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Abstract

Background: Sleep disorders are common among older adults undergoing surgery and contribute significantly to postoperative
complications, delayed recovery, and higher health care costs. The combined effects of age-related physiological changes and
surgical stress further disrupt sleep in this vulnerable group. However, current tools for predicting surgical risk rarely account
for the specific physiological, clinical, and psychological factors that affect older patients. While wearable devices are used to
monitor sleep, most prediction models focus on general sleep quality in nonsurgical populations, leaving a gap in forecasting
preoperative sleep disorders in older surgical candidates. Therefore, we developed and validated a tailored risk prediction model
that integrates objective sleep data from wearable devices with comprehensive clinical and psychosocial evaluations for older
adults preparing for surgery.

Objective: We aimed to develop and validate a risk prediction model for preoperative sleep disorders in older adult surgical
patients by using data from smart wearable devices and clinical assessments, thereby facilitating early identification of the
influencing factors and providing a scientific basis for personalized care planning.

Methods: We conducted a prospective study at the Second Affiliated Hospital of Zunyi Medical University. A cohort of 242
older surgical patients was monitored using smart rings on the night before surgery. We simultaneously collected data on
sociodemographic factors, cognition, and psychological status. As per preoperative sleep assessments, patients were classified
into sleep disorder and non–sleep disorder groups. Independent predictors of sleep disorders were identified using univariable
and multivariable logistic regression. These predictors were used to build a risk prediction model, which was internally validated
with 1000 bootstrap samples. The model’s performance was evaluated by its ability to discriminate between groups (using receiver
operating characteristic curves), its calibration, and its clinical usefulness (via decision curve analysis).

Results: Multifactorial logistic regression analysis showed that Hospital Anxiety and Depression Scale score (odds ratio [OR]
3.21, 95% CI 1.54-6.69; P=.002), number of awakenings (OR 3.33, 95% CI 1.82-6.12; P<.001), duration of rapid eye movement
sleep (OR 0.96, 95% CI 0.93-0.99; P=.04), and duration of light sleep (OR 0.98, 95% CI 0.96-0.99; P=.01) were independent
risk factors for preoperative sleep disturbances in older adults (P<.05). The receiver operating characteristic curve showed an
area under the curve of 0.92, and the calibration curve indicated good model calibration. Decision curve analysis showed that the
model improved the maximum net benefit across risk thresholds ranging from 0.2 to 0.8, indicating high clinical utility.

Conclusions: The risk prediction model developed using smart ring–derived data effectively identifies older adult surgical
patients at elevated risk of preoperative sleep disturbances, thereby facilitating timely and individualized interventions. This
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advancement provides a robust scientific foundation for delivering personalized perioperative care, with the potential to improve
postoperative outcomes and alleviate the health care burden in this vulnerable population.

(JMIR Form Res 2026;10:e79008) doi: 10.2196/79008
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Introduction

Background
Sleep disorders, characterized by disruptions in sleep duration,
sleep quality, and circadian rhythm [1], are frequently
accompanied by anxiety, depression, and cognitive impairment,
collectively exerting detrimental effects on patients’perceptions
and behaviors [2]. With advancing age, older adults typically
exhibit characteristic alterations in sleep architecture, including
prolonged sleep latency, reduced total sleep time, and increased
sleep fragmentation [3]; perioperative factors may further
exacerbate these disturbances [4]. Intraoperative administration
of anesthetics and analgesics can disrupt neurotransmitter
homeostasis—particularly involving dopamine, norepinephrine,
and γ-aminobutyric acid (GABA)—in older adults, resulting in
heightened sensitivity to external stimuli and increased nocturnal
arousals [5-7].

With the global population aging at an unprecedented rate, the
demand for geriatric surgical procedures continues to grow
annually. According to the World Health Organization,
individuals older than 65 years now account for more than 40%
of all surgical interventions worldwide [8]. This demographic
is typically marked by physiological aging, multisystem
functional deterioration, and a substantial burden of
comorbidities, which collectively lead to increased perioperative
vulnerability and a postoperative complication rate 2 to 3 times
higher than that observed in younger cohorts [9]. Notably, sleep
disturbances constitute a critical factor influencing postoperative
recovery in older adults [2]. The reported incidence of
perioperative sleep disturbances in older adults ranges from
15% to 84% [10,11]. Approximately 23% of the patients
experience postoperative sleep disorders that may persist for
up to 4 days, and by postoperative day 15, approximately 25%
continue to exhibit pronounced symptoms of sleep deprivation.
A subset of these patients still requires pharmacological
intervention to maintain sleep continuity [12].

Perioperative sleep disturbances in older adults not only elevate
the risk of postoperative delirium [13] but are also linked to a
spectrum of adverse outcomes, including an increased risk of
stroke, compromised immune function, elevated obesity risk,
and higher morbidity and mortality rates [14,15]. Specific
disturbances such as insomnia and circadian rhythm disruption
during the perioperative period can result in daytime fatigue
and a heightened risk of falls in older adults, thereby delaying
wound healing, prolonging hospitalization, and contributing to
increased health care expenditures and elevated mortality risk
[13,16,17]. One survey indicated that, over a 6-month period,
health care costs were approximately US $1100 higher for older
adults who developed sleep disorders than for those without
such conditions [17]. The economic burden of sleep disorders

is substantial, amounting to 0.7% of Australia’s gross domestic
product, while nonfinancial costs account for an additional 3.2%
of the national disease burden [18]. The presence of
perioperative sleep disorders in older adults not only impairs
sleep quality, physical health, and postoperative recovery but
also exerts a profound impact on long-term quality of life [19].
Therefore, early identification and timely management of sleep
disturbances in older adult surgical patients are crucial for
improving clinical outcomes and alleviating the broader societal
health care burden.

With the rapid advancement of information technology, smart
wearable devices—such as smart bracelets and
smartwatches—have demonstrated significant potential in
monitoring individual sleep patterns. Evidence suggests that
smart wearable devices yield measurements comparable to
polysomnography in terms of total sleep time, nocturnal
awakenings, and sleep efficiency [20]. Furthermore, sleep
metrics obtained from smart rings exhibit good concordance
with assessments derived from the Pittsburgh Sleep Quality
Index (PSQI) [21]. Smart rings detect micromovements via a
triaxial accelerometer and demonstrate high sensitivity and
specificity in tracking parameters such as sleep onset latency,
wake time, total sleep duration, rapid eye movement (REM)
sleep, and the number of nocturnal awakenings [22].

Risk prediction models are designed to estimate the likelihood
of future clinical events, such as the onset of a specific disease
in a given patient population [23]. The identification and
management of sleep disturbances in surgical settings can
enhance perioperative care, reduce postoperative complications
and associated health care expenditures, and improve patient
throughput efficiency [24]. Although several risk prediction
models for sleep disorders in older adults have been proposed
[24,25], their predictive performance remains inconsistent, and
none has been specifically designed for older adults undergoing
surgery. Moreover, although recent studies have begun to use
smart wearable devices for sleep monitoring—for example,
machine learning–based approaches that forecast sleep
efficiency hours before bedtime [26]—these efforts have largely
focused on general sleep quality metrics in nonsurgical
populations. Building on this work, this study extends the
application of wearable technology by developing a targeted
risk prediction model for preoperative sleep disorders in older
adults undergoing surgery. By integrating high-resolution,
objective sleep architecture data captured by a smart ring with
key clinical and psychological assessments, the model addresses
the distinct physiological and psychological vulnerabilities of
this patient population. This approach represents a substantial
advance beyond simple sleep efficiency forecasting, enabling
proactive identification of clinically meaningful sleep disorders
in the high-risk perioperative setting.
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Objective
This study aimed to construct a predictive nomogram by
integrating sleep-related data collected via smart wearable
devices from older adult surgical patients to estimate the risk
of postoperative sleep disturbances and support the early
identification and management of high-risk individuals.

Methods

This study was designed and executed in accordance with the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) guidelines [27,28].

Study Design and Participants
This prospective cohort study enrolled older adults who
underwent elective surgical procedures between August 1, 2023,
and January 30, 2024, at the Second Affiliated Hospital of Zunyi
Medical University, China. Inclusion criteria were as follows:
(1) aged between 60 and 80 years, (2) scheduled for elective
surgery, (3) had an American Society of Anesthesiologists
physical status of I to III, (4) fully conscious and capable of
effective communication, and (5) had no documented history
of sleep disorders. Exclusion criteria were as follows: (1)
presence of central nervous system diseases or psychiatric
disorders, (2) a history of sedative or hypnotic medication use,
(3) undergoing daytime surgery or neurosurgical procedures,
(4) New York Heart Association class IV heart failure, and (5)
planned postoperative admission to the intensive care unit.

Data Collection
Patient clinical data were extracted from electronic medical
records and included variables such as age, sex, diagnosis, BMI,

and surgical specialty department. Additionally, sleep-related
parameters were acquired via wearable monitoring devices,
encompassing sleep onset time, wake-up time, total sleep time,
durations of deep and light sleep, REM sleep duration, and the
number of awakenings. Furthermore, several validated
instruments were administered, including the PSQI, Hospital
Anxiety and Depression Scale (HADS), Mini-Mental State
Examination (MMSE), and Numerical Rating Scale (NRS) for
pain assessment.

Biochemical markers were also obtained, including white blood
cell count; neutrophil count; red blood cell count; hemoglobin;
hematocrit; platelet count; prothrombin time; activated partial
thromboplastin time; fibrinogen, serum potassium, sodium, and
calcium levels; alanine aminotransferase; aspartate
aminotransferase; prealbumin; blood urea nitrogen; creatinine;
blood glucose; total protein; cholinesterase; high-sensitivity
C-reactive protein; and creatine kinase and its isoenzymes.

In this study, the PSQI was used to evaluate the sleep quality
of older adults on the night preceding surgery. Concurrently, a
smart ring (Figure 1; SRing2; Shenzhen Century Modern
Technology Development Co, Ltd) was used to monitor sleep
parameters in real time, including sleep onset time, wake-up
time, total sleep duration, REM sleep duration, durations of
light and deep sleep, and the number of awakenings. The
implementation procedure was as follows: the smart ring was
uniformly fitted on each patient by the researcher before 10:00
PM on the night before surgery and removed upon waking up
the following morning. Thus, this smart ring–based monitoring
technology provided more objective and comprehensive sleep
data.

Figure 1. SRing2 smart ring.
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Sleep Quality Grouping
On the basis of the PSQI scores and sleep data collected via the
smart ring, in conjunction with established diagnostic criteria
for sleep disorders, 242 older adults were classified into 2
groups: the sleep disorder group, defined by PSQI scores of 7
points or more [29] and total sleep duration of less than 6.5
hours [30], and the non–sleep disorder group, characterized by
PSQI scores of 7 points or less and total sleep duration of 6.5
hours or more.

Ethical Considerations
This study was approved by the ethics committee of the Second
Affiliated Hospital of Zunyi Medical University
(KYLL-2023-012). Written informed consent was obtained
from all participants before enrollment. Participants were
informed of their right to withdraw from the study at any time
without penalty. All personal data collected from the devices
were deidentified before analysis. The research data are
encrypted and stored on secure servers, accessible only to
members of the research team. No financial compensation was
provided to the participants.

Statistical Analysis
All statistical analyses were conducted using R (version 4.4.1;
R Foundation for Statistical Computing). Normally distributed
continuous variables were summarized as means (SDs) and
compared between groups using Student t test (2-tailed).
Nonnormally distributed variables were presented as medians
(IQRs) and compared using the Mann-Whitney U test.
Categorical variables were expressed as frequencies and
percentages and compared using the chi-square test or Fisher
exact test, as appropriate.

Candidate predictors included sociodemographic characteristics
(age, sex, and BMI), comorbidities, surgical specialty,
biochemical markers, psychometric scale scores (PSQI, HADS,
MMSE, and NRS), and sleep parameters derived from the smart
ring (including total sleep time, REM sleep duration, light sleep
duration, and the number of awakenings). Variable selection
was conducted using the least absolute shrinkage and selection
operator regression with 10-fold cross validation. Variables
with nonzero coefficients in the least absolute shrinkage and

selection operator model, together with variables with P<.10 in
univariable logistic regression or judged to be clinically relevant,
were entered into a multivariable logistic regression model. The
final model was constructed using backward stepwise selection
based on the Akaike information criterion, identifying the HADS
score, number of awakenings, REM sleep duration, and light
sleep duration as independent predictors. These predictors were
incorporated into the nomogram.

Model performance was evaluated using receiver operating
characteristic (ROC) curves, calibration plots, and decision
curve analysis (DCA). Internal validation was conducted using
1000 bootstrap resamples to estimate optimism-corrected
performance metrics (eg, area under the curve [AUC]) and
assess the stability of the variable selection process. A 2-sided
P value of <0.05 was considered statistically significant.

Model Evaluation
The predictive performance of the model was evaluated using
ROC curve analysis, with the AUC representing the model’s
discriminatory ability [31]. DCA was used to assess the clinical
utility and effectiveness of the model. DCA quantifies the net
benefit of a predictive model by incorporating threshold
probabilities that balance the relative harms of false-positive
and false-negative classifications. In recent years, DCA has
gained recognition as a superior approach to ROC curve analysis
for evaluating the clinical value of predictive models [32].
Therefore, this study used DCA to evaluate the clinical benefit
of the model.

Results

General Characteristics
A total of 242 older adults were enrolled in this study,
comprising 129 (53.3%) female individuals and 113 (46.7%)
male individuals. The mean age was 67.45 (SD 6.23) years, and

the mean BMI was 23.34 (SD 3.69) kg/m2. Regarding ward
accommodation, 204 patients (84.3%) were admitted to
multioccupancy rooms, while 38 (15.7%) patients stayed in
single-occupancy rooms. The average length of hospitalization
was 12.52 (SD 5.99) days. Additional details are presented in
Table 1.
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Table 1. Baseline characteristics of older adults (N=242)a.

P valueStatisticsPatients in the sleep disor-
der group (n=40)

Patients in the
non–sleep disorder
group (n=202)

Total patients
(N=242)

Variable

.78–0.28b67.70 (6.22)67.40 (6.25)67.45 (6.23)Age (y), mean (SD)

.650.21cS ex , n (%)

20 (50)109 (54)129 (53.3)Female

20 (50)93 (46)113 (46.7)Male

.81–0.24b23.47 (4.06)23.31 (3.63)23.34 (3.69)BMI (kg/m2), mean (SD)

.016.31dWardroom type, n (%)

39 (97.5)165 (81.7)204 (84.3)Multioccupancy room

1 (2.5)37 (18.3)38 (15.7)Single-occupancy room

.430.80b11.82 (5.04)12.65 (6.16)12.52 (5.99)Length of hospital stay (d), mean
(SD)

.092.82cResidence, n (%)

26 (65)102 (50.5)128 (52.9)Urban

14 (35)100 (49.5)114 (47.1)Rural

.112.57cSmoking history, n (%)

21 (52.5)133 (65.8)154 (63.6)No

19 (47.5)69 (34.2)88 (36.4)Yes

.291.13cDrinking history, n (%)

26 (65)148 (73.3)174 (71.9)No

14 (35)54 (26.7)68 (28.1)Yes

.660.20cDiabetes, n (%)

37 (92.5)179 (88.6)216 (89.3)No

3 (7.5)23 (11.4)26 (10.7)Yes

.251.34cHypertension, n (%)

31 (77.5)138 (68.3)169 (69.8)No

9 (22.5)64 (31.7)73 (30.2)Yes

aContinuous variables are presented as mean (SD), while categorical variables are expressed as counts and percentages (n, %).
bIndependent 2-sample t test.
cChi-square test.
dFisher exact test.

Clinical and Sleep-Related Characteristics
Among the 242 older adults enrolled in this study, the mean
PSQI score was 7.31 (SD 2.38), the HADS score was 7.21 (SD
1.84), the NRS score for pain was 1.83 (SD 1.07), and the
MMSE score was 20.45 (SD 4.65). Sleep parameters included
total sleep duration (mean 473.36, SD 146.06 min), REM sleep
duration (mean 84.25, SD 39.42 min), deep sleep duration (mean
128.50, SD 59.70 min), light sleep duration (mean 262.57, SD
92.63 min), and the number of awakenings (mean 2.68, SD
1.77; see Multimedia Appendix 1).

Factors Associated With Sleep Disorders

Univariable Analysis
On the basis of the clinical data, older adults’preoperative sleep
status was classified into 2 groups: those with and those without
sleep disorders. One-way ANOVA revealed statistically
significant differences between the 2 groups in terms of
wardroom type, HADS score, NRS score, number of
awakenings, total sleep duration, REM sleep duration, deep
sleep duration, and light sleep duration (all P<.05; Table 2).
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Table 2. Univariable logistic regression analysis.

Odds ratio (95% CI)P valueaz scoreβ coefficient (SE)Variable

Wardroom type

8.75 (1.16-65.71).042.112.17 (1.03)Multioccupancy room

1.00 (reference)———bSingle-occupancy room

Psychometric scale scores

2.72 (2.00-3.70)<.0016.351.00 (0.16)Hospital Anxiety and Depression Scale score

3.38 (2.24-5.11)<.0015.801.22 (0.21)Numerical Rating Scale score

Sleep parameters

2.06 (1.63-2.60)<.0016.010.72 (0.12)Number of awakenings

0.98 (0.97-0.98)<.001–6.32–0.02 (0.00)Total sleep duration (min)

0.96 (0.94-0.97)<.001–5.32–0.04 (0.01)Rapid eye movement sleep duration (min)

0.98 (0.97-0.99)<.001–5.21–0.02 (0.00)Deep sleep duration (min)

0.97 (0.96-0.98)<.001–6.10–0.03 (0.00)Light sleep duration (min)

aP<.05 denotes statistical significance.
bNot applicable (because this category serves as the reference for comparison).

Multivariable Analysis
Multivariable logistic regression was conducted with the
presence of sleep disorders as the dependent variable and
variables found to be statistically significant in the univariable
analysis as independent predictors. The results demonstrated

that HADS score (odds ratio [OR] 3.21, 95% CI 1.54-6.69),
number of awakenings (OR 3.33, 95% CI 1.82-6.12), duration
of REM sleep (OR 0.96, 95% CI 0.93-0.99), and duration of
light sleep (OR 0.98, 95% CI 0.96-0.99) were independent
predictors of preoperative sleep disorders in older surgical adult
patients (all P<.05; Table 3).

Table 3. Multivariable logistic regression analysis.

Odds ratio (95% CI)P valuez scoreβ coefficient (SE)Variable

3.21 (1.54-6.69).0023.101.17 (0.38)Hospital Anxiety and Depression Scale score

3.33 (1.82-6.12)<.0013.891.20 (0.31)Number of awakenings

0.96 (0.93-0.99).04–2.10–0.04 (0.02)Rapid eye movement sleep duration

0.98 (0.96-0.99).01–2.52–0.02 (0.01)Light sleep duration

Development and Validation of the Nomogram-Based
Prediction Model

Construction of the Nomogram Prediction Model
A nomogram was developed based on the results of
multivariable logistic regression analysis. As illustrated in Figure

2, each predictor variable is assigned a corresponding point
value by projecting vertically onto the scoring axis. The sum
of these values yields a total score, which is then mapped onto
the total score axis. The final projected value on the risk axis
indicates the estimated probability of preoperative sleep
disorders in older adult surgical patients.
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Figure 2. Nomogram for predicting the risk of sleep disorders in older adults undergoing elective surgery. HADS: Hospital Anxiety and Depression
Scale; REM: rapid eye movement.

Evaluation of the Predictive Performance of the
Nomogram Model
The predictive performance of the nomogram model was
evaluated using discrimination, calibration, and DCAs, as
mentioned subsequently.

First, internal validation of the nomogram model was conducted
using 1000 bootstrap resamples, resulting in an area under the
ROC curve of 0.92 (95% CI 0.88-0.96), indicating excellent
discriminative ability of the model (Figure 3).

Second, calibration curves were used to evaluate the agreement
between predicted and observed probabilities of sleep disorder

onset. The model’s predicted probabilities exhibited minimal
deviation from the observed outcomes, indicating good
calibration and strong predictive performance (Figure 4).

Third, DCA was performed to evaluate the clinical utility of
the model by quantifying the net benefit across a range of risk
thresholds, in comparison to the default strategies of treating
all patients (gray line: “all”) or treating none (black line:
“none”). The DCA curve lay above both the “none” and “all”
lines across most threshold probabilities, indicating superior
predictive performance. The model achieved the greatest net
benefit within a threshold probability range of 0.2 to 0.8 (Figure
5).

Figure 3. Receiver operating characteristic curves for the prediction model of preoperative sleep disorders in older adults. AUC: area under the curve.
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Figure 4. Calibration curve for the risk prediction model of preoperative sleep disorders in older adults.

Figure 5. Decision curve analysis of the prediction model for preoperative sleep disorder risk in older adults.

Discussion

Significance of the Prospective Study Design
The prospective design of this study establishes a
methodologically robust framework for investigating sleep

disorders in the preoperative setting. By systematically assessing
key predictors—encompassing psychological state (via HADS
scores) and objective sleep architecture parameters (such as the
frequency of nocturnal awakenings and the durations of REM
and light sleep)—before surgical intervention, this methodology
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delineates a clear temporal sequence, thereby strengthening
causal inference. This design effectively mitigates recall bias
and substantiates the role of these factors as antecedent risk
determinants rather than mere correlates of postoperative sleep
disturbance. Therefore, this design was crucial to accurately
quantify the independent contribution of each predictor and
reliably construct the subsequent multivariate predictive model.

Analysis of Factors Affecting Preoperative Sleep
Disorders in Older Adults
Anxiety and depression are common in older adult surgical
patients, often linked to factors such as previous medical history,
changes in the sleep environment, levels of family support, and
personal coping styles [33,34]. A strong link exists between
these mood states and sleep; 70% to 90% of the patients with
anxiety or depression report sleep disturbances [35], a
prevalence that is particularly high in older populations [36].
Our results indicate that each 1-unit increase in HADS score
was associated with a 3.21-fold higher risk of preoperative sleep
disorders in older adults, consistent with previous findings
[37,38]. Anxiety and depressive mood have been shown to
dysregulate neurotransmitter systems, including serotonin and
norepinephrine, in older adults, thereby disrupting sleep-wake
regulation and promoting sleep disorders [39]. Critically,
anxiety, depression, and poor sleep engage in a bidirectional,
vicious cycle, wherein each worsens the others [40]. A state of
hyperarousal, driven by dysregulation of neurotransmitters such
as GABA and acetylcholine, is a shared pathological feature of
both anxiety and sleep disorders [41]. Older adult surgical
patients with anxiety and depression exhibit elevated levels of
adrenocorticotropic hormone–releasing hormone, which
promotes amyloid-β aggregation and accumulation in the brain,
thereby exacerbating both mood and sleep disturbances as part
of a deleterious feedback loop [42]. Conversely, poor sleep itself
chronically activates the hypothalamic-pituitary-adrenal axis.
This leads to glucocorticoid resistance, increased sympathetic
nervous system activity, and higher circulating catecholamine
levels, all of which exacerbate anxiety and depression [43].

The number of awakenings is a critical indicator for evaluating
sleep quality [30]. In older adults, frequent awakenings not only
disrupt sleep architecture but also contribute to daytime fatigue,
cognitive decline, and mood fluctuations [19]. Our findings
revealed that each additional awakening was associated with a
3.33-fold increase in the risk of preoperative sleep disorders
among older adults, consistent with previous research [44].
Awakenings in the surgical context differ from those in chronic
illness. Perioperative awakenings are often more abrupt and
intense, driven by acute physiological stress and the direct
effects of anesthetic and analgesic drugs [4,5]. These
medications disrupt normal sleep architecture. Anesthetics, for
instance, act on key neurotransmitter systems (eg, GABA,
norepinephrine, and dopamine), which can dysregulate
sleep-wake circuits and heighten neural sensitivity to stimuli,
predisposing patients to more frequent awakenings [6,7]. This
vulnerability continues after surgery, when pain, discomfort,
and the hospital environment itself become primary drivers of
sleep fragmentation [45,46]. Specifically, routine hospital
disturbances such as nighttime noise and light can significantly
impair sleep. Nocturnal light exposure is particularly disruptive,

as it stimulates specialized retinal cells that signal the brain to
promote arousal, thereby worsening sleep disturbances [47].

REM sleep is a critical phase, typically making up 20% to 25%
of total sleep [48]. It is essential for key functions, such as
memory consolidation, emotional processing, and neural
recovery, helping to maintain neurotransmitter balance [49].
Our results demonstrated that each 1-unit increase in REM sleep
duration corresponded to a 4% reduction in the risk of
preoperative sleep disorders among older adults. Alterations in
sleep architecture frequently occur with advancing age,
characterized by reductions in slow-wave and REM sleep
alongside increased nocturnal awakenings [3]. Older adults are
predisposed to heightened anxiety and depression during
hospitalization, attributable to altered sleep environments, the
absence of familial support, and surgery-related psychological
stress [50]. These emotional disturbances and sleep disorders
interact bidirectionally, forming a vicious cycle in which anxiety
and depression diminish sleep quality, which in turn exacerbates
these psychological symptoms [51]. REM sleep mitigates
anxiety and depression by promoting cerebral processing of
emotional experiences, thereby indirectly enhancing sleep
quality in older adults [52].

Light sleep typically encompasses non-REM stage 1 (N1) and
non-REM stage 2 (N2) of non-REM sleep. Stage N1 represents
the transitional phase from wakefulness to sleep, comprising
approximately 5% to 10% of total sleep duration. In contrast,
stage N2 constitutes 45% to 55% of total sleep time and
represents the largest proportion of the sleep cycle [53]. Our
findings indicate that each unit increase in light sleep duration
corresponds to a 2% reduction in the risk of preoperative sleep
disorders in older adults. During light sleep, synchronized
neuronal activity facilitates the reorganization of neural networks
and information processing, thereby sustaining stable brainwave
patterns and enhancing cerebral sensitivity and adaptability
[54]. These stages contribute distinct functions. N1 sleep,
involving neurotransmitters such as dopamine, aids in processing
emotional memories and can ease the transition to sleep. N2
sleep is characterized by specific brainwave patterns
(sharp-wave ripples) and hippocampal reactivation, which
consolidate memory by strengthening relevant neural pathways
and pruning weaker ones. N2 also supports overall sleep
stability, thermoregulation, and energy restoration [55].
Therefore, light sleep is not merely a structural component of
sleep but a physiologically active period critical for cognitive
function and emotional regulation.

Value of a Risk Prediction Model for Preoperative
Sleep Disorders in Older Adults
Clinical prediction modeling uses multifactorial models to
estimate the likelihood of disease onset or the occurrence of
future outcome events [56]. Wang et al [57] incorporated 9
predictors in developing a postoperative sleep disorder risk
prediction model for patients undergoing arthroplasty, including
preoperative sleep disorder status upon admission, wardroom
type, BMI, and smoking status. Similarly, Renmei et al [58]
incorporated 9 predictors, including anxiety, depression,
tracheotomy, and posttraumatic stress disorder, into a risk
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prediction model for sleep disorders in patients discharged from
the intensive care unit.

In contrast, our model is uniquely tailored to older adults in the
preoperative period, a population at heightened risk due to
age-related physiological changes, multimorbidity, and complex
interactions between mental health and sleep [44,52]. Our model
integrates 4 key predictors relevant to this group: HADS score,
number of nocturnal awakenings, REM sleep duration, and light
sleep duration. This selection aligns with the emphasis on
psychological and sleep-architectural factors seen in previous
research [24,58].

Multivariable logistic regression confirmed these as independent
predictors: HADS score (OR 3.21, 95% CI 1.54-6.69), number
of awakenings (OR 3.33, 95% CI 1.82-6.12), REM sleep
duration (OR 0.96, 95% CI 0.93-0.99), and light sleep duration
(OR 0.98, 95% CI 0.96-0.99). By incorporating objective sleep
metrics, the model specifically addresses the distinct
vulnerabilities of older surgical patients [59]. Calibration was
strong, with close agreement between predicted probabilities
and observed outcomes. DCA confirmed substantial clinical
utility, showing the model provides a net benefit across a wide
range of risk thresholds [32]. In summary, this model provides
a novel, evidence-based tool for the early identification of older
surgical patients at high risk of sleep disorders. It validates the
critical role of sleep architecture and psychological state in
preoperative risk. By enabling targeted interventions before
surgery, it offers a proactive strategy to improve patient
outcomes and potentially mitigate postoperative complications.

In clinical practice, caregivers should actively monitor the sleep
health of older adults by implementing psychological
interventions, such as cognitive behavioral therapy and positive
thinking training; promoting family involvement; and optimizing
the sleep environment and pharmacological treatments, including
short-acting sedatives and anxiolytics, to enhance sleep quality
and overall health [60].

For patients with severe sleep disorders, short-acting hypnotics
or nonbenzodiazepine agents may be cautiously administered
under clinical supervision to minimize the risk of dependence

and adverse effects. On the basis of this predictive model,
caregivers can devise individualized nursing interventions aimed
at alleviating sleep-onset difficulties and fragmentation in older
adults undergoing surgery, thereby mitigating the incidence of
sleep disorders.

Limitations
First, although the prospective cohort design of this study
enhances the robustness of temporal inferences, the potential
for residual or unmeasured confounding cannot be excluded.
Second, the study cohort was recruited from a single tertiary
hospital, which constrains the sample size and may limit the
generalizability of the results to broader populations. Third, this
study’s focus was confined to the immediate preoperative period,
without extending follow-up into the postoperative phase.
Consequently, although the model identifies presurgical risk
factors, it cannot assess the temporal stability of these predictors
or their longitudinal association with critical postoperative
outcomes, including delirium and functional recovery.
Therefore, future research should prioritize external validation
across diverse clinical settings, investigation of additional
potential confounders, and longitudinal assessments to elucidate
how the preoperative sleep disorder risk identified by this model
influences tangible postoperative outcomes.

Conclusions
The preoperative sleep disorder risk prediction model developed
for older adults in this study achieved an AUC of 0.92 (95% CI
0.88-0.96), demonstrating excellent discriminatory performance.
The calibration curve indicated minimal deviation between the
predicted probabilities and the observed outcomes, reflecting
strong model calibration. DCA further demonstrated that the
model improved net clinical benefit across risk thresholds
ranging from 0.2 to 0.8, indicating high clinical utility. By
integrating the quantitative relationships among HADS score,
wakefulness duration, REM sleep duration, light sleep duration,
and sleep disorders, the model provides a scientific foundation
for the early identification and intervention of preoperative sleep
disorders in older adults.
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REM: rapid eye movement
ROC: receiver operating characteristic
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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