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Abstract

Background: Digital Health Tools (DHTs), including wearables and mobile apps, offer promising avenues for personalized
care and real-time monitoring, but user engagement and clinical utility—especially in pediatric populations—remain unclear.
Li-Fraumeni syndrome (LFS) is a genetic mutation in the TP53 tumor suppressor gene, predisposing individuals to cancer,
requiring lifelong surveillance and associated psychological stress.

Objective: We evaluated engagement with DHTs in a cancer genetics clinic for families affected by LFS and explored their
utility for patients and clinicians. Our goal was to identify insights that could inform future integration of DHTs in chronic disease
populations and contribute to research.

Methods: We conducted an observational study (January-December 2022) involving patients with LFS and family members
aged 5 years and older. Participants received an Empatica EmbracePlus smartwatch and a suite of self-report surveys assessing
psychosocial well-being at varying frequencies (ie, daily, weekly, etc). We used survival analysis to characterize engagement
over time across age, TP53 status, and previous cancer history. Generalized additive models were used to explore physiological
patterns relative to cancer surveillance events. Semistructured interviews provided qualitative insight into user experiences and
preferences.
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Results: We enrolled 9 children and 36 adults. Adults wore their smartwatches more often than children (mean 81%, SD 19%
vs mean 56%, SD 26%; t10.1=2.72; P=.02) and were engaged in the study for a longer duration (median retention 153, IQR

119-179; 95% CI 133-177 vs median 77, IQR 36-151; 95% CI 17-171 days; log-rank χ2
1=4.4; P=.04). Daily wear time was

similar between the 2 groups (mean 17.6, SD 3.1 hours vs mean 15.7, SD 2.9 hours; t13.2=1.70; P=.11). There were no differences
in survey engagement between adults and children, nor were there differences in engagement across TP53 status or previous
cancer history. Children reported greater psychosocial burden, with more depressive symptoms (PHQ-9 [Patient Health
Questionnaire-9] score mean 10.0, SD 5.2 vs mean 4.2, SD 4.4; t7.8=2.8; P=.03), worse sleep (PROMIS SRI [patient-reported
outcomes measurement information system sleep-related impairment] score mean 22.7, SD 5.9 vs mean 16.5, SD 5.5; t8.1=−2.58;
P=.03), and increased frequency of stress (mean 36.3%, SD 19.9% vs mean 14.3%, SD 19.2%; t8.3=−2.7; P=.03) than adults. A
suicide alert system was triggered in 5 participants (11%) and prompted timely clinical intervention. Generalized additive model
analysis showed individualized yet consistent physiological patterns of stress associated with cancer surveillance. Qualitative
feedback from participants identified perceived value in stress awareness, but highlighted challenges with device comfort,
functionality, and personalization.

Conclusions: DHTs are feasible and can capture clinically meaningful psychological and physiological data in high-risk pediatric
and family populations with LFS. They enable timely detection of distress and facilitate targeted interventions. Our findings can
inform best practices for patient-centered DHT integration into clinical care, with relevance to pediatric oncology and broader
digital health contexts.

(JMIR Form Res 2026;10:e74375) doi: 10.2196/74375
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Introduction

Digital Health Tools (DHTs)—wearable devices, smartphone
apps, and remote monitoring systems—are being integrated into
clinical care [1,2]. DHTs promise enhanced physiological
monitoring in settings outside traditional health care touchpoints
(eg, home and work) [3,4], improved treatment and study
engagement through digital notifications, and longitudinal
collection of patient-reported outcomes [5,6]. DHTs are often
paired with study apps for activity annotation and event flagging,
enabling feedback and longitudinal outcome measures [7,8].
One specific use case that offers promise is the use of DHTs to
monitor chronic disease progression [9-12]. Wearable sensors
can capture physiological states outside clinical settings,
encompassing not only disease biology but also the lived
experiences (eg, psychosocial consequences) and the iatrogenic
impacts of interventions, through serial patient-reported
outcomes via app-based measures.

In our study, we focus on the application of DHTs for
individuals and families affected by Li-Fraumeni Syndrome
(LFS; MIM 151623) at a major Canadian hospital network. LFS
is a genetic disorder caused by mutations in the TP53 tumor
suppressor gene, significantly increasing the risk of developing
cancer from an early age [13,14]. Individuals with LFS face a
lifetime cancer risk of approximately 40% by 20 years of age
and over 90% by 70 years of age, requiring ongoing cancer
surveillance using modalities such as magnetic resonance
imaging (MRI) [15]. Survivors of a primary cancer have an
83-fold risk of developing subsequent malignancies. Clinical
surveillance protocols [16] have significantly reduced mortality
and treatment-related morbidity. However, the continuous cancer
threat and intensive surveillance impose considerable
psychological and emotional burdens on affected individuals
and their families. Notably, ‘scanxiety’ is a period of emotional

distress around cancer surveillance [17]. This impacts entire
families—not only through the genetic nature of LFS but also
the threat of future cancer diagnoses in loved ones and the shared
experience of repeat surveillance.

DHTs show significant potential in providing clinicians with
deeper insights into the lived experiences of patients with LFS
and the iatrogenic impacts of cancer surveillance protocols.
However, the extent to which this potential can be realized
remains a blind spot in research. Recently, the World Health
Organization outlined a classification of digital health
interventions [18]—we propose addressing our study objectives
on 3 fronts in accordance with the taxonomy described in their
report: engagement with DHTs, benefits for health care
providers, and benefits for patients. These domains are described
below:

1. Engagement. Do patients want to use DHTs, and will they?
This section addresses engagement with DHTs among
families with LFS. We study the willingness of patients to
use DHTs and the factors influencing their engagement.

2. Clinician benefits. How can DHTs benefit clinicians? This
section explores the potential advantages DHTs offer to
health care providers.

3. Patient benefits. How can DHTs benefit patients and
families? This section explores the positive impacts of
DHTs identified by patients and their families.

Our study builds on existing work studying the integration of
DHTs into health care [8,10,19,20]. We study the role of DHTs
in a unique patient population (children and adults with cancer
predisposition), with an emphasis on benefits to multiple
stakeholders (ie, clinicians and patients), and we identify
unforeseen consequences from such interventions. We intend
for this work to inform how DHTs can be integrated into cancer
clinics and health care in general.
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Methods

Study Design
This observational study collected longitudinal data via repeat
survey measures and wearable technologies from individuals
and families affected by LFS. Participants aged 5 years and
older were recruited from the cancer genetics program clinics
at The Hospital for Sick Children (SickKids) and the Princess
Margaret Cancer Center, with Research Ethics Board (REB)
approval from both institutions (REB 1000072240). As outlined
in Textbox 1, families of at least one affected member with

LFS, including affected and unaffected relatives, were recruited
during routine follow-up visits. A clinical fellow (RR) conducted
biweekly check-in calls with families to support participation
and gather insights on their study experience, disease, and
familial burden. These calls provided rich qualitative data to
inform future digital health studies for high-risk families.
Recruitment for the study was done on a rolling basis from
January to June 2022, as families presented to the clinic for
their usual appointments. The target follow-up period was 6
months (180 days) for each participant, with a study end date
of December 2022.

Textbox 1. Inclusion and exclusion criteria for study recruitment.

Inclusion criteria

• Families in whom either a parent or a child is affected with Li-Fraumeni syndrome (confirmed pathogenic germline variant in TP53).

• A noncarrier family member from a family where either a parent or a sibling is a confirmed carrier of a pathogenic germline variant in TP53.

• Able to comfortably wear the Empatica EmbracePlus band on the wrist or ankle.

• Able to speak, write, and read English (not applicable for younger children where assent was sought).

• Able to provide informed consent or assent (in children).

• Adult participants must have a personal smartphone and be willing to use their phone for the study, including downloading study apps and syncing
devices (locked phones provided for participants aged 11 years or older without phones).

Exclusion criteria

• An active cancer diagnosis, undergoing active cancer therapy at enrollment, less than 6 months post systemic cancer therapy (except hormonal
therapy for breast cancer), or less than 3 months post cancer surgery if no other therapy is recommended.

• Women who are pregnant or planning to become pregnant within 6 months.

Study Measures and Preprocessing

Overview
Study participants were given an EmbracePlus smartwatch built
by Empatica Inc. Participants were also instructed to download
the MyCap study app developed by REDCap (Research
Electronic Data Capture; Vanderbilt University) on their phone
for repeat survey administration. The study was designed to
capture both passive (smartwatch) and active (survey)
information longitudinally. We intentionally chose devices and
platforms that are already approved for clinical use and can
therefore be scaled easily for future work.

Smartwatch
The EmbracePlus smartwatch uses the Empatica Health
Monitoring Platform and is certified with 510k clearance (US
Food and Drug Administration) and as a class IIa medical device
(European Union). It features several sensors:

1. Ventral electrodermal activity (EDA): detects subtle
changes in electrical conductance at the surface of the skin.

2. Optical photoplethysmogram: measures heart rate and heart
rate variability (HRV).

3. Digital skin temperature: reads peripheral skin temperature.
4. Accelerometer and gyroscope: collect raw acceleration and

angular velocity data.

These physiological parameters are sampled at 64 Hz and sent
via Bluetooth to a dedicated mobile app. This app automatically

syncs all data to the Empatica Cloud and is compatible with
iOS and Android smartphones. The smartwatch has previously
been validated in clinical and research settings to monitor patient
health via detection of physiological changes [21,22].

Study App
The MyCap study app administered daily, weekly, biweekly,
and monthly surveys. Responses were stored on a secure
REDCap instance at SickKids Hospital. Specific,
age-appropriate surveys were administered to different age
groups. For children aged 5-10 years, parents completed the
surveys on behalf of their children. The MyCap app facilitated
continuous engagement and data collection, allowing us to
gather comprehensive information on participants’ health and
well-being. For a full list of measures, descriptions, rationale
for selection, and the frequency of administration, please see
Tables S1-S3 in Multimedia Appendix 1. Each survey was
selected based on several factors: previous validation in the
specific age group administered, as well as previous utility in
similar study designs. They also contain a set of both subjective
and objective measures of stress and well-being.

Data Management and Deployment
Our dataset comprised 3 sources: the Epic electronic health
record, the Empatica Smartwatch, and the study app. Epic
provided baseline clinical information, including patient
demographics. The smartwatch collected various physiological
data streams stored on Amazon S3, with participants able to
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access their own data via Empatica. Participants did not have
access to their completed survey responses.

Upon study completion, data from these sources were transferred
to a secure SickKids server with high-performance computing
(HPC) capabilities. The HPC environment facilitated the
integration, merging, and preprocessing of records, enabling
analysis from all 3 data sources. This data management system
marked the first use of such a pipeline for DHTs at SickKids
hospital, establishing a framework for future clinical applications
of DHTs (Figure S1 in Multimedia Appendix 1).

Analysis

Statistical Analyses
We compared overall survey completion and smartwatch use
rates between subgroups (ie, adults vs children, TP53 wild-type
[wt] vs mutant [mut], and cancer history vs none) using 2-sample
t tests with Welch correction. Unlike a 2-tailed t test, the Welch
t test does not assume equal variances or balanced group sizes,
making it more robust to heteroscedasticity in real-world
engagement data. All P values are 2-tailed and were rounded
to 3 decimal places.

Engagement Survival Analysis
Participant engagement was assessed quantitatively via
adherence to daily surveys and smartwatch usage, and
qualitatively through biweekly check-ins and clinical visits
exploring barriers and benefits to participation.

Engagement metrics across digital health studies vary widely
[23], so we explicitly outline our metrics here. Overall, survey
engagement was quantified as the percentage of daily surveys
completed per participant over the follow-up period
(specifically, the Daily Stress Measure described in Table S1
in Multimedia Appendix 1). We also calculated rolling weekly
averages of survey completion rates to examine how engagement
fluctuates over time. Overall, smartwatch engagement was
defined as the proportion of days participants wore the
smartwatch for at least 6 hours, excluding improper wear
artifacts identified by the manufacturer’s algorithm. We also
computed rolling weekly averages to represent dynamic
engagement trends. This analysis does not differentiate between
awake and sleep wear, though we separately analyzed awake
versus sleep wear distribution by age group (Table 1).

Table 1. Participant characteristics and smartwatch wear metrics by age category.

Adult (≥18 years; n=36)Child (<18 years; n=9)Measure

26 (72)9 (100)LFSa (TP53 mutation), n (%)

10 (29)4 (44)Cancer history, n (%)

43.1 (22.8-68.1)15.1 (7.9-18)Age (years), mean (range)

65 (22)51 (24)bDaily survey completion rate (%), mean (SD)

Smartwatch wear (≥6 hours/day)

86 ( 50)58 (56)Smartwatch wear (days), mean (SD)

81 (19)56 (26)Days worn (%), mean (SD)

17.6 ( 3.1)15.7 ( 2.9)Total wear time (hours), mean (SD)

4.4 ( 2.1)3.7 ( 2.2)Sleep time (hours), mean (SD)

9.1 (4.4)6.8 ( 4.2)Awake time (hours), mean (SD)

Smartwatch wear (≥1 hour/day)

93 ( 50)65 ( 58)Smartwatch wear (days), mean (SD)

86 (16)62 (25)Days worn (%), mean (SD)

16.5 ( 3.5)14.0 ( 3.5)Total wear time (hours), mean (SD)

4.2 ( 2.0)3.3 ( 2.1)Sleep time (hours), mean (SD)

8.6 ( 4.3)6.1 ( 4.0)Awake time (hours), mean (SD)

aLFS: Li-Fraumeni syndrome.
bDaily survey completion rate calculated for children aged 11-17 years only (n=7).

To compare engagement patterns across subgroups (eg, age),
we used survival analysis. Measuring smartwatch engagement
is challenging due to intermittent usage patterns. Therefore, we
adopted the methodology described by Cho et al [20] to define
participation end points for survival analyses clearly (see
original paper for a detailed description). Briefly, each observed
day was classified into 1 of 2 states: active if smartwatch wear
exceeded a defined threshold (≥6 hours), or nonactive otherwise.

Similarly, survey days were classified as active upon completing
the Daily Stress Measure and nonactive if incomplete. Initially,
all nonactive days were labeled exit; these were reclassified as
inactive if followed by subsequent active days, reflecting
temporary disengagement. Survival analysis used the first
observation as time 0 days and 6 months (time 180 days) as the
end date. Participants with events after this interval were
considered censored. We modeled smartwatch and survey
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engagement where the event is defined as the first sustained
exit within 180 days. Individuals who did not have an exit event
were deemed as censored. Kaplan-Meier curves were created
to model the survival functions generated by this analysis, and
log-rank tests were used to compare median engagement across
demographic subgroups.

Temporal Analysis
We conducted temporal (time series) analysis to characterize
time-dependent patterns in survey and smartwatch adherence.
Both survey and smartwatch adherence data for each
engagement were smoothed using a centered 7-day rolling
average. For each participant, we then computed the Pearson
correlation coefficient between the 2 smoothed time series (ie,
smartwatch and survey adherence). To characterize seasonal
patterns in individual engagement, we applied a real-valued
Fast Fourier Transform (FFT) to each detrended daily series.
Specifically, for each participant’s smoothed time series of
engagement metrics, we subtracted the sample mean to detrend
each time series then computed the FFT to transform data to
the frequency domain. We then converted positive frequencies
to periods in days (ie, inverse of frequency is period). Dominant
periods were identified as the 3 largest spectral magnitudes.
This FFT-based periodogram method has been used previously
to reveal weekly, monthly, and other cyclic patterns in wearable
sensor data [8].

Generalized Additive Model
To investigate the phenomenon of “scanxiety”—heightened
anxiety and stress before clinical surveillance scans (eg, MRI
to detect tumor recurrence or remission)—we used generalized
additive models (GAMs) [24]. GAMs were used to model the
relationship between the time-varying physiological measures
from the smartwatch and proximity to each scan (ie,
time-to-event regression). Their flexibility in capturing nonlinear
relationships with cubic splines and interpretability made them
ideal for this task.

Using the pygam library [25], separate GAMs were fit for each
surveillance event (eg, participant A’s MRI) with default
hyperparameters. High-frequency smartwatch data
(minute-level) up to 3 days before each scan provided thousands
of data points per event.

Data preprocessing (Figure S2 in Multimedia Appendix 1)
included imputation of missing values via multivariate
imputation via chained equations (MICE) and feature
normalization (log EDA, heart rate, log HRV, respiratory rate,
and temperature) to zero mean and unit variance. We note that
HRV and EDA were log-transformed to reduce positive skew
and stabilize variance, ensuring approximate normality and
improving model interpretability. A feature capturing
missingness at each time step was included as a proxy for
imputed data. This was done to study any possible relationship
between missingness and the scan event, as we assume that data
are not missing at random. Nonlinearities were modeled using
cubic splines, and restricted maximum likelihood estimation
was used to fit each GAM. Model performance was assessed
using mean squared error from 5-fold cross-validation, and

partial dependency plots visualized feature relationships with
scan proximity (Table S4 in Multimedia Appendix 1).

Participants included in this analysis were those with at least 2
scans and at least 300 hours of smartwatch wear-time leading
up to each scan. The final cohort consisted of 2 children and 7
adults. This was done to study inter- and intraindividual
differences in the physiological sensor data within proximity
to scan events.

Qualitative Experiences
Upon study completion, we interviewed each family to gather
feedback on successes and challenges in the study design. We
did not conduct a formal qualitative study or thematic analysis.
Instead, qualitative insights were collected as part of routine
operational monitoring. Telephone conversations were not
recorded or transcribed; the study coordinator (author RR)
documented them in semistructured free-text fields in REDCap,
guided by a priori domains (eg, device usability, barriers to
engagement, and emotional response to alerts) while allowing
open-ended notes.

These entries were reviewed during biweekly team meetings,
where common themes were identified through discussion and
used to adapt the monitoring protocol. Some qualitative findings
were supported by quantitative data (eg, frequency of PHQ-9
[Patient Health Questionnaire-9] alerts). We acknowledge that
the absence of formal qualitative methods, coding, or interrater
checks limits reproducibility, but we aimed to offset this with
consistent documentation, reflexive team discussion, and
integration of participant-reported experiences with engagement
metrics.

Ethical Considerations
This study was reviewed and approved by the REB at SickKids
Hospital, Toronto, Ontario, Canada (REB 1000072240), in
accordance with the ethical standards outlined in the 1964
Declaration of Helsinki and its later amendments. All
participants provided written informed consent before
enrollment in the study. The consent process included agreement
to the collection of both quantitative and qualitative data, as
well as the use of anonymized responses for research publication
purposes. No additional consent was required for the analysis
presented in this manuscript, as it fell within the scope of the
original ethics approval and participant consent. All data used
in this study were deidentified before analysis to protect
participant privacy and confidentiality. No identifying
information was linked to the analysis datasets, and access to
the raw data was restricted to authorized members of the
research team in compliance with institutional data governance
policies. No compensation was provided to participants for their
involvement in the study.

Results

Recruitment
A total of 82 individuals were approached for enrollment,
including 22 families (67 individuals) and 15 solo individuals.
Of these, 59 (72%) individuals provided informed consent.
Reasons for refusal included stress concerns related to their
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disease (n=7), recent cancer diagnosis (n=3), incompatible
mobile phone (n=3), nonresponsiveness (n=3), recent cancer
diagnosis in a child (n=1), owning a second smartwatch (n=1),
relocation (n=1), and unspecified reasons (n=4). Among
consenting participants, 49 initiated the study, 6 experienced
technical issues pairing the smartwatch, and 4 withdrew consent.

Ultimately, 45 participants were included in the final analysis,
as 4 did not wear the watch for unspecified reasons. The cohort
comprised 12 families (each with at least 2 related participants)
and 12 solo participants. Study recruitment and final cohort
demographics are detailed in Figure 1.

Figure 1. Flowchart detailing participant recruitment and retention in the study. Out of 82 participants approached, 59 consented, 49 started the study,
and 45 were included in the final analysis.

The cohort was diverse in age, TP53 status (TP53 wt:
unaffected, TP53 mut: affected), and other demographics (Table
1). Unfortunately, we were unable to recruit child noncarriers
(ie, TP53 wt). We flag this limitation for readers as differences
between carriers and noncarriers may be confounded by adult
and child differences.

Engagement
Long-term engagement in DHT-based studies is not only
challenging to ensure, but it is also difficult to measure [20,23].
The difficulty in measurement can be attributed to the multitude
of definitions for “engagement” when using repeated measures
(ie, how to properly define disengagement). To circumvent these
limitations and provide a holistic description of our study’s
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engagement statistics, we considered both cohort-level and
individual-level engagement rates.

Cohort engagement refers to the overall completion rates of
survey engagement and the total wear time of the smartwatch
during the follow-up period. As described in the “Methods”
section, we define smartwatch engagement as 6 hours or more
of proper wear time per day and survey engagement as % of
daily survey instances completed during the follow-up period.
We can see from Table 1 and Figure 2, all participants
demonstrated high engagement for survey completion with no
significant differences between adults and children (mean 65%,
SD 22% vs mean 51%, SD 24%; t8.3=1.39; P=.20). When
comparing across different subgroups, survey engagement did
not significantly differ between TP53 wt and TP53 mut
participants mut (mean 64%, SD 26% vs mean 62%, SD 22%;
t13.5=−0.25; P=.81) or between those with previous cancer
history and those without (mean 69%, SD 21% vs mean 60%,
SD 23%; t25.8=−1.25; P=.22). Interestingly, adults had better

smartwatch engagement than children (mean 81%, SD 19% vs
mean 56%, SD 26%; t10.1=2.72; P=.02). Though on days where
devices were worn at least 6 hours, wear time was similar
between the 2 groups (mean 17.6, SD 3.1 hours vs mean 15.7,
SD 2.9 hours; t13.2=1.70; P=.11). Both adults and children wore
their devices while sleeping for at least 3 hours per night (mean
4.4, SD 2.1 hours vs mean 3.7, SD 2.2 hours; t11.7=0.83; P=.42).
Daytime wear was also at least 6 hours per day on average
between the 2 groups (mean 9.1, SD 4.4 hours vs mean 6.8, SD
4.2 hours; t12.8=1.44; P=.17). There were no differences in
smartwatch engagement rates across TP53 wt and TP53 mut
(mean 75%, SD 16% vs mean 76%, SD 24%; t22.2=0.22; P=.83)
or between those with previous cancer history and those without
(mean 77%, SD 26% vs mean 75%, SD 21%; t21.1=−0.29;
P=.78). There was also a strong coupling of engagement rates
when studying the correlation between smartwatch and survey
engagement rates across the study population (Figure S3 in
Multimedia Appendix 1).

Figure 2. Overall survey and device engagement rates across the study duration, stratified by age group (left), TP53 status (middle), and cancer history
(right).
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To study individual-level engagement patterns across time, we
plotted engagement over time. Qualitatively, there was
substantial inter- and intraindividual variability in engagement
alignment, with survey and smartwatch rates fluctuating both
between and within individuals (Figure 3). Notably, strong
seasonal trends with peaks, troughs, and declining engagement

were observed. FFT analyses identified pronounced biweekly
and monthly engagement cycles aligning with our biweekly
clinical check-ins with participants (Figure 4). This was
consistent across all strata (age, TP53 wt status, and cancer
history). The dashed line in Figure 4 annotates 2 to 4 weeks.

Figure 3. Engagement rates to smartwatch usage (blue) and survey completion (yellow) over time for randomly selected participants, separated by age
group (left column: children, right column: adults).
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Figure 4. Top 3 peak period distribution (weeks) after Fast Fourier Transform decomposition of survey and smartwatch engagement rates stratified
by TP53 status, age, and cancer history.

Finally, survival analysis uncovered interesting differences in
study retention across age groups. Median survey retention was
146 (IQR 121-178; 95% CI 128-174) days for adults versus 60
(IQR 54-NA; 95% CI 46-NA) days for children, with no

significant difference between groups (log-rank χ2
1=0.2; P=.70).

By TP53 status, median retention was 131 (IQR 84-179 days;
95% CI 107-158) for TP53 mut participants versus 160 (IQR
141-178 days; 95% CI 1-178) for TP53 wt participants (log-rank

χ2
1=0.1; P=.71). Participants with a cancer history had a median

retention of 146 (IQR 107-179; 95% CI 7-179) days compared
to 141 (IQR 103-178; 95% CI 121-174) days for those without,

with no significant difference observed (log-rank χ2
1=0.2;

P=.64). In Figure 5, the bottom row represents smartwatch
engagement, and the top row represents survey engagement as
defined in the “Methods” section. Number of participants at

t=0: TP53 mut - 32, TP53 wt - 9, adult - 34, child - 7 (9 for
smartwatch), cancer History - 27, no cancer history - 13. In this
figure, we see that median smartwatch retention was 153 (IQR
119-179; 95% CI 133-177) days for adults versus 77 (IQR
36-151; 95% CI 17-171) days for children. Adults demonstrated
significantly greater smartwatch retention compared to children

(log-rank χ2
1=4.4; P=.04). By TP53 status, retention was 149

(IQR 77-179; 95% CI 119-171) days for TP53 mut participants
versus 158 (IQR 98-176; 95% CI 2-176) days for wt participants,

with no significant difference (log-rank χ2
1=0.06; P=.81).

Participants with a cancer history had a median retention of 148
days (IQR 77-179; 95% CI 75-179) days compared to 153 (IQR
98-179; 95% CI 129-176) days for those without, with no

significant difference (log-rank χ2
1=0.4; P=.53).
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Figure 5. Plots showing the survey retention (top row) and smartwatch retention (bottom row) over time since enrollment, stratified by TP53 status
(left column), age group (middle column), and previous cancer history (right column).

Revealing Insights Into Patient Psychosocial State
Patient-reported Outcomes Measurement Information System
Sleep-related Impairment (PROMIS SRI), PHQ-9, Perceived
Stress Scale-4 (PSS-4), and Generalized Anxiety Disorder-7
(GAD-7) among participants reveal important insights into the
psychological and emotional distress experienced by different
participants.

Figure 6 presents the distribution of these scores across all
subgroups in our study. Children exhibited significantly higher

mean PHQ-9 (mean 10.0, SD 5.2 vs mean 4.2, SD 4.4; t7.8=−2.8;
P=.03) and PROMIS SRI (mean 22.7, SD 5.9 vs mean 16.5,
SD 5.5; t8.1=−2.58; P=.03) scores compared to adults, indicating
greater levels of depressive symptoms and sleep-related
impairment, respectively (Figure 6). Children also reported
being “very stressed” significantly more often than adults (mean
36.3%, SD 19.9% vs mean 14.3%, SD 19.2; t8.3=−2.7; P=.03);
Figure 6). Interestingly, we found no differences in overall stress
reporting, anxiety (GAD-7), or depression (PHQ-9) when
stratifying by previous cancer history or TP53 mutation status.
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Figure 6. Distributions of baseline survey scores by group, plotted one survey per row. From top row to bottom row: PROMIS SRI, PHQ-9, stress
frequency, PSS-4, and GAD-7 scores are each shown across the 3 groupings (age group, TP53 status, and cancer history). GAD-7: Generalized Anxiety
Disorder-7; PHQ-9: Patient Health Questionnaire-9; PROMIS SRI: Patient-reported Outcomes Measurement Information System Sleep-related
Impairment; PSS-4: Perceived Stress Scale-4.

We use the heat map in Figure S4 in Multimedia Appendix 1
to provide a dynamic visualization of the rolling mean scores
for GAD-7, PHQ-9, PROMIS SRI, PSS-4, and daily stress
indicators across different participants over the study period.
This visualization allows us to observe how patients transition
in and out of periods of high stress, depression, and anxiety.
Notably, the heat map reveals fluctuations in psychological and

emotional states between clinical visits that may otherwise go
unnoticed if these are not recorded. The markers indicating scan
events may help to correlate these transitions with specific
clinical activities, providing insights into how such events may
impact patient well-being.
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Flagging Critical Mental Health Events
The PHQ-9 survey asks the respondent about self-harm and
suicide-related thoughts. If a participant responded positively
to this question via the app, a built-in alert mechanism was
activated, immediately notifying the principal investigators of
the study who were the treating clinicians for some participants.
This alert system was used to assess risk for and prevent future
suicide-related behaviors.

In the course of our study, this alert system was triggered by 5
(11%) participants. Notably, 3 participants belonged to the same
family, comprising 2 adolescent siblings and their mother. This
unique cluster of participants, all encountering similar
psychological distress, presented a compelling focal point for
further investigation into the triggers of such emotional distress,
which, in this context, were predominantly linked to their
experiences with LFS.

All participants who triggered the alert were swiftly and
comprehensively assessed by a dedicated clinician, ensuring
that their emotional well-being was attended to with urgency
and care. This response underscores the importance of
monitoring the well-being of individuals and families grappling
with the complexities of LFS and the emotional challenges it
presents.

Sensor-Based Measures to Examine “Scanxiety”
During the study, 17 unique participants underwent clinical
surveillance visits, which included medical imaging (eg,
ultrasound or MRI) to screen for malignancy. These visits are
typically preceded by stress and anxiety due to potential
diagnoses. While the survey and app provided psychosocial
insights, we investigated physiological signatures from the
smartwatch coinciding with these surveillance events, observing
notable inter- and intrapatient variability.

As described in the “Methods” section, 9 participants with at
least 2 surveillance visits were included in this analysis. No
interaction terms were included in the GAMs to balance
interpretability with variance explained. Partial dependence
plots (Figure 7) demonstrated significant interindividual
heterogeneity, with unique patterns of dependence for each
physiological measure and proximity to scans. This underscores
the individualized nature of physiological responses to clinical
surveillance. Of note is the similarity in dependence pattern
within the same individual across different scans—indicating
that some relationship between physiological feature and
time-to-scan is conserved within individuals.
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Figure 7. Partial dependence plots for various physiological features from a generalized additive model show individual participants (each row) with
more than one scan. Overlaid plots for each scan are displayed in blue (scan 1) and yellow (scan 2). EDA: electrodermal activity; HRV: heart rate
variability.

Patient Perspectives and Unforeseen Consequences
Qualitative feedback was elicited from study participants
through an end-of-study questionnaire and interview (Figure
8). Participants described their experiences during the research
and offered insights into the advantages and drawbacks of using
smartwatches for stress assessment in the context of LFS.

In sum, the detailed feedback from the study underscores the
complex emotional state of individuals with LFS and the role
of integrated psychosocial support systems. The findings
highlight the value of DHTs in monitoring stress and the pivotal
role of safety protocols like the survey alert system in providing
immediate care to those in acute distress.
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Summarized feedback (ie, key quotations) highlighted various
observations about study strengths and weaknesses which can

inform insights and recommendations for future work using
DHTs.

Figure 8. Qualitative feedback was elicited from study participants through an end-of-study questionnaire and interview. DHT: Digital Health Tool;
LFS: Li-Fraumeni syndrome.

Discussion

Principal Findings
Our findings underscore the implications of integrating DHTs
into clinical care for children and families with LFS. While
DHTs offered valuable insights into patients’psychological and
emotional states, maintaining engagement was particularly
challenging for children and adolescents. Physiological data
from DHTs identified changes linked to surveillance visits,
demonstrating the potential to model iatrogenic effects like
“scanxiety”—stress and anxiety triggered by clinical monitoring.
Qualitative feedback showed general enthusiasm for the study
but pointed out areas for enhancing engagement and smartwatch
usability in future DHT research. This study serves as a
benchmark for larger investigations and informs the design of
DHT-based interventions in chronic disease. Although our
findings may extend to other chronic conditions, further work
is needed for external validation.

With respect to our first objective, engagement with DHTs
varied by TP53 status, cancer history, and age, with overall
survey completion exceeding 50% and higher smartwatch
engagement among adults. Using multiple DHTs (eg, surveys
and smartwatches) appeared to support engagement, as indicated
by the strong correlation in intermodality usage among the
population [26,27]. Engagement also showed cyclical patterns,
likely influenced by biweekly check-ins from study organizers,
consistent with trends reported in other studies [8,28]. Despite
a median (IQR) smartwatch retention time of 153 (119-179)

days in adults and 77 (36-151) days in children, overall
engagement declined over time. Participant feedback highlighted
challenges related to device practicality, comfort, and aesthetics,
emphasizing the need for seamless integration of DHTs into
daily life to sustain engagement. Future studies should address
these barriers to facilitate longer-term observation.

Our second objective was to assess patient perspectives, as LFS
imposes significant psychological and emotional burdens
[29,30]. In this population, we found increased stress, higher
PHQ-9 scores (depression), and sleep impairment among
children compared to adults. These findings align with prior
research [17,31], reinforcing the need for mental health
interventions in those with chronic illness requiring surveillance.
Notably, self-harm alerts were triggered through app-based
PHQ-9 surveys, highlighting the utility of DHTs in facilitating
timely interventions that might otherwise go unnoticed. Our
qualitative analysis revealed that DHT integration encouraged
patients to reflect on their existing stressors, and some conveyed
optimism about the potential for future tools to better identify
or reduce stress.

Our final objective was to explore the benefits for clinicians.
Traditional care models provide limited snapshots of patient
well-being during visits [32]. DHTs offer continuous
psychosocial and physiological data between appointments,
revealing insights into patient experiences that would otherwise
remain latent. GAM analysis demonstrated inter- and
intraindividual heterogeneity in physiological responses to
clinical visits, highlighting the potential of wearable sensors to
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detect iatrogenic effects like “scanxiety.” Future research should
explore the physiological signatures of clinical surveillance to
develop early warning systems and proactive interventions.
Integrating DHT data from surveys and smartwatches into
clinician dashboards could enable real-time monitoring of patient
well-being during treatment and follow-up.

Study limitations include a small sample size and a niche patient
population, which may affect generalizability. In particular, this
is a patient population with extensive clinical follow-up built
into their existing care model—engagement may be reduced in
populations where touchpoints to care are sparse. Our diverse
population of children and adults identified unique age-specific
differences: specifically, that the burden of stress is higher in
children, but engagement is worse. Future studies should aim
to better understand this gap, as the subgroup that may benefit
the most from DHTs is also the most difficult to engage. Unlike
many prior studies focused exclusively on individuals with
active disease, our cohort included unaffected family members
who also participate in lifelong disease surveillance, highlighting
both the potential for monitoring caregivers and the broader
burden of “scanxiety” experienced across entire families rather
than individual patients. That being said, families with LFS are
not unique to the phenomenon of “scanxiety”—surveillance is
common practice in oncological [33,34] as well as
nononcological disease [35]. Our insights about DHT integration

may generalize to other populations monitored for chronic
disease as well. Other limitations may have affected our findings
as well; participants reported issues with smartwatch comfort
and functionality, as the research-grade Empatica smartwatch
lacked consumer features such as messaging or apps. Some felt
the smartwatch was a constant reminder of their disease,
potentially reducing engagement. This highlights the importance
of selecting DHTs that seamlessly integrate into patients’ daily
lives. Technical challenges, such as missing data and imputation,
may have introduced bias into our GAM analysis, though we
mitigated these effects by explicitly modeling missingness and
analyzing only individuals with sufficient data.

Conclusion
In conclusion, this study demonstrated the use of wearable
technology and smartphone app surveys to engage children and
families affected by LFS. The diverse dataset, spanning various
ages, families, and TP53 mutation statuses, has been made
publicly available to facilitate further research and advancements
in understanding and managing LFS. Participant feedback
provided valuable insights for improving future digital health
studies, particularly at larger scales. While DHTs hold
significant promise in chronic disease management and
psychosocial monitoring, larger studies are needed to optimize
their application and address potential challenges.
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