampling
were excluded from analysis. No additional data smoothing or
outlier removal was performed.

Accuracy Metrics
Three key metrics were used to assess HR accuracy. First,
mean absolute error (MAE) and MAPE were calculated
between the wearable and reference HR signals for each
condition and device. Second, we used the concordance
correlation coefficient (CCC) [21]. Because the data consisted
of repeated measurements over time for each participant,
we extended the CCC using a repeated-measures framework
[22]. The repeated-measures CCC accounts for the hierarch-
ical structure of the data by estimating the variance com-
ponents associated with between-subject and within-subject
variability. This was done by fitting a linear mixed-effects
model with a random intercept per participant, allowing
variance components due to between-subject and within-sub-
ject variability to be separated. The repeated-measures CCC
was then calculated using the model-based estimates of
means, variances, and correlations, ensuring an unbiased
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agreement estimate under repeated measures. Third, we
calculated the mean bias and limits of agreement for the
Bland-Altman analysis [23] to assess the agreement between
HR values recorded by the consumer wearable and the
gold-standard chest strap. Similar to the calculation of the
CCC, a mixed-effects adaptation of the original Bland-Alt-
man analysis as described in Bland and Altman [24] was used
to account for the repeated measurements.

The statistics outlined above were calculated both for the
complete time series and for segments of the data correspond-
ing to isolated activities and environmental conditions. This
approach allowed for a statistical comparison to determine
whether different conditions influenced the accuracy of the
devices.
Statistical Analysis
Before formal analysis, the normality of the MAE and
MAPE values for the different subsets was tested using
Shapiro-Wilk testing. The significance level (α) was set to
.05 for these tests. Given that the null hypothesis of the
normally distributed data was rejected in most cases, it was
decided to apply robust nonparametric testing. To determine
whether certain devices yielded significantly differing MAE
and MAPE values, Kruskal-Wallis testing was performed.
When the test yielded a significant result, multiple Wil-
coxon rank sum tests were performed to identify which
pairs of devices differ significantly. Similarly, it was studied
whether the experimental conditions (ie, the type of activ-
ity or thermal environment) yielded significantly differing
MAE and MAPE values for each device. For this purpose,
Friedman testing was performed. When the test yielded
a significant result, multiple Wilcoxon signed-rank tests
were performed to identify which pairs of experimental
conditions differed significantly. To account for the fam-
ily-wise error rate of repeated testing, Bonferroni-correc-
ted α-values were considered. Specifically, the Bonferroni
correction was applied to all multiple pairwise Wilcoxon
rank sum tests and Wilcoxon signed-rank tests to main-
tain a family-wise error rate of α=.05 across the multiple
device and condition comparisons performed. To enhance
the interpretability of statistically significant findings, we

calculated and reported effect sizes for the pairwise non-
parametric tests. For all pairwise Wilcoxon signed-rank and
rank sum tests, the rank-biserial correlation (r) was used to
quantify the magnitude of the difference. These metrics are
indicated in the main text of the paper when presenting the
results.

All analyses were performed in MATLAB using the fitlme
function to fit mixed-effects models and custom scripts to
compute the extracted parameters.

Results
The statistics that describe the accuracy of the HR data for
each wearable throughout the entire experimental protocol
are summarized in Table 1. Furthermore, Figure 2 presents
a visual comparison of the accuracy distributions (MAE
values) across devices to allow for an immediate assessment
of relative performance in addition to the tabulated values.
The distribution of the MAE and MAPE values was used to
test for significant differences between the various devices.
The Kruskal-Wallis tests indicated that, for both the MAE
and MAPE, at least 1 sample stochastically dominated one
other sample (P<.05). In other words, there was a significant
difference in the MAE and MAPE of at least 1 pair of
wearables. Therefore, pairwise Wilcoxon rank sum tests were
further performed to identify which pairs differ significantly.
Given that the 10 wearables can form 45 unique pairs, the
significance level was adjusted with the Bonferroni correc-
tion (α=.05/45=.0011). From these pairwise tests, it was
observed that the MAE and MAPE values differed signifi-
cantly between the Fitbit Charge 6 and the Fitbit Inspire 3,
Polar Ignite 3, Polar Pacer, and Oura (Gen 3), with rank-bise-
rial r values ranging between –0.76 and –0.84. In addition,
significant differences for the MAE and MAPE were noted
between the Fitbit Inspire 3 and the Garmin Vivoactive 5
and Google Pixel Watch 2 (rank-biserial r values between –
0.75 and 0.84). Finally, the MAE values for the Google Pixel
Watch 2 also differed significantly from the Polar Ignite 3 and
Oura (Gen 3), with rank-biserial r values of –0.75 and –0.79,
respectively.

Table 1. Measurement accuracy statistics for all tested wearables, over the full experimental protocol.

Wearable
MAEa (bpm), median
(IQR)

MAPEb (%), median
(IQR)

Repeated measures
CCCc Mixed-effects Bland-Altman

Mean bias
(bpm)

Lower LoAd
(bpm) Upper LoA (bpm)

Fitbit Inspire 3 14.3 (10.3-27.9)e 16.5 (11.1-40.6)e 0.45 –14.4 –51.3 22.5
Fitbit Charge 6 4.5 (3.5-5.0)f 5.5 (4.6-6.5)f 0.93 0.7 –11.2 12.7
Garmin Vivosmart
5

7.0 (4.9-11.5) 8.1 (6.5-15.6) 0.78 4.8 –15.8 25.4

Garmin Vivoactive
5

5.1 (3.8-7.15) 6.3 (5.5-7.5) 0.83 –1.0 –18.6 16.7

Apple Watch SE 5.0 (4.9-5.8) 7.3 (5.7-8.4) 0.70 0.9 –21.4 23.0
Google Pixel
Watch 2

4.9 (4.5-5.6)g 6.7 (5.7-7.6) 0.87 –0.4 –15.0 14.2
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Wearable
MAEa (bpm), median
(IQR)

MAPEb (%), median
(IQR)

Repeated measures
CCCc Mixed-effects Bland-Altman

Mean bias
(bpm)

Lower LoAd
(bpm) Upper LoA (bpm)

Polar Ignite 3 9.5 (8.4-12.6) 11.2 (9.7-19.2) 0.63 –4.3 –31.4 22.9
Polar Pacer 9.7 (8.0-11.6) 13.1 (9.7-16.2) 0.66 –3.9 –29.7 21.8
Xiaomi Watch 2 9.1 (5.5-11.4) 11.9 (7.3-15.8) 0.69 –3.0 –33.3 27.2
Oura (Gen 3) 11.0 (7.3-16.4) 15.0 (8.3-20.8) 0.61 –7.1 –35.5 21.3

aMAE: mean absolute error.
bMAPE: mean absolute percentage error.
cCCC: concordance correlation coefficient.
dLoA: limits of agreement.
eSignificantly different from Garmin Vivoactive 5 and Google Pixel Watch 2.
fSignificantly different from Fitbit Inspire 3, Polar Ignite 3, Polar Pacer, and Oura (Gen 3).
gSignificantly different from Polar Ignite 3 and Oura (Gen 3).

Figure 2. Visual representation of MAE values displayed in Table 1.

In addition to the comparison of the devices, we also
evaluated the HR accuracy metrics for the different experi-
mental conditions. Table 2 displays the accuracy of the HR
data for each wearable in the 3 environmental conditions.
Again, the distribution of the MAE and MAPE values was
used to test for significant differences. In this case, it was
checked for each wearable whether there were differences

for the 3 climates. Given that 10 wearables were evaluated,
the Friedman test was used 10 times. Therefore, the signif-
icance level was adjusted with the Bonferroni correction
(α=.05/10=.005). The Friedman tests indicated that there
were no significant differences in the device performance
during the various climate conditions.

Table 2. Measurement accuracy statistics for all tested wearables in the 3 environmental conditions.
Environm
ent
wearable MAEa, median (IQR) MAPEb, median (IQR)

Repeated
measures CCCc Mixed-effects Bland-Altman

Neutra
l Hot Cold

Neutra
l Hot Cold

Neu
tral Hot

Col
d Mean difference Lower LoAd Upper LoA

Neutr
al

Hot Cold Neutr
al

Hot Cold Neu
tral

Hot Cold

Fitbit
Inspire 3

9.6
(7.8-30
.1)

20.8
(16.7-2
4.5)

10.6
(4.9-15
.1)

11.4
(8.6-43
.4)

24.4
(21.0-3
1.5)

10.1
(6.0-18
.7)

0.52 0.58 0.36 –15.4 –10.5 –13.7 –49.2 –40.5 –51.4 18.5 19.5 24.0

Fitbit
Charge 6

4.1
(3.4-4.
6)

4.7
(4.0-5.
4)

3.8
(3.0-4.
1)

5.1
(4.3-5.
8)

5.8
(4.9-6.
6)

4.1
(3.4-6.
0)

0.94 0.94 0.91 0.8 0.9 0.8 –10.2 –10.0 –12.5 11.9 11.8 14.0

 

JMIR FORMATIVE RESEARCH Gielen et al

https://formative.jmir.org/2026/1/e85186 JMIR Form Res 2026 | vol. 10 | e85186 | p. 5
(page number not for citation purposes)

https://formative.jmir.org/2026/1/e85186


 
Environm
ent
wearable MAEa, median (IQR) MAPEb, median (IQR)

Repeated
measures CCCc Mixed-effects Bland-Altman

Neutra
l Hot Cold

Neutra
l Hot Cold

Neu
tral Hot

Col
d Mean difference Lower LoAd Upper LoA

Neutr
al

Hot Cold Neutr
al

Hot Cold Neu
tral

Hot Cold

Garmin
Vivosmar
t 5

6.8
(5.4-10
.8)

7.6
(5.6-15
.9)

6.0
(5.1-7.
1)

7.8
(6.1-13
.6)

8.5
(7.0-20
.7)

7.4
(5.4-8.
9)

0.79 0.88 0.70 5.0 5.9 3.5 –14.4 –9.5 –20.6 24.5 21.2 27.6

Garmin
Vivoactiv
e 5

5.2
(3.7-5.
7)

5.4
(4.4-7.
5)

4.6
(3.3-6.
2)

5.9
(4.7-6.
8)

7.3
(6.2-9.
9)

5.3
(4.8-7.
4)

0.81 0.90 0.77 –0.6 –0.7 –1.5 –18.6 –14.6 –21.6 17.4 13.1 18.7

Apple
Watch SE

5.0
(4.8-5.
5)

5.6
(4.7-6.
3)

5.0
(4.3-6.
4)

7.1
(6.6-7.
9)

7.6
(6.4-9.
9)

6.8
(5.2-8.
4)

0.83 0.71 0.75 2.5 –2.4 –0.8 –13.1 –23.8 –19.0 18.0 19.0 17.4

Google
Pixel
Watch 2

4.7
(4.3-5.
5)

5.4
(4.8-6.
2)

4.4
(4.1-5.
6)

6.6
(5.9-7.
4)

6.7
(6.3-8.
8)

6.1
(4.4-7.
5)

0.84 0.87 0.81 –0.6 0.2 –0.9 –14.7 –14.0 –16.0 13.5 14.4 14.2

Polar
Ignite 3

8.7
(6.6-15
.1)

13.9
(6.7-15
.3)

6.1
(4.6-9.
9)

9.5
(8.2-22
.4)

18.2
(8.2-22
.9)

9.2
(5.7-15
.2)

0.59 0.75 0.55 –2.7 –2.4 –7.7 –29.6 –23.2 –37.5 24.2 18.5 22.2

Polar
Pacer

8.4
(5.4-10
.6)

13.8
(5.9-17
.1)

7.5
(5.4-7.
8)

9.9
(7.9-17
.6)

17.3
(7.4-26
.8)

9.6
(6.3-11
.4)

0.67 0.78 0.52 –3.6 –2.3 –7.2 –26.8 –21.2 –37.8 19.5 16.5 23.4

Xiaomi
Watch 2

6.1
(3.5-10
.4)

9.5
(7.0-22
.5)

5.3
(4.1-9.
4)

7.8
(4.6-12
.7)

12.7
(8.0-20
.7)

7.3
(4.2-10
.1)

0.81 0.86 0.56 –2.1 –2.2 –4.9 –20.9 –20.5 –44.8 16.7 16.2 34.9

Oura
(Gen 3)

9.4
(4.6-11
.0)

16.2
(11.4-2
0.7)

9.1
(5.4-11
.3)

9.9
(5.6-13
.9)

18.3
(13.8-2
6.7)

10.5
(5.1-18
.2)

0.78 0.80 0.32 –5.5 –7.2 –9.3 –25.3 –27.6 –40.5 14.2 13.5 21.9

aMAE: mean absolute error.
bMAPE: mean absolute percentage error.
cCCC: concordance correlation coefficient.
dLoA: limits of agreement.

Similar to testing for climate-related differences, the HR
accuracy metrics were also checked for differences between
the 3 types of activity: performing the MIST test, walk-
ing at a steady pace, and walking intermittently. Table 3
displays the statistics of the HR data for each wearable
during the 3 activities. The Friedman test was again repeated
for each wearable, and thus the Bonferroni was corrected
to an α of .005. As a result, the tests indicated significant

differences for the Apple Watch SE, Google Pixel Watch
2, Polar Ignite 3, and Xiaomi Watch 2. Therefore, multiple
Wilcoxon signed rank tests were further performed to identify
which pairs differed significantly, with rank-biserial r values
ranging between 0.82 and 0.97. The Bonferroni-corrected
significance level was set (α=.05/3=.0167) for the devices
that are each tested for the 3 activities. The bilateral differen-
ces are indicated in Table 3.
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Table 3. Measurement accuracy statistics for all tested wearables for the 3 activities performed.
Activity
wearable MAEa, median (IQR) MAPEb, median (IQR)

Repeated
measures CCCc Mixed-effects Bland-Altman

MISTd
Walki
ng

Walki
ng
intermi
ttent MIST

Walki
ng

Walki
ng
intermi
ttent

MI
ST

Wal
kin
g

Wal
kin
g
inte
rmit
tent Mean difference Lower LoAe Upper LoA

MIS
T

Wal
king

Walk
ing
inter
mitte
nt

MIS
T

Walk
ing

Walk
ing
inter
mitte
nt

MI
ST

Wal
kin
g

Walki
ng
interm
ittent

Fitbit
Inspire 3

7.3
(4.2-18
.3)

10.5
(6.8-21
.4)

12.1
(7.1-17
.4)

10.1
(6.3-27
.2)

11.0
(6.6-23
.0)

14.5
(6.4-18
.5)

0.12 0.16 0.29 –
11.1

–5.7 –13.8 –41.3 –33.3 –37.1 19.2 21.9 9.4

Fitbit
Charge 6

3.6
(3.0-4.
5)

3.8
(2.9-4.
2)

3.4
(2.8-4.
3)

5.2
(4.0-6.
0)

3.7
(3.2-4.
5)

3.6
(3.0-5.
5)

0.67 0.78 0.80 0.8 3.3 0.5 –8.8 –8.3 –9.3 10.4 15.0 10.4

Garmin
Vivosmar
t 5

5.3
(4.1-6.
2)

7.9
(5.7-15
.8)

6.5
(5.4-19
.2)

7.4
(6.0-8.
4)

6.5
(5.8-16
.8)

6.8
(5.2-25
.4)

0.42 0.41 0.34 6.9 7.1 0.7 –5.7 –17.6 –17.6 19.5 31.8 19.1

Garmin
Vivoactiv
e 5

4.3
(2.8-5.
3)

5.9
(3.9-9.
8)

5.6
(3.5-6.
7)

5.4
(4.6-7.
2)

6.4
(4.2-9.
1)

5.9
(4.5-7.
6)

0.49 0.55 0.52 0.6 0.6 –3.4 –11.7 –22.1 –20.1 12.8 23.2 13.4

Apple
Watch SE

4.3f

(3.6-6.
4)

4.5f

(4.0-6.
9)

6.3
(5.4-7.
6)

6.8
(4.8-9.
0)

5.0f

(3.8-7.
6)

8.6
(6.3-9.
3)

0.29 0.49 0.28 1.6 –0.8 –0.9 –10.0 –24.4 –28.5 13.3 22.7 26.6

Google
Pixel
Watch 2

4.0
(3.7-4.
5)

6.1g

(5.2-10
.4)

5.5g

(4.5-5.
7)

6.2
(4.3-7.
7)

6.2
(5.5-9.
0)

6.8
(4.6-7.
4)

0.63 0.45 0.72 0.1 –0.1 –1.0 –10.3 –22.2 –13.8 10.4 22.1 11.8

Polar
Ignite 3

5.9
(3.3-6.
8)

11.8
(7.2-16
.8)

12.0g

(10.3-1
6.8)

9.1
(4.6-9.
6)

13.0
(7.2-14
.3)

13.8g

(10.7-2
3.4)

0.30 0.21 0.08 –1.0 2.9 –12.6 –15.6 –25.4 –37.6 13.7 31.1 12.3

Polar
Pacer

7.0
(3.4-10
.7)

8.2
(5.4-9.
4)

10.5
(6.6-17
.1)

10.4
(4.8-12
.8)

7.9
(6.0-11
.0)

11.4
(7.3-20
.8)

0.21 0.23 0.18 –2.2 2.7 –8.5 –20.7 –21.0 –31.3 16.2 26.4 14.4

Xiaomi
Watch 2

4.7
(2.9-7.
3)

11.1g

(6.4-14
.1)

10.0g

(8.0-19
.2)

7.5
(4.3-10
.2)

12.3g

(6.0-15
.7)

11.2g

(8.2-21
.1)

0.40 0.36 0.20 –1.1 1.2 –6.8 –15.7 –38.8 –42.2 13.4 41.2 28.5

Oura
(Gen 3)

8.0
(4.2-20
.4)

9.3
(4.7-13
.9)

7.0
(5.1-13
.5)

11.5
(5.1-29
.0)

10.1
(4.7-14
.0)

8.7
(4.3-16
.4)

0.13 0.36 0.38 –7.8 1.3 –6.0 –33.7 –22.8 –25.9 18.2 25.4 13.9

aMAE: mean absolute error.
bMAPE: mean absolute percentage error.
cCCC: concordance correlation coefficient.
dMIST: Montreal Imaging Stress Task.
eLoA: limits of agreement.
fSignificantly different from walking intermittently.
gSignificantly different from performing the Montreal Imaging Stress Task test.

Discussion
Principal Results
This study evaluated the HR accuracy of 10 commercially
available wearable devices (9 watches and 1 ring) under

varying environmental and activity conditions. Accuracy
was assessed using multiple statistical approaches, includ-
ing absolute and relative error metrics (MAE and MAPE),
concordance with a reference chest strap (repeated-meas-
ures CCC), and agreement intervals (Bland-Altman analy-
sis). To interpret these outcomes, established standards were
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applied. For example, the American National Standards
Institute specifies a boundary of ±10% MAPE or ±5 bpm,
whichever is greater, as acceptable error for cardiac moni-
tors [25]. Correlation coefficients were interpreted as weak
(≤0.5), moderate (0.5‐0.7), or strong (≥0.7) [26,27], while a
stricter criterion of CCC ≥0.80 has also been proposed in
previous work [13,28]. Within this framework, our findings
indicate differences in device performance: the Fitbit Inspire
3 and Oura Ring exhibited significantly higher errors and
wider limits of agreement, whereas the Fitbit Charge 6 and
Google Pixel Watch 2 met both the criterion of CCC ≥0.80
and the American National Standards Institute error bounda-
ries. Interestingly, these results demonstrate that accuracy is
not only brand-dependent but also device-specific, as even
wearables from the same manufacturer, despite relying on
similar PPG technology, can yield different outcomes.

Participants underwent repeated testing across 3 thermal
environments, neutral (23 °C), hot (36 °C), and cold (10 °C),
but we found no statistically significant effect of temperature
condition on device accuracy after the Bonferroni correction.
However, the type of physical activity did significantly affect
HR measurement accuracy in several devices. Specifically,
walking intermittently elicited larger errors in a subset of
wearables. These results support our initial hypothesis that
motion irregularity is a strong determinant of PPG-based HR
accuracy.
Comparison With the State of the Art
The significant variability in accuracy across commercial
wearables is consistent with earlier validation studies. Düking
et al [29], for example, found marked differences in HR
accuracy among 4 commercial wrist-worn devices (Apple
Watch 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa)
during a structured treadmill protocol. They observed that
vigorous or intermittent activities, particularly those involving
sudden directional changes, were prone to introducing motion
artifacts that degraded PPG signal quality. Our findings
extend this line of work by demonstrating that even seem-
ingly modest variations in movement patterns (eg, intermit-
tent walking) can impact accuracy and that these effects differ
between devices.

Interestingly, we did not find significant accuracy
differences between climate conditions, which contradicts
some theoretical expectations and anecdotal observations.
Cold-induced vasoconstriction and heat-induced vasodilation
are known to affect peripheral blood flow and optical signal
amplitude [3,8,30]. However, it is possible that our selected
temperature ranges (10-36 °C) were not extreme enough
to meaningfully affect PPG signal quality, particularly in a
short-term indoor protocol. Alternatively, modern signal-pro-
cessing algorithms embedded in the wearables may have
compensated for these physiological variations.

Prior studies have also highlighted the limitations of
wrist-worn devices for certain populations and use cases. For
example, variability in skin tone, arm hair, or wrist circumfer-
ence can influence optical HR signal integrity [13,31], and
these factors were not explicitly accounted for in our study.

Nevertheless, the consistency of our findings across partici-
pants and the robustness of the repeated-measures statistical
approach support the generalizability of our device compari-
sons.

Notably, the Fitbit Charge 6 consistently showed high
accuracy across all conditions, with low MAE, low MAPE,
and high repeated-measures CCC (>0.90). The Google Pixel
Watch 2 and Garmin Vivosmart 5 also performed well,
particularly during steady-state walking. In contrast, the Polar
Ignite 3, Polar Pacer, and Oura Ring exhibited wider limits
of agreement and lower CCC values, particularly during
irregular activity. These differences may reflect varying PPG
sensor designs, sampling rates, and proprietary signal-clean-
ing algorithms [32,33].
Physiological and Technical
Considerations
PPG is inherently sensitive to movement artifacts, particularly
when motion occurs along the axis of the light source or in
tissues with variable compressibility (eg, wrists with varying
musculature) [34]. Devices such as the Oura Ring, which
is worn on the finger, may face additional challenges due
to the vasomotor sensitivity of the digits and the smaller
optical contact area. While rings offer the advantage of less
wrist movement, they may be more susceptible to tempera-
ture-driven changes in blood flow [35], which could explain
the relatively poorer performance of the Oura device in this
study.

Furthermore, activity context plays a significant role. The
MIST task, a standardized cognitive stressor with minimal
physical exertion, was associated with lower HR variability
and motion. This is consistent with evidence that cogni-
tive demands and psychological stress typically reduce HR
variability [36]. As a result, wearables generally performed
well under these conditions. In contrast, intermittent walking
introduced frequent postural and muscular transitions, posing
a challenge for devices dependent on motion-compensated
PPG. These findings align with previous observations that
accuracy degrades in nonsteady-state conditions and that
current algorithms may overfit to predictable, repetitive
activity patterns [37,38].
Study Limitations
Several limitations should be acknowledged. First, the
duration of each activity phase was relatively short (4‐6
min). Longer monitoring periods might have revealed delayed
effects of thermal stress or device drift. Second, while we
designed the environmental conditions to simulate realistic
hot and cold exposures, extreme climates or outdoor settings
were not replicated. Third, we did not directly measure
skin temperature or blood flow perfusion, which could have
elucidated underlying physiological causes of error.

Moreover, our participant sample, although balanced
across devices and arms, did not include diverse skin tones
or body compositions, which may limit generalizability. We
note from the literature that variations in skin tone are
known to bias PPG accuracy [11], suggesting that device
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performance may differ in diverse populations. The skin tone
of the participants in our study was not included in the data
collection. In hindsight, we note a relatively homogenous
population of lighter skin phototypes (Fitzpatrick type I-III).
Additionally, while the sample had a broad age range (21‐68
y) and a balanced sex distribution, the sample was predom-
inantly younger adults, and only 5 older participants (ages
47‐68) were involved. Hence, a formal analysis to quantify
the isolated impact of skin tone, age, and sex on device
accuracy was not performed, which may be a focus for future
research. Finally, as with any study of commercial weara-
bles, device firmware and algorithms may change over time,
making it difficult to extrapolate our results to future updates
of the same models.
Implications for Research and Practice
Our findings offer practical insights for researchers and health
professionals selecting wearable devices for HR monitoring
in mixed conditions. Devices such as the Fitbit Charge 6
and Google Pixel Watch 2 may offer sufficient accuracy for
light-to-moderate physical activities in typical environmen-
tal conditions. However, researchers should exercise caution
when using wearables for irregular activities or for applica-
tions that require high precision (eg, clinical monitoring or
dose-response studies).

The study protocol can easily be replicated with other
wearable devices, enabling comparisons between new devices

and the 10 devices that have already been evaluated. For
future validation studies, the inclusion of diverse populations,
extended durations, and wearable signal-quality indices (eg,
raw PPG, accelerometer-derived movement indices) would
allow for a more granular understanding of error sources.
Open-science practices, including the publication of raw
validation data and code for statistical methods, will further
support reproducibility and transparency in wearable health
technology research.
Conclusions
In this comparative study of 10 commercial wearable devices,
significant differences in optical HR accuracy were observed
between brands and activity types. Climate conditions did not
produce statistically significant effects on accuracy, suggest-
ing robustness within the moderate temperature ranges tested.
However, irregular movement patterns degraded performance
in multiple wearables, highlighting the need for careful
selection and context-aware interpretation of HR data in
applied health and sports settings. Devices such as the Fitbit
Charge 6 and Google Pixel Watch 2 demonstrated strong
agreement with reference chest strap measurements, even
across varied protocols. The device-specific findings should
be interpreted with caution, as they pertain to the investiga-
ted models. Accuracy may vary considerably across other
devices within the same brand, despite the use of similar PPG
technology.
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