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Abstract

Serum protein electrophoresis (SPE) is routinely interpreted through visual assessment of electropherogram images by medical
laboratory scientists. We introduce an efficient tabular data–based machine learning approach that directly leverages numerical
SPE profiles, offering a robust and interpretable alternative to image-based deep learning methods.
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Introduction

Serum protein electrophoresis (SPE) is a key technique for
separating and quantifying major serum protein fractions. Recent
studies [1-3] have used convolutional neural networks (CNNs)
to classify SPE results. Although these models have shown good
performance, they primarily replicate the visual interpretation
performed by medical laboratory scientists (MLS). Yet
electropherograms are inherently numerical curves—that is,
tabular data. This raises a simple question: why analyze an
image when the analytical signal already exists as a numerical
table?

Although image-based CNNs remain the dominant approach,
we explicitly reframe SPE classification as a purely tabular
learning problem concerning numerical SPE profiles. We
evaluate this perspective by comparing our approach to the
CNN-based study of Lee et al [1] by using the same dataset [4]
and identical training-test splits, without additional data cleaning
or hyperparameter tuning.

Methods

Input data were obtained by extracting numerical profiles from
electropherograms and gel images as illustrated in Figure 1.
Each image underwent grayscale conversion, cropping of the
analytical region, interpolation into 150 point profiles, and
min-max normalization. We computed SPE fractions by using
local-minima detection (albumin, α-1, α-2, β, γ) and included
demographic and biochemical variables from the dataset (sex,
age, serum protein, serum albumin).

The 6 pathological categories defined in the reference dataset
[4] were acute phase protein increase (74 cases), monoclonal
gammopathy (264 cases), polyclonal gammopathy (244 cases),
hypoproteinemia (249 cases), nephrotic syndrome (165 cases),
and normal profiles (293 cases). Each case corresponds to a
specific distribution pattern of proteins. These SPEs were
collected in [1] between January 2018 and July 2019.

As recently emphasized [5,6], tree-based gradient boosting
models remain the strongest performers for tabular data, often
surpassing deep learning. After converting SPE images into
numerical matrices, we reconfirmed this by evaluating XGBoost
(extreme gradient boosting), TabPFN (tabular foundation
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model), and CatBoost (categorical boosting). Without any
hyperparameter optimization, CatBoost consistently produced
the best results, especially on the gel-extracted data.

All results were obtained with the default CatBoost parameters
from R implementation [7] running on R software (version
4.4.3; R Foundation for Statistical Computing) [8]. To enable

a fair comparison to the CNN baseline in [1], we used the exact
same training and test splits as in [1]: specifically, 10% of the
cases were reserved for testing. However, the distribution of
these cases differed between gel and electropherogram
representations. Each experiment was repeated with 100
different seeds to estimate CIs for all performance metrics.

Figure 1. Preprocessing steps showing the tabular data extraction for both types of serum protein electrophoresis images.

Results

In total, 1289 SPE cases were available, each providing a gel
and an electropherogram. However, the image quality varied
substantially across samples: gel image heights ranged from 29
to 556 pixels (mean 81.9, SD 48.1) and widths from 96 to 876
pixels (mean 275, SD 129); electropherogram images heights
ranged from 98 to 704 pixels (mean 410.7, SD 183.1) and widths
from 250 to 1075 pixels (mean 649.6, SD 288.3) (Table 1).

Among the 20 polyclonal gammopathy cases in the gel test set,
the sensitivity reported by [1] is 0.800, whereas our approach
achieves a mean sensitivity of 0.941, with a 95% CI of
0.937-0.945 across 100 repeated runs. Except for monoclonal
gammopathies where we, by contrast with [1], removed the
unusual spike delimitation in our preprocessing step, the
CatBoost-based tabular approach outperformed the CNN
baseline across most categories. Weighted sensitivity,
specificity, and F1-scores were improved when using tabular
data rather than images.
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Table 1. Sensitivities, specificities, and F1-scores for protein electropherograms and gels, comparing the original model with the average performance
of our model over 100 repeated runs, stratified by pathology, with weighted averages computed over the entire dataset.
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0.9170.941
(0.937-
0.945)

0.8000.950
(0.947-
0.953)

0.8570.978
(0.977-
0.979)

0.9811.000
(1.000-
1.000)

0.818Polyclonal
gammopathy
(n=22 or 20)

0.738
(0.735-
0.740)

0.5310.898
(0.896-
0.899)

0.8930.831
(0.827-
0.834)

0.5200.887
(0.884-
0.889)

0.6980.974
(0.973-
0.975)

0.8530.878
(0.874-
0.881)

0.846Hypopro-
teinemia
(n=26 or 25)

0.704
(0.698-
0.709)

0.3450.944
(0.942-
0.945)

0.9720.699
(0.692-
0.706)

0.2380.783
(0.778-
0.788)

0.7860.0.954
(0.953-
0.955)

0.9910.853
(0.845-
0.861)

0.687Nephrotic
syndrome
(n=16 or 21)

0.854
(0.851-
0.856)

0.6980.925
(0.923-
0.927)

0.8790.935
(0.932-
0.937)

0.7590.868
(0.865-
0.870)

0.7270.939
(0.939-
0.939)

0.9490.920
(0.914-
0.925)

0.667Normal
(n=30 or 29)

0.786
(0.784-
0.788)

0.5990.950
(0.950-
0.951)

0.9220.790
(0.788-
0.792)

0.6020.849
(0.848-
0.851)

0.7840.967
(0.966-
0.967)

0.9520.852
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aSens: sensitivity.
bRef: reference.
cElectro: electropherogram.
dCatBoost: categorical boosting.
eSpec: specificity.
fThe values of n correspond to the number of test samples for electropherograms and gels, respectively. Values in parentheses report the 95% CIs of
our model.
gItalicized values indicate the best-performing model for each metric and category.
hDenotes the use of unusual spike delimitation on all electropherograms of monoclonal gammopathies.

Discussion

The main limitation appears in the monoclonal gammopathy
class [9] on electropherograms, for which CNNs in [1] report
higher performance. A plausible explanation lies in the structure
of the original dataset: in [4], electropherograms corresponding
to monoclonal gammopathies systematically contain manually
drawn spike delimitations added by MLS during routine
interpretation. These annotations are specific to this class and
may therefore serve as highly discriminative visual cues for the
convolutional model, artificially boosting its performance. In
contrast, this dataset bias is removed from our tabular dataset
using our preprocessing pipeline. It removes all such manual
markings to retain a purely signal-based representation, thereby
eliminating visual hints that CNN may have leveraged in the
original setting. Despite this bias, our framework achieves stable
and homogeneous performance across all pathological categories
and does not show a specific degradation for monoclonal
gammopathies.

Our CatBoost results were obtained using the default parameters,
without any form of tuning. This choice was intentional: it
demonstrates that even an entirely nonoptimized tabular model
already outperforms the CNN baseline on most categories, even
on a dataset with several low quality images. Consequently,
additional improvements are highly plausible. More extensive
hyperparameter optimization such as tuning tree depth, learning
rate, and boosting iterations could further enhance performance.
Likewise, hybrid approaches that enrich numerical profiles with
peak-shape descriptors or selectively integrate localized
image-based features may help address the specific challenges
posed by narrow M-spikes in monoclonal gammopathies.

Reframing SPE classification as a tabular learning task leads
to immediate performance improvements, even before any
optimization. Beyond accuracy, this approach offers several
practical advantages. First, the approach is computationally
efficient: CatBoost trains rapidly on a standard laptop and
requires no graphics processing unit, and it integrates easily
into routine workflows. Second, this approach is readily
generalizable, especially with modern SPE analyzers that already
store raw numerical curves internally. It means the classification
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model can be applied directly to these exported values without
any image-processing pipeline. Finally, tree-based models offer
greater interpretability, allowing laboratories to analyze feature
importance and understand which parts of the curve contribute
to the classification—a key requirement for clinical use.
Moreover, unsurprisingly, this framework is image type
agnostic: when exchanging the train-test split for
electropherogram and gel, performance remains consistent. This
confirms that the improvement comes from the change in data
structure rather than from the image source itself.

In summary, transitioning from image-based deep learning to
tabular data-based machine learning increases performance and
improves robustness, interpretability, reproducibility, and ease
of deployment. This redefinition of the SPE classification
problem, unconventional for practitioners yet natural for
computational systems, provides a compelling alternative to
CNN-based approaches and a promising basis for clinically
reliable automation.
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