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Abstract
Background: Anemia is a widespread global health issue. Hemoglobin (Hb) concentration measurement remains the most
common method for anemia screening and diagnosis. In recent years, there has been growing interest in the development of
noninvasive point-of-care technologies that eliminate the need for blood sampling.
Objective: This pilot study explores the feasibility of using a noncontact photoplethysmography–based mobile app for Hb
monitoring.
Methods: Adult volunteers aged 18 years and older, of both sexes, were consecutively recruited. Participants were seated
and allowed a 2-minute rest before measurements. During testing, they faced a smartphone running comestai.app, which used
the front-facing camera to capture facial videos. Simultaneous readings were collected for Hb over approximately 90 seconds
using the app. Ambient lighting was standardized for all remote photoplethysmography recordings. No medical decisions were
made based on the app-generated data. A complete blood count, including Hb levels, was used as a reference for comparison
with the data collected using comestai.app.
Results: A total of 555 (female: n=313, 56.4%; male: n=242, 43.6%) individuals participated in the study. The app achieved
a mean absolute error of 1.46, a mean absolute percentage error of 11.26, a mean error of −0.67, and a root mean square error
of 1.88. The Bland-Altman plot evaluated the agreement between the app-based and laboratory-based Hb measurements, with
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the mean difference between the 2 methods being −0.70 g/dL. The method demonstrated an overall accuracy of 75%. The area
under the curve was 0.701 (95% CI 0.655-0.745).
Conclusions: Comestai.app offers an innovative approach to wellness monitoring by providing noninvasive Hb estimation
using the smartphone’s front-facing camera. Continued development, including algorithmic refinement and larger-scale
validation in diverse populations, will be key to enhancing accuracy and broadening its utility. By leveraging the ubiquity
of smartphones, comestai.app contributes meaningfully to the democratization of health monitoring and the promotion of
proactive self-care.
Trial Registration: ClinicalTrials.gov NCT06427564; https://clinicaltrials.gov/study/NCT06427564

JMIR Form Res 2026;10:e78820; doi: 10.2196/78820
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Introduction
Background
Anemia is a widespread global health issue and a major
public health concern, particularly in resource-limited settings
[1]. It affects individuals across all age groups and sexes,
leading to adverse health outcomes and reduced national
economic productivity [2]. According to the World Health
Organization (WHO), anemia is estimated to affect approxi-
mately half a billion women aged 15 to 49 years and 269
million children aged 6 to 59 months worldwide. In 2019, an
estimated 30% (539 million) of nonpregnant women and 37%
(32 million) of pregnant women within this age group were
affected by anemia [1,3].

Anemia can result from various underlying causes,
including nutritional deficiencies (such as iron, vitamin B12,
or folate), chronic blood loss, chronic or infectious diseases,
genetic disorders, bone marrow and hematologic conditions,
as well as exposure to toxins and certain medications [1].
Early and accurate detection of anemia is crucial for effective
patient management and improved health outcomes [4].

Hemoglobin (Hb) concentration measurement remains the
most common method for anemia screening and diagnosis
[2,4-6]. Conventional techniques typically involve invasive
procedures such as venipuncture or fingerstick blood tests,
requiring trained personnel, laboratory infrastructure, and
costly equipment [7-9]. These methods, while accurate,
pose logistical challenges in remote settings, contribute to
patient discomfort, introduce delays in reporting, and generate
biomedical waste [7-9].

To address these limitations, point-of-care (POC) devices
have been developed to facilitate rapid Hb estimation using
capillary blood from a simple finger prick [3,10,11]. While
such devices improve field usability, they still require
reagent stability, periodic calibration, and controlled storage
conditions [10,11].

In recent years, there has been a growing interest in the
development of noninvasive POC technologies that eliminate
the need for blood sampling [12-14]. These innovations
aim to address the limitations of traditional and minimally
invasive methods by enhancing usability, portability, and
affordability, particularly in low-resource settings. Devices
such as digital hemoglobinometers, pulse oximeters, and

spectroscopy-based technologies have shown considerable
promise in expanding access to anemia screening [15-17].

Among these, photoplethysmography (PPG)-based devices
represent a particularly attractive approach [18,19]. By
measuring variations in light absorption due to pulsatile
blood flow, PPG enables indirect estimation of Hb concentra-
tion without requiring blood collection or chemical reagents,
thereby increasing safety and convenience for both patients
and health care workers.

In this context, smartphone-based technologies are also
emerging as promising tools for noninvasive anemia detection
using PPG signals [20-23]. By using the built-in camera and
flash, several apps estimate Hb concentration through image
analysis of anatomical regions such as the fingernail beds,
palpebral conjunctiva, or lower eyelids. These systems often
use machine learning (ML) algorithms to identify colorimet-
ric or textural features correlated with Hb levels, offering a
rapid, cost-effective alternative to traditional blood tests [21,
24]. In addition, portable, smartphone-connected hemoglo-
binometers allow for more precise readings using small
capillary blood samples, enabling longitudinal monitoring
and integration with telehealth services [25]. While these
solutions offer clear advantages in terms of accessibility and
ease of use, further validation and regulatory approval are
necessary to ensure clinical reliability and safety.
This Study
This pilot study explores the feasibility of using a noncon-
tact, PPG-based mobile app, previously considered for the
detection of vital signs [26,27], for Hb monitoring. The
rise of noninvasive tools embodies the evolution of mobile
health technologies aimed at promoting individual autonomy
in health management through accessible, cost-effective, and
scalable solutions, particularly suited for large-scale screening
and use in resource-limited settings.

Methods
Study Design
This observational study evaluated the accuracy of a
noncontact smartphone app, comestai.app (Come Stai S.p.A.),
in measuring Hb, using a standard blood reference. All app
data were collected by trained personnel, and smartphone
connectivity was disabled during sessions to ensure offline
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data acquisition. Data were securely stored using anonymized
identification numbers. The study’s complete protocol has
been registered on ClinicalTrials.gov (NCT06427564).
Recruitment
Adult volunteers (aged ≥18 years, both sexes) were enrolled
from outpatient clinics at Azienda Socio-Sanitaria Territor-
iale-Fatebenefratelli Sacco-Buzzi Hospital (Milan, Italy),
Istituto di Ricovero e Cura a Carattere Scientifico MultiMed-
ica (Milan, Italy), and Istituto di Ricovero e Cura a Carat-
tere Scientifico Istituto Auxologico Italiano (Milan, Italy)
between September 2024 and April 2025. Participants were
referred for management of obesity, diabetes, or hypertension.
All patients attending the clinics during the study period

were consecutively approached and invited to participate.
Following verbal agreement, written informed consent was
obtained in accordance with ethical standards. After consent
was provided, demographic and biometric data, including
sex, age, weight, height, and BMI (kg/m²), were collected
through direct patient interview and verified against medical
records. Subsequently, clinical measurements were performed
in accordance with the study protocol.
Eligibility Criteria
To participate in the study, participants had to meet the
inclusion criteria and not present any of the exclusion criteria
listed in Textbox 1.

Textbox 1. Inclusion and exclusion criteria.
Inclusion criteria

• Ability to understand study information and provide written informed consent
• Participants aged between 18 and 65 years
• Capability and willingness to comply with all study-related procedures

Exclusion criteria
• Circulatory problems, injuries, or anatomical anomalies involving the fingers, hands, ears, forehead, skull, or any

other body area essential to the study assessments
• Tattoos located in areas relevant to optical measurements that interfere with data collection
• Known hypersensitivity or allergic reactions to common medical-grade materials such as adhesives or latex used in

sensor-based apps
• Any health condition that, based on the investigator’s clinical judgment, could interfere with the performance or

validity of study evaluations
• General unsuitability for participation as determined by the investigator

Measurement Procedure
Participants were seated and allowed a 2-minute rest before
measurements. During testing, they faced a smartphone
running comestai.app, which used the front-facing camera to
capture facial videos. Simultaneous readings were collected
for Hb over approximately 90 seconds using the app [26,27].

Ambient lighting was standardized for all remote
photoplethysmography (rPPG) recordings. No medical
decisions were made based on app-generated data.

A complete blood count, including Hb levels, was used
as a reference for comparison with the data collected using
comestai.app.
App Description
Comestai.app uses a proprietary signal processing pipeline
for rPPG via the smartphone’s front camera. The system
captures facial video frames, focusing on the upper cheek,
and processes red, green, and blue signals to extract sub-
tle variations in skin coloration due to blood flow. As
previously reported, the signal processing pipeline involves
several sequential steps. First, raw signals are acquired using
the app’s software development kit. These signals are then
analyzed through rPPG techniques, which detect subtle color
fluctuations in the skin caused by pulsatile blood flow and
convert them into raw pulse waveforms. The resulting signal
undergoes processing to reduce noise and motion artifacts,
using filtering, normalization, and quality control methods.

Subsequently, advanced ML, deep learning, and computer
vision techniques are applied to extract relevant features from
the cleaned signal. Finally, the system validates the output
in real time, ensuring that only measurements with high
confidence levels are reported. The app functions offline and
does not transmit user data. Version 5.6.3 was used on iOS
devices during this study [27].
Statistical Analysis
Descriptive statistics for numerical variables (mean, SD,
median, quartiles, and minimum-maximum) and frequen-
cies for categorical variables were reported. Accuracy
was assessed by comparing app readings with those from
reference devices using mean error, mean absolute error
(MAE), root mean square error, and mean absolute percent-
age error (MAPE).

Diagnostic performance was evaluated through sensitiv-
ity, specificity, positive predictive value, negative predictive
value, accuracy, and likelihood ratios, each with 95% CIs.

Thresholds for normal physiological parameters were
adopted from WHO references: Hb <12 g/dl for women and
Hb <13 g/dl for men [1]. In our study, the reference to
WHO diagnostic thresholds was used solely as a benchmark
to contextualize the results within widely recognized clinical
standards, not to suggest diagnostic use, and the app should
be regarded as a proof-of-concept wellness app.
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Correlations between app and reference data were
calculated using Pearson r, with results visualized via
regression plots including R² values. Agreement was further
assessed with Bland-Altman analysis. All analyses were
performed using Microsoft Excel (with Solver and Data
Analysis ToolPak) and partially verified in R software
(version 4.3.3; R Foundation for Statistical Computing) for
cross-validation.
Ethical Considerations
To enhance the methodological quality, the protocol has been
developed in accordance with the SPIRIT (Standard Protocol
Items: Recommendations for Interventional Trials) guidelines
for clinical trial protocols (Checklist 1).

Results
A total of 555 participants (female: n=313, 56.4%; male:
n=242, 43.6%) were enrolled. The sample was well balanced

in terms of sex. Participants were distributed across 3 age
groups: 8.3% (n=46) were aged between 18 and 35 years,
26.9% (n=149) were aged between 36 and 55 years, and
64.8% (n=360) were older than 55 years. The mean BMI was
30.69 (SD 7.34) kg/m², indicating that the study population
predominantly comprised participants with overweight or
obesity, as expected for the enrolled population. On the basis
of blood Hb values, a prevalence of 10.27% (n=57) anemia
was observed.

Table 1 summarizes the descriptive data and performance
metrics of Hb values recorded using the mobile app compared
to those obtained via standard laboratory methods. The app
achieved an MAE of 1.46, MAPE of 11.26, a mean error of
−0.67, and root mean square error of 1.88.

Table 1. Descriptive statistics and agreement metrics for hemoglobin values recorded via the mobile app and laboratory reference device.

Parameters Mean (SD) Median (IQR)
Mean
absolute error

Root mean
square error Mean error

Mean absolute
percentage
error

Pearson
correlati
on
coefficie
nt

App 13.37 (1.10) 13.30 (12.70-14.10) 1.46 1.88 −0.67 11.26 0.12
Laboratory 14.04 (1.51) 14.00 (13.10-15.00) 1.46 1.88 −0.67 11.26 0.12

In Table 2, the diagnostic accuracy of Hb detection using
the app was assessed against conventional measurements.
Sensitivity, specificity, positive predictive value, negative
predictive value, positive likelihood ratio, negative likelihood

ratio, and accuracy were calculated. The method showed
good specificity (88.9%), but low sensitivity (6.4%), with an
accuracy of 75%. As represented in Figure 1, the area under
the curve was 0.701 (95% CI 0.655-0.745).

Table 2. Accuracy of vital parameters using the mobile app and the conventional method.
Hemoglobina

Specificity 0.889
Sensitivity 0.064
Positive predictive value 0.105
Negative predictive value 0.823
Accuracy 0.750
Positive likelihood ratio 0.577
Negative likelihood ratio 1.053

aNormal hemoglobin values are ≥12 g/dl for women and ≥13 g/dl for men.
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Figure 1. Receiver operating characteristic curve. The area under the curve was 0.701 (95% CI 0.655-0.745).

The Bland-Altman plot in Figure 2 evaluated the agreement
between the app-based and laboratory-based Hb measure-
ments. Most data points fell within the 95% CI, with the
mean difference between the 2 methods being −0.70 g/dL.

The clustering of points around the mean and a narrowing
spread at higher Hb levels suggest a generally good agree-
ment despite some systematic underestimation by the app.

Figure 2. Bland-Altman plot for hemoglobin measurements comparing the mobile app with the standard method. The plot includes a central
horizontal line indicating the average difference between the 2 measurement methods. Two additional horizontal lines are drawn to show the limits
of agreement, defined as the mean difference (SD 1.96) times the SD of the differences. This range encompasses 95% of the differences between the
methods, providing a visual representation of their agreement.

Discussion
Principal Findings
Comestai.app offers an innovative approach to wellness
monitoring by providing noninvasive Hb estimation using the
smartphone’s front-facing camera. This study assessed the
accuracy and diagnostic reliability of the app compared to

standard laboratory methods. While the app slightly under-
estimated Hb values on average, overall agreement was
observed, with most data falling within acceptable limits for
nonmedical apps. These findings suggest that the app may
serve as a useful tool for preliminary screening and self-
monitoring, especially in wellness contexts where invasive
methods are impractical or unavailable.
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As indicated by the WHO [1], anemia is one of the most
widespread health conditions globally, negatively affecting
energy levels, productivity, and quality of life. Therefore,
Hb monitoring is a fundamental tool in health promotion,
especially in settings where access to conventional diagnostic
tools is limited [28].

Conventional Hb measurement using venous blood is
considered highly accurate and serves as the clinical gold
standard. However, it involves discomfort due to needle
pricks, requires trained personnel and expensive equipment,
and causes delays in result reporting [5,7,8]. In contrast,
noninvasive or minimally invasive POC devices offer quicker
results, greater patient comfort, and ease of use, particularly
in resource-limited settings. These devices enhance portabil-
ity and patient satisfaction but may be less accurate and
require regular calibration, while also being sensitive to
environmental conditions such as light and temperature [10,
11].

In this context, mobile health technologies have emerged
as strategic tools for wellness-oriented self-assessment [29-
31], including the monitoring of Hb levels [21,32]. Although
not classified as medical devices, these solutions can facilitate
individual health tracking and support the early identification
of deviations from physiological norms, thereby contributing
to improved self-management and preventive health care
practices.

Mobile devices and digital apps, such as comestai.app,
now allow users to track their blood levels directly from
home, without the need for additional equipment or clinical
infrastructure, thereby reducing the need for frequent medical
visits [33-35]. This approach improves accessibility in remote
or underserved areas, reduces costs compared to traditional
laboratory testing, and fosters patient autonomy in managing
anemia or chronic health conditions more proactively. It is
particularly relevant for older individuals [36,37] who are
more susceptible to anemia and often face mobility chal-
lenges, thus highlighting the importance of regular, noninva-
sive Hb monitoring.

Compared to other noncontact or smartphone-based
technologies, comestai.app shows performance that is within
the expected range. For example, HemaApp, a smartphone-
based Hb monitoring tool proposed by Wang et al [38],
achieved an accuracy of ±1.26 g/dL with a correlation
coefficient of 0.82 when compared to standard blood tests.
HemaApp required additional light sources for optimal
performance, whereas comestai.app works using only ambient
light and a smartphone camera, thus improving ease of use
and accessibility, though possibly at the cost of slightly lower
sensitivity.

A study published by Mannino et al [21] demonstrated a
fingernail image–based system with 95% limits of agreement
of ±2.4 g/dL and minimal bias, showing high sensitivity (up
to 97%) in detecting anemia at a standard clinical thresh-
old. In comparison, comestai.app showed excellent specificity
but lower sensitivity, resulting in an overall good level of
accuracy. This discrepancy is likely due to differences in
the study population and the relatively small proportion of

participants with low Hb levels in our sample. Such imbal-
ance may have limited the model’s exposure to pathological
cases, reducing its diagnostic power for anemia detection.

Other promising rPPG-based models, such as one
validated in a clinical setting in Singapore, reported a MAPE
of 8.52% and a mean difference of 0.23 g/dL between
predicted and laboratory Hb values. In our case, the MAPE
was slightly higher, possibly reflecting differences in signal
processing techniques, but still within the range reported for
wellness-oriented apps [39,40]. The Bland-Altman analysis
from our study revealed a narrow spread and clustering
around the mean at higher Hb levels, suggesting greater
measurement stability in individuals with normal or elevated
values.

In our study, the Pearson correlation coefficient between
Hb values estimated by the app and those obtained through
standard clinical methods was low. However, a strong
linear correlation is not necessarily required for the intended
purpose of the app, which is not to reproduce exact laboratory
values but rather to identify individuals at potential risk of
anemia using threshold-based approaches. Even with limited
absolute agreement, the app may still discriminate between
individuals above or below clinically relevant cutoffs (eg, the
WHO anemia threshold), highlighting potential utility despite
weak linear correlation. Moreover, as previously reported
for other vital parameters [41], improvements in the P
value can be achieved by refining signal processing techni-
ques and incorporating multiple facial regions of interest.
These approaches could similarly contribute to improving the
accuracy of Hb measurements. In addition, we acknowledge
the presence of a systematic bias of −0.70 g/dL, which may
be clinically significant and needs to be addressed in terms
of both its implications and the possibility of algorithmic
calibration in future versions. Therefore, future developments
will prioritize optimizing the signal processing pipeline and
enhancing robustness against confounding factors such as
lighting variability and participant motion, with the aim of
improving the accuracy and reliability of noninvasive Hb
estimation.

One key advantage of comestai.app is its entirely
contactless approach, making it suitable for frequent home
use without additional equipment. This is especially valuable
in wellness contexts and for populations with limited access
to health care. In particular, it may offer a valuable alter-
native for specific populations, such as older individuals,
who may require more frequent monitoring due to their
increased susceptibility to anemia and reduced physiologi-
cal reserves [42-44], as well as other at-risk groups includ-
ing pregnant women [45-48], patients with chronic diseases
(such as chronic kidney or inflammatory conditions) [49-54],
and individuals with malabsorptive gastrointestinal disor-
ders [55-57]. Looking ahead, such user-friendly, noninva-
sive technologies could contribute meaningfully to broader
public health strategies by enabling early identification of
at-risk individuals, promoting health awareness, and reducing
reliance on clinical resources for routine screening. Future
algorithm updates could substantially improve sensitivity and
correlation, as previously demonstrated in research on digital
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monitoring of vital parameters [41]. With further improve-
ments and appropriate adaptations, the tool may also become
suitable for use in children, who often face logistical and
emotional challenges with traditional blood sampling [58-60].

It is important to note that, unlike clinical-grade tools,
comestai.app is not intended for diagnostic use. Its clas-
sification as a wellness device aligns with international
standards that tolerate higher error margins for nonmedical
apps, and the reported low sensitivity should be interpre-
ted in light of the preliminary nature of this pilot study,
the small sample size, and the limited number of patients
with anemia. Nevertheless, given that anemia often presents
without symptoms until reaching moderate to severe stages,
tools capable of early detection, even with limited precision,
can still offer significant public health value by promoting
timely medical consultation.

In particular, as described by Saleh et al [61], the
performance of these tools can be significantly enhanced
by developing ML algorithms trained on clinical datasets
and PPG signals. This strategy enables the differentia-
tion between normal and anemic conditions via multistep
processing pipelines involving data labeling, signal prepro-
cessing, feature extraction, and model training. The refer-
enced study showed that by combining red and infrared PPG
data with a rich set of extracted features, anemia could be
classified with up to 100% accuracy using a 5-fold cross-val-
idation approach. Additionally, Mannino et al [32] showed
that personalization of the app’s artificial intelligence–aug-
mented algorithm enhances self-monitoring of Hb levels,
leading to an improvement in the app’s MAE. These results
highlight the potential of ML-augmented, PPG-based systems
to serve as scalable, effective, and fully noninvasive solutions
for anemia screening.

This study presents several limitations that should be
acknowledged when interpreting the findings. First, although
the sample included participants with different Hb levels,
the prevalence of clinically significant anemia was rela-
tively low (57/555, 10.27%), which likely reduced the
statistical power and contributed to the limited sensitivity
in detecting low Hb values. No formal power calculation
was performed, further constraining the robustness of the
diagnostic accuracy assessment. Moreover, recruitment from
specialized outpatient clinics focusing on obesity, diabetes,

and hypertension introduces selection bias, limiting the
generalizability of the results to broader populations. Future
studies should include a more balanced sample, particu-
larly with a higher representation of individuals living
with anemia. Second, the measurements were conducted in
controlled settings, which may not fully capture the variabil-
ity and challenges of real-world conditions. Factors such as
ambient lighting, facial positioning, skin tone variation, and
user movement can introduce noise and affect the reliabil-
ity of Hb estimation in everyday use. Finally, no subgroup
analyses were performed to evaluate performance across
different health conditions; such stratified analyses would
be necessary to assess the generalizability of the findings
and to identify potential performance disparities in clinically
relevant subpopulations.

Further research, including longitudinal studies, field-
based validation trials, and large-scale deployment of
ML-augmented PPG systems, is needed to enhance algorithm
robustness, improve clinical utility, and confirm effective-
ness across diverse populations and real-world settings. Such
efforts will be essential to ensure generalizability, address
potential sources of bias, and support the integration of
these technologies into routine screening and preventive care
frameworks.

Conclusions
This study explores the feasibility of a noncontact PPG-
based mobile app for noninvasive Hb monitoring, demon-
strating how comestai.app represents an innovative approach
to wellness monitoring through Hb estimation using the
smartphone’s front-facing camera. While not yet suitable for
clinical diagnosis due to limited sensitivity, its high specific-
ity and ease of use support its role as a valuable tool for
self-monitoring. It could also be useful in large-scale initial
screening programs to identify individuals who may benefit
from further clinical evaluation. Continued development,
including algorithmic refinement and larger-scale validation
in diverse populations, will be key to enhancing accuracy
and broadening its utility. By leveraging the ubiquity of
smartphones, comestai.app contributes meaningfully to the
democratization of health monitoring and the promotion of
proactive self-care.
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