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Abstract

Background: Effective diabetes management requires individualized treatment strategies tailored to patients’ clinical
characteristics. With recent advances in artificial intelligence, large language models (LLMs) offer new opportunities to
enhance clinical decision support, particularly in generating personalized recommendations.

Objective: This study aimed to develop and evaluate an LLM-based outpatient treatment support system for diabetes and
examine its potential value in routine clinical decision-making.

Methods: Three compact LLMs (Llama 3.1-8B, Qwen3-8B, and GLM4-9B) were fine-tuned on deidentified outpatient
electronic health records using a parameter-efficient low-rank adaptation approach. The optimized models were embedded into
a prototype hospital information system via a retrieval-augmented generation framework to generate individualized treatment
recommendations, laboratory test suggestions, and medication prompts based on demographic and clinical data.

Results: Among the models evaluated, the fine-tuned GLM4-9B demonstrated the strongest performance, producing clinically
reasonable treatment plans and appropriate laboratory test recommendations and medication suggestions. It achieved a mean
Bilingual Evaluation Understudy for 4-grams score of 67.93 (SD 2.74) and mean scores of 44.30 (SD 3.91) for Recall-Oriented
Understudy for Gisting Evaluation for overlap of unigrams, 27.34 (SD 1.85) for Recall-Oriented Understudy for Gisting
Evaluation for overlap of bigrams, and 37.67 (SD 2.88) for Recall-Oriented Understudy for Gisting Evaluation for Longest
Common Subsequence.

Conclusions: The fine-tuned GLM4-9B shows strong potential as a clinical decision support tool for personalized diabetes
care. It can provide reference recommendations that may improve clinician efficiency and support decision quality. Future
work should focus on enhancing medication guidance, expanding data sources, and improving adaptability in cases involving
complex comorbidities.
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i accounts for approximately 90% to 95% of diabetes cases
Introduction [1] and affects mainly adults. According to the World Health
Organization, approximately 422 million people worldwide
have diabetes, most in low- and middle-income countries,
and 1.5 million people die each year as a direct result of
diabetes [2]. The incidence and prevalence of diabetes have

Diabetes is a chronic metabolic disorder characterized by
elevated blood glucose levels, which over time can cause
serious damage to the heart, blood vessels, eyes, kidneys, and
nervous system. The most common is type 2 diabetes, which
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been steadily increasing over the last few decades [1]. As
patients with diabetes require long-term medication to control
blood glucose levels and prevent complications [3], they can
face several challenges during the treatment process, such as
medication selection, dosage adjustment, and management of
adverse effects. Failure to address these issues in a timely
manner can compromise the efficacy of medication and even
pose a threat to patients’ lives [4]. Therefore, people with
diabetes need timely medication advice, health education, and
nutrition support to help them use their medicines correctly,
safely, and effectively, thereby improving adherence and
quality of life. To better serve patients and increase the
efficiency of health care professionals, we aim to optimize the
management of patients with diabetes through the application
of artificial intelligence.

With the significant success of ChatGPT in tasks related
to understanding and generating humanlike responses [5],
large language models (LLMs) have attracted considerable
attention. They have shown strong performance in various
natural language processing tasks and the ability to gener-
alize to unfamiliar tasks, demonstrating their potential as
a unified solution for natural language understanding, text
generation, and dialogue. Although ChatGPT has shown
promising results in medical document summarization and
decision support [6,7], as well as in passing the US Medical
Licensing Examination Steps 1 and 2 [8], the exploration
of these broad-domain LLMs in the medical field is still
relatively limited [9]. Currently, there is a lack of specifically
trained LLMs in the field of health care. To address this gap,
we plan to fine-tune an LLM using deidentified data from
patients with diabetes with the aim of exploring its appli-
cation in diabetes management. In addition, harnessing the
potential of LLMs will open up new opportunities for medical
research and practice and drive advances and innovation in
health care technology.

Methods

Ethical Considerations

This retrospective study used encrypted and deidentified
data from West China Hospital involving no patient pri-
vacy—sensitive information or clinical interventions. Data
extraction and study procedures were approved by the ethics
committee of West China Hospital, Sichuan University
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(approval 2024-126), in accordance with informed consent
requirements.

Data Collection

This study used the big data integration platform of
West China Hospital as the primary source of data [10].
We collected electronic health record data from patients
diagnosed with diabetes who visited the outpatient depart-
ment from January 2022 to February 2022. The collected
data included information such as the patients’ department of
visit, age, gender, chief concern, present illness history, and
diagnosis, which served as input for the model. In addi-
tion, we obtained data on patients’ outpatient medications,
laboratory test items, examinations, and physician opinions,
which were used as model outputs. Patient data with missing
chief concerns and present illness history were excluded to
ensure data quality and usability. Furthermore, we collec-
ted an additional set of data from 300 patients (visiting in
March 2022) as a test set to evaluate the performance of the
optimized model.

Data Preprocessing

Before model training, we performed systematic preprocess-
ing on the collected patient data, including data cleaning,
standardization, and anonymization. Data cleaning involved
removing missing values, outliers, and duplicate records
to ensure the integrity and reliability of the model inputs.
Standardization ensured consistency in format, units, and
value ranges across different data types. For text data,
including chief concerns, present illness history, examina-
tions, and laboratory test results, we applied cleaning,
terminology unification, and segmenting of key informa-
tion while removing sensitive information to protect patient
privacy. The processed data were then organized into a
question-answer format (instruction-input-output) suitable for
LLM fine-tuning: patient basic information and clinical
text (eg, department, gender, age, diagnosis, chief con-
cern, and present illness history) were used as the input,
and corresponding medical orders, examinations, recommen-
ded laboratory tests, and treatment recommendations were
integrated as the output (shown in Textbox 1). This approach
ensured that both structured and unstructured information was
effectively used for model training. The dataset was then split
into training and test sets in an 8:2 ratio.

Textbox 1. Data example for large language model fine-tuning in clinical diabetes recommendations.

Instruction

Input
* Department: endocrinology ward
e Sex: male
* Age: 55 years
* Diagnosis: type 2 diabetes mellitus with hypertension
* Chief concern: polydipsia; polyuria for 6 months

https://formative jmir.org/2026/1/e71541

* “You are a diabetes clinical recommendation model. You will receive the patient’s basic information and laboratory
results, and you are expected to provide tailored clinical recommendations for the patient.”
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regular insulin or oral hypoglycemic therapy.”
Output

and lipid panel

* Present illness history: “The patient reports excessive thirst and frequent urination over the past six months, with
a weight loss of approximately 3 kg. History of hypertension for 5 years, blood pressure poorly controlled. Recent
fasting blood glucose ranges from 8—10 mmol/L, postprandial blood glucose up to 12 mmol/L. The patient is not on

* Provision of a blood glucose monitoring device and test strips
» Laboratory tests: fasting plasma glucose, 2-hour postprandial glucose, glycated hemoglobin, liver and renal function,

* Examinations: fundoscopy, foot examination, and electrocardiogram
* Treatment recommendations: adjust insulin or oral hypoglycemic agents according to blood glucose levels, monitor
blood pressure, and implement dietary and exercise interventions

He et al

Model Selection

In this study, we compared 3 LLMs for clinical text pre-
diction tasks: Llama 3.1-8B (Meta AI) [11], Qwen3-8B
(Alibaba Cloud) [12], and GLM4-9B (THUDM/Z.ai) [13].
Llama 3.1-8B is an open-source model optimized for efficient
generalization and complex text understanding. Qwen3-8B is
a multilingual LLM with strong capabilities in both struc-
tured and unstructured medical text processing. GLM4-9B,
developed based on the general language model architec-
ture, is designed for bilingual question-answering tasks and
supports local deployment through model quantization. All
models were fine-tuned and evaluated using a single H100
graphics processing unit (NVIDIA). Smaller model sizes were
chosen to facilitate clinical deployment and wider adop-
tion in practical settings while still maintaining competitive
performance for downstream tasks.

Model Fine-Tuning

To adapt the selected LLMs for clinical treatment recom-
mendation tasks, we used a parameter-efficient fine-tuning
strategy that combines instruction-based prompting with
low-rank adaptation (LoRA) [14]. Instruction templates were
designed to explicitly guide the model in interpreting patient
information and generating clinically appropriate treatment
suggestions. Building on this, LoRA was applied to the
attention layers to enable efficient task-specific adaptation
while updating only a small number of parameters. During
fine-tuning, we explored multiple hyperparameter configu-
rations, including learning rate, batch size, and LoRA-spe-
cific parameters such as rank and scaling factor. Model
performance was assessed on a held-out validation set
using both automatic text generation metrics (eg, Bilingual
Evaluation Understudy [15] and Recall-Oriented Understudy
for Gisting Evaluation [16]) and clinically oriented evaluation
criteria, including the correctness and appropriateness of the
recommended treatments. This combined approach provided
a balanced trade-off between computational efficiency and
clinical relevance, offering practical guidance for deploying
LLM-based treatment recommendation systems in real-world
clinical settings.

Physician Assessment of
Recommendations

To ensure a rigorous and clinically meaningful evaluation
of our LLM-generated diabetes treatment recommendations,
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we implemented a structured, multidimensional physician
assessment protocol. Six dimensions were assessed: treatment
appropriateness, medication accuracy, relevance of suggested
examinations, safety, logical reasoning, and overall clini-
cal usefulness. Each dimension was rated using a standar-
dized 5-point Likert scale [17] ranging from 1 (“completely
unreasonable or not useful”) to 5 (“fully reasonable and
clinically valuable”). Five board-certified endocrinologists
(each with more than 5 years of independent clinical practice)
served as expert raters. All assessments were performed
independently and in a fully blinded manner: raters were
unaware of which LLM produced each recommendation
and were prohibited from discussing cases. Each physician
reviewed the same 300 treatment recommendations generated
by the 3 LLMs, including both base and fine-tuned ver-
sions. Recommendations included medication plans, dosage
adjustments, and suggested laboratory tests. This protocol
ensured a systematic, reproducible, and clinician-centered
evaluation of model outputs, enabling identification of
potential risks and areas requiring refinement.

Retrieval-Augmented Generation and
Agent-Assisted Clinical Data Processing

We implemented a retrieval-augmented generation (RAG)
[18] framework to integrate hospital knowledge resources,
including the medical order database, diabetes treatment
guidelines, and clinical protocols, enabling the model to
dynamically retrieve relevant knowledge during treatment
recommendations and provide context-specific, up-to-date
clinical information. An agent system was developed to
interface with the hospital information system. It handles
data cleaning, integration, and monitoring by extracting
and standardizing patient data, consolidating heterogeneous
sources into a structured format suitable for RAG, and
ensuring data integrity and consistency. By combining RAG
with agent-driven data management, the system efficiently
leverages internal knowledge bases to support clinically
grounded, accurate, and interpretable treatment recommenda-
tions. The overall workflow of this clinical application system
is illustrated in Figure 1.
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Figure 1. Schematic workflow of the clinical application system integrating retrieval-augmented generation (RAG)- and agent-driven data
management. Al: artificial intelligence; LLM: large language model.
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Overview

As shown in Figure 2, the final dataset comprised 20,619
patients, with 80% allocated for model training and 20%

Figure 2. Flowchart of patient inclusion and exclusion criteria

Outpatient electronic medical records

* Appointment period: January 2022 to February 2022

* N=530,637

Patients with diabetes (/CD-10 codes E10-E14)

held out as a test set for performance evaluation. Figure 2
illustrates the data collection process.

diagnosis, etc.

examinations, physicians’
recommendations, etc.

Input: Department, age, gender, chief
complaint, present illness history,

Output: Outpatient medications,
laboratory tests and imaging
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Clinical validation
* Appointment date: March 2022
* Patients: diabetes (n=300)
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All 3 LLMs—Llama 3.1-8B, Qwen3-8B, and GLM4-9B —
were evaluated before and after LoRA fine-tuning. Their
training and test loss curves are shown in Figure 3, and
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model performance was assessed using both automatic text
generation metrics and clinical physician evaluations.

Figure 3. Training and test loss curves for Llama 3.1-8B, Qwen3-8B, and GLM4-9B.
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Table 1 summarizes the comparative performance of

the baseline and fine-tuned models measured using Bilin-
gual Evaluation Understudy for 4-grams (BLEU-4), Recall-
Oriented Understudy for Gisting Evaluation for overlap
of unigrams (ROUGE-1), Recall-Oriented Understudy for
Gisting Evaluation for overlap of bigrams (ROUGE-2), and
Recall-Oriented Understudy for Gisting Evaluation—Longest
Common Subsequence (ROUGE-L). Before fine-tuning, the
3 base models demonstrated moderate capability in generat-
ing clinically relevant recommendations, with mean BLEU-4
scores ranging from 45.13 (SD 1.98) to 50.84 (SD 1.87) and
ROUGE-L scores ranging from 9.83 (SD 0.54) to 13.90

Test loss of models

~— Llama 3.1-8B Test loss
—— Qwen 3-8B Test loss
—— GLM 4-9B Test loss

0.60

0.55 1

Test loss

0.50

0.45 1

0 10 20 30 40 50 60 70 80
Epochs

(SD 0.74). Among the base models, GLM4-9B achieved
the highest performance across all metrics. After fine-tun-
ing, all models showed significant gains in both lexical
similarity and content relevance. The BLEU-4 mean score
increased by 14.48 points for Llama 3.1-8B, 15.95 points
for Qwen3-8B, and 17.09 points for GLM4-9B. ROUGE-1
and ROUGE-L exhibited similar patterns, with improve-
ments exceeding 20 points for all 3 models. The fine-tuned
GLM4-9B outperformed all models, achieving the highest
BLEU-4 (mean 67.93, SD 2.74), ROUGE-1 (mean 44.30,
SD 3.91), ROUGE-2 (mean 27.34, SD 1.85), and ROUGE-L
(mean 37.67, SD 2.88) scores.

Table 1. Performance analysis based on Bilingual Evaluation Understudy for 4-grams (BLEU-4) and Recall-Oriented Understudy for Gisting

Evaluation scores.

ROUGE-
LS, mean
Model BLEU-4, mean (SD) ROUGE-1?%, mean (SD) ROUGE—Zb, mean (SD) (SD)
Base Llama 3.1-8B 45.13 (1.98) 12.55 (0.68) 3.12 (0.21) 9.83 (0.54)
Base Qwen3-8B 4792 (2.11) 15.33 (0.75) 4.46 (0.26) 11.77
(0.63)
Base GLM4-9B 50.84 (1.87) 17.92 (0.82) 5.71(0.31) 13.90
0.74)
Fine-tuned Llama 3.1-8B 59.61 (3.21) 36.12 (3.44) 2248 (1.78) 31.44
(2.93)
Fine-tuned Qwen3-8B 63.87 (3.18) 40.58 (3.72) 25.01(1.92) 34.80
(3.12)
Fine-tuned GLM4-9B 67.93 (2.74) 44.30 (3.91) 27.34 (1.85) 37.67
(2.88)

#ROUGE-1: Recall-Oriented Understudy for Gisting Evaluation for overlap of unigrams.
PROUGE-2: Recall-Oriented Understudy for Gisting Evaluation for overlap of bigrams.
“ROUGE-L: Recall-Oriented Understudy for Gisting Evaluation—Longest Common Subsequence.

Regarding the clinical evaluation, the performance of the
original models and their LoRA fine-tuned versions is
summarized in Textbox 2.

Textbox 2. Performance of the original models and their low-rank adaptation fine-tuned versions.

Input

https://formative jmir.org/2026/1/e71541
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* Gender: male

* Age: 68 years

» Diagnosis: type 2 diabetes; hyperlipidemia

 Chief concern: diabetes follow-up visit

* Medical history: diabetes for 2 or more years
Real clinical data output

Base GLM4-9B output

maintain stable and healthy blood glucose levels.”
Fine-tuned GLM4-9B output

daily (5 mg x 7 tablets)

needed

* Department: endocrinology and metabolism medical unit

» Laboratory tests: liver and kidney function, glucose and fat-a, and glycated hemoglobin (HbA |; biochemistry 2)
* Medication: 11 units once a day of Ganjing insulin injection (3 mL: 300 prefilled units), 5 mg of OuTangning once a
day (5 mg x 7 tablets), and 10 mg of atorvastatin calcium tablets once every night (10 mg x 28 tablets)

* “A patient with diabetes attending a follow-up visit requires a comprehensive medical history review and physical
examination to better assess their condition and guide treatment planning. According to your description, the
patient has type 2 diabetes and hyperlipidemia. Type 2 diabetes is a chronic condition that necessitates long-term
management, while hyperlipidemia is a common metabolic disorder that can negatively impact cardiovascular health
and increase the risk of cardiovascular disease. During follow-up, the patient should monitor blood glucose levels
and adjust management strategies—including medication, diet, and exercise —accordingly. Regular monitoring of
blood lipid levels is also necessary, with treatment plans tailored based on the results. Common treatment strategies
for diabetes include oral medications, insulin therapy, blood glucose monitoring, and dietary control. Successful
management requires active patient engagement, adherence to lifestyle recommendations, and consistent follow-up to

* Laboratory tests: HbA . and liver and kidney function tests, lipase A, fasting insulin, 2-hour postprandial insulin,
fasting plasma glucose, 2-hour postprandial C-peptide, and 2-hour postprandial plasma glucose (biochemistry 1)
* Medication: 11 units once daily of Ganjing insulin injection (3 mL: 300 units/prefilled) and 5 mg of OuTangning once

* Physician’s recommendation: regular follow-up visits are advised to monitor treatment response and adjust therapy as

He et al

Clinical Evaluation

Table 2 shows the results of 5 endocrinologists’ evalua-
tion of the 300 treatment recommendations generated by
the 3 fine-tuned LLMs. Overall, the mean scores indica-
ted that most recommendations were clinically relevant to
diabetes management (mean usefulness scores above 4 for

Table 2. Physician assessment of recommendations.

all fine-tuned models), whereas the base models received
substantially lower ratings. Approximately 10% of the
recommendations (32/300, 10.7%) were judged by at least
one rater as potentially risky (eg, inappropriate escalation or
overtreatment), underscoring the need for human oversight.

Relevance  Safety Usefulness
Treatment appropriateness Medication accuracy (1-5), mean (1-5), Logical reasoning  (1-5), mean

Model (1-5), mean (SD) (1-5), mean (SD) (SD) mean (SD) (1-5), mean (SD) (SD)
Base GLM4-9B 3.28 (0.38) 2.96 (0.37) 3.52(0.34) 3.60 (0.53) 3.60 (0.50) 3.44(0.30)
Fine-tuned GLM4-9B 4.72 (0.31) 448 (0.43) 476 (0.36) 4.66 (047) 4.78 (0.20) 4.78 (0.16)
Base Llama 3.1-8B 2.50 (0.53) 2.80 (0.70) 294 (0.18) 2.86(0.29) 2.54(0.36) 2.60 (0.54)
Fine-tuned Llama 3.1-8B 4.58 (0.47) 4.68 (0.43) 470(042) 440(049) 4.36(0.57) 4.60 (0.39)
Base Qwen3-8B 342(042) 298 (041) 3.00(0.85) 3.14(0.62) 3.32(048) 324 (0.51)
Fine-tuned Qwen3-8B 4.50 (0.71) 4.26 (0.50) 4.16(0.78) 3.80(0.37) 4.44(0.55) 444 (0.38)

As shown in Figure 4, the radar chart highlights the multidi-
mensional improvements achieved through LoRA fine-tuning
across all 6 evaluation metrics. For all 3 models, the fine-
tuned versions consistently exhibited higher scores than their

https://formative jmir.org/2026/1/e71541

base counterparts. Among the models, GLM4-9B (fine-tuned)
achieved the highest performance across nearly all dimen-
sions, particularly in treatment appropriateness, relevance,
and overall usefulness.
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Figure 4. Radar chart illustrating the multidimensional physician assessment scores of treatment recommendations generated by Llama 3.1-8B,

Qwen3-8B, and GLM4-9B before and after low-rank adaptation fine-tuning.

4.5

Overall usefdiness

Logical reasgning

Safety

Discussion

Principal Findings

This study systematically evaluated the performance of
3 LLMs (Llama 3.1-8B, Qwen3-8B, and GLM4-9B) on
a clinical treatment recommendation task for diabetes
and explored a parameter-efficient optimization strategy
combining instruction-based prompting and LoRA fine-tun-
ing. It should be noted that all 3 models are general-purpose
open-source LLMs and were not specifically fine-tuned on
medical data, serving as preliminary baselines for clinical
recommendation tasks. The untuned base models achieved
moderate performance in generating clinically relevant
recommendations, with mean BLEU-4 scores ranging from
45.13 to 50.84 and mean ROUGE-L scores ranging from
9.83 to 1390, among which the base GLM4-9B model
performed best across metrics. These findings indicate that
even relatively small models possess nontrivial text genera-
tion capabilities but exhibit limitations in content relevance
and accuracy for specialized clinical tasks. After LoRA
fine-tuning, all models showed substantial improvements
on both automatic evaluation metrics and clinician assess-
ments. BLEU-4 scores increased by approximately 14 to 17
absolute points on average, whereas ROUGE-1 and ROUGE-
L scores improved by more than 20 points, suggesting
that fine-tuning effectively enhanced lexical similarity and
information completeness in the generated texts. In clinician
evaluations, scores increased markedly across the 6 dimen-
sions—therapeutic appropriateness, medication accuracy,
examination relevance, safety, logical reasoning, and overall

https://formative jmir.org/2026/1/e71541

Treatment apgrgpriateness

GLM4-9B (base)

GLM4-9B (fine-tuned)
—— Llama 3.1-8B (base)
Llama 3.1-8B (fine-tuned)
Qwen3-8B (base)
Qwen3-8B (fine-tuned)

Medication accuracy

Examinatign/test relevance

usefulness. Among them, fine-tuned GLM4-9B achieved the
best performance on key dimensions such as therapeutic
appropriateness, relevance, and overall usefulness, whereas
fine-tuned Llama 3.1-8B and Qwen3-8B also demonstrated
varying degrees of improvement (Figure 4). The radar chart
clearly illustrates these multidimensional gains, underscoring
the effectiveness of combining LoRA with instruction-based
prompting to enhance clinical applicability. Furthermore,
by leveraging an RAG framework and an agent-based
data processing and knowledge retrieval pipeline (Figure
1), the models can dynamically access up-to-date institu-
tional clinical guidelines, medication order databases, and
diabetes treatment standards, thereby enabling individual-
ized, context-aware clinical recommendations. This approach
not only improves the accuracy and safety of the gener-
ated suggestions but also strengthens their interpretability
and practical usability in clinical settings. After repeated
debugging and testing of the model, we found that, for a
subset of patients with complex medical records, the model
output can be potentially harmful and fail to assist health care
professionals in their treatment. This situation can occur for
the following reasons:

* Data imbalance or sample bias [19]: the model may
have been trained on an overrepresentation of certain
types of patient records, leading to an inadequate
understanding of other types of patients. This bias can
lead to inaccurate or harmful treatment recommenda-
tions for certain patients.

Unknown or rare scenarios [20]: if the model encoun-
ters unfamiliar or infrequent situations during train-
ing, it may struggle to make accurate predictions or
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appropriate recommendations. Complex patient records
often contain such unknown scenarios, rendering the
model’s output ineffective.

* Limitations of the model [21]: the model may have
inherent design or training limitations that prevent
it from adequately accounting for factors specific to
complex medical records. As a result, the model’s
outputs may lack accuracy or reliability in these cases.
Additionally, the fact that the models are not medi-
cally fine-tuned may contribute to these limitations,
highlighting the importance of exploring medically
fine-tuned LLMs and larger, multi-institutional datasets
in future research.

* The size of the training data has a direct impact on the
performance of large models. Therefore, it is crucial
for us to explore methods to increase the scale of our
dataset (Multimedia Appendix 1).

Limitations

This study has several limitations. First, the proposed
framework has been evaluated only in a controlled experi-
mental setting and has not yet been prospectively validated in
real-world clinical workflows. As such, its clinical effective-
ness and operational impact remain to be systematically
assessed. Second, we only used relatively small-scale models,
which have substantially fewer parameters than larger frontier
models such as DeepSeek R1 [22], Qwen3-32B, or Llama
3-65B. While the smaller models reduce computational
requirements and facilitate low-cost intranet deployment, they
may limit performance and generalization compared with
larger models. Third, the training data for this study were
collected from a single medical institution and are relatively
limited in size, which may affect the robustness and external

He et al

validity of the results. It is important to understand that,
while LLMs often perform well in many scenarios, they
may have limitations when dealing with complex medical
records. Therefore, model outputs should not be the sole basis
for decision-making. Health care professionals should rely
on their expertise and clinical judgment and integrate model
outputs with comprehensive assessments to make informed
decisions [23]. Additionally, we plan to fine-tune domain-
specific medical LLMs (such as MedGemma 27B [24])
and explore the integration of medical knowledge graphs
to incorporate structured clinical knowledge, enhance model
reasoning [25], and further improve the consistency and
reliability of the generated recommendations. Future research
will also focus on leveraging larger models and multi-institu-
tional datasets to strengthen model performance, generaliza-
bility, and robustness.

Conclusions

Overall, this study validates the feasibility and effective-
ness of combining small-scale LLMs with LoRA fine-tun-
ing and an RAG- and agent-assisted data processing and
knowledge retrieval strategy for clinical treatment recommen-
dations in diabetes. The fine-tuned models not only achieved
superior performance on automated text generation metrics
but also generated treatment recommendations deemed safe,
clinically appropriate, and of substantial reference value in
structured clinician evaluations. These findings provide a
viable pathway for the responsible deployment of LLMs in
real-world medical applications. Future research should scale
up training datasets; extend validation to a broader range
of disease entities; and incorporate longitudinal real-world
evidence to further assess long-term clinical effectiveness,
safety, and generalizability.
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Multimedia Appendix 1

Supplementary material demonstrating the outputs of the large language models before and after fine-tuning. Screenshots
illustrate how different fine-tuning strategies (P-tuning and low-rank adaptation) improve clinical response accuracy; provide
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structured treatment suggestions; and reduce harmful or inaccurate recommendations in typical, complex, and rare patient
scenarios.
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