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Abstract

This study demonstrates that GPT-40 outperformstraditional natural |anguage processing methodsin accurately analyzing patient
sentiment toward atopic dermatitis treatments on Reddit, enabling more nuanced and reliable extraction of real-world patient

perspectives from large-scale social media data.
(IMIR Form Res 2026;10:€78054) doi: 10.2196/78054
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Introduction

Atopic dermatitis (AD) treatment has broadened since 2017,
with several new, targeted, highly efficacious systemic therapies.
Patients' personal experiences with these novel therapies are
largely unknown and unreported. Reddit is a rich source of
patient perspectives on dermatology [1]. Previous studies have
used traditional natural language processing (NLP) methodsto
extract meaningful information from unstructured social media
data [2], but more relevant findings could potentially be
extracted by applying large language models (LLMs) to such
language data, including large-scale Reddit datasets, because
tailored prompts can extract more specific and nuanced insights.

Methods

Overview

We used the Pushshift Reddit dataset to access all Reddit
comments (N=8,543,388) posted prior to January 1, 2024, on
various dermatol ogy-related subreddits (M ultimedia A ppendix
1, Table S1). We analyzed all comments containing the generic
or brand name of four AD therapies as of January 1, 2024:
dupilumab, upadacitinib, abrocitinib, and tralokinumab. This
resulted in 27,272 comments. Our novel approach applied
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OpenAl’s devel oper application programming interface (API)
to access GPT-40 [3], OpenAl's cutting-edge LLM, for
sentiment analysis to determine whether comments indicated
positive, neutral, or negative impressions of the medications.
The GPT-40 APl was configured with a temperature setting of
0.0 to ensure consistent and deterministic responses across all
analyses, eliminating variability in sentiment classification. The
complete prompt used for the GPT-40 sentiment analysis is
provided in Multimedia Appendix 2.

Model Comparison

We compared 3 automated tools against manual sentiment
analysisto identify the most accurate tool. Two dermatol ogists
(Jy and Hadley Johnson, MD) independently reviewed 100
randomly selected comments (25 commentsfor each medication)
and reached concordance for 84 of 100 sentiments (k=0.75,
concordance=0.84). The dermatol ogists classified the comments
aspositive, neutral, or negative based on their overall expressed
sentiment toward the medication without predefined annotation
guidelines. Disagreements typically occurred for comments
containing ambiguous treatment responses, mixed sentiments
about medication efficacy, or informational discussions rather
than clear personal sentiment expressions. The 84 comments
were used as our reference standard for testing GPT-40 and two
traditional NLP sentiment analysis methods: Vaence Aware
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Dictionary and Sentiment Reasoner (VADER) [4], a
lexicon-based tool specifically attuned to social mediatext, and
distilbert-base-uncased-finetuned-sst-2-english (DistilBERT),
amodel pre-finetuned on the Stanford Sentiment Treebank for
Sentiment Analysis [5]. The DistilBERT model was accessed
through the Hugging Face Transformers library using its
high-level pipeline interface. VADER and DistilBERT were
used with default parameters. These models were selected as
commonly used general-purpose sentiment analysis tools.

LLM Application

We applied GPT-40 to evaluate the sentiment of the posts as
positive, neutral, or negative. This resulted in 28,889 total
analyses, as some comments listed more than one medication.
Cls were calculated for the proportion of positive comments
and the proportion of negative comments using a binomial
proportion CI.

Based onthe high k statistic (k=0.73) of the LLM for predicting
sentiment, we used GPT-40 to analyze sentiment in the full set
of 27,272 comments mentioning the medications (Multimedia
Appendix 3, Figure S1).

Ethical Considerations

This study analyzed publicly available, deidentified Reddit
comments and does not constitute human subjects research as
it involved secondary analysis of existing public datathat cannot
be linked to identifiable individuals.
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Results

GPT-40 demonstrated superior performance across standard
classification metrics (Table 1), with precision of 0.87, recall
of 0.82, F;-score of 0.82 (support-weighted across classes), and
accuracy of 0.82, compared to VADER (precision: 0.42; recall:
0.38; F;-score: 0.37; accuracy: 0.38) and DistilBERT (precision:
0.58; recall: 0.56; F;-score: 0.56; accuracy: 0.56). The
medi cations with the highest proportion of commentsin thefull
dataset tagged as positive by GPT-4o0 (Figure 1) were
upadacitinib (673/2107, 31.9%) and dupilumab (7724/25,926,
29.8%). Abrocitinib had a smaller percentage of negative
sentiments than other medications (Figure 1). Dupilumab and
upadacitinib had ahigh percentage of positive sentiment, which
may suggest that many individual s are satisfied with the efficacy
and safety of these medications.

Examples from the dataset illustrate the range of patient
experiences. Positive comments expressed enthusiasm about
treatment options, such as one patient’s response to abrocitinib
approval: “Just saw it was just approved! Calling my dermo on
Monday!” Negative sentiment reflected disappointment with
treatment outcomes, as seen in one dupilumab user’s comment:
“1 thought Dupixent would providerelief too, but I’ m still itchy
and inflamed.” Neutra comments predominantly involved
informational exchanges, such as questions about accessing
treatment and questions about clinical trial participation.

Table 1. Intheinitial subset of 84 manually evaluated comments, the large language model—based approach showed aremarkably stronger correlation
with human judgment (k=0.73) than distilbert-base-uncased-finetuned-sst-2-english (Distil BERT; k=0.33) or Vaence Aware Dictionary and Sentiment

Reasoner (VADER,; k=0.06).

Model agreement with dermatologist judgment GPT-40 VADER DistilBERT
Positive comments (n=26), n (%) 24 (92) 16 (62) 15 (58)
Neutral comments (n=41), n (%) 28 (68) 13(32) 21 (51)
Negative comments (n=17), n (%) 17 (100) 3(18) 11 (65)
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Figure 1. Bar chart showing the proportion of positive, neutral, and negative comments for each therapy, as identified by GPT-40. Clswere calculated

for the positive and negative bars using binomial proportion Cls.

Open Al Sentiment Analysis: Proportions of Positive, Neutral, and Negative Comments with 95% Confidence Intervals
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Discussion

GPT-40 showed substantially better agreement with clinician
judgment than traditional NL P methods when classifying patient
sentiment in Reddit comments about AD treatments. The
superior performance across all metrics establishesthefeasibility
of applying LLMs to extract patient perspectives from
unstructured social mediadata. However, it isimportant to note
that we excluded comments when the annotators disagreed to
ensure a clear reference standard. This approach potentially
biased the validation set toward straightforward sentiment
examples and likely inflated the reported performance metrics,
as the models were not tested on ambiguous, mixed-emotion,
or context-dependent language, whichiscommoninreal patient
discussions. Simpletask-specific promptsapplied to LLMsmay
yield more detailed insights than traditional NLP methods.
LLMs offer advantages through basic zero-shot prompts that
can be adapted for specific tasks like drug-specific sentiment
analysis in medica discussions, whereas general-purpose
sentiment analysistools may struggle with medical terminology
and context without additional training or customization.
However, LLM-based approaches also have limitations,

Positive
B Neutral
I Negative

19.1%

29.8%|

abrocitinib (n=311) dupilumab (n=25926)

including computational costs and the need for careful prompt
design to ensure reliable results. The predominance of neutral
sentiment across all medications shows that many comments
serve informational or question-asking purposes rather than
expressing clear sentiment. Clinically, the observed higher
positive sentiment for upadacitinib and dupilumab in our dataset
may reflect patient satisfaction with these treatments, while the
lower negative sentiment observed with abrocitinib could
indicate fewer patient-reported concerns. Similar approaches
could illuminate real-world perspectives on treatments for
psoriasis and other chronic skin conditions where multiple
therapeutic options exist. While our findings provide initial
insghtsfor AD trestment discussions, they also suggest potential
broader applications for analyzing patient perspectives across
medical fields. Future studies should expand beyond simple
sentiment categorization to capture more nuanced patient
experiences, including mixed sentiments, specific concerns
about side effects, cost considerations, and conditional
satisfaction with treatment. Additionally, future research should
exploretemporal trendsin sentiment as medications gain market
share and correlate social media sentiment with real-world
evidence databases and patient registries.
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Multimedia Appendix 1

List of dermatology subreddits used in the study and the total number of comments in each subreddit prior to January 1, 2024.
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Multimedia Appendix 2

Prompt used by GPT-40 to generate resullts.
[DOCX File, 13 KB-Multimedia Appendix 2]

Multimedia Appendix 3

Flow chart displaying the system workflow for the study.
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