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Abstract
Background: Eating is a primary daily activity crucial for maintaining independence and quality of life. Individuals with
neuromuscular impairments often struggle with eating due to limitations in current assistive devices, which are predominantly
passive and lack adaptive capabilities.
Objective: This study aims to introduce an adaptive feeding robot that integrates time series decomposition, autoregressive
integrated moving average (ARIMA), and feed-forward neural networks (FFNN). The goal is to enhance feeding precision,
efficiency, and personalization, thereby promoting autonomy for individuals with motor impairments.
Methods: The proposed feeding robot combines information from sensors and actuators to collect real-time data, that is, facial
landmarks, mouth status (open or closed), fork-to-mouth and plate distances, as well as the force and angle required for food
handling based on the food type. ARIMA and FFNN algorithms analyze data to predict user behavior and adjust feeding
actions dynamically. A strain gauge sensor ensures precise force regulation, an ultrasonic sensor optimizes positioning, and
facial recognition algorithms verify safety by monitoring mouth conditions and plate contents.
Results: The combined ARIMA+FFNN model achieved a mean squared error (MSE) of 0.008 and an R2 of 94%, significantly
outperforming the standalone ARIMA (MSE=0.015; R2=85%) and FFNN (MSE=0.012; R2=88%). Feeding success rate
improved from 75% to 90% over 150 iterations (P<.001), and response time decreased by 28% (from 3.6 s to 2.2 s).
ANOVA revealed significant differences in success rates across scenarios (F3,146=12.34; P= .002), with scenario 1 outper-
forming scenario 3 (P=.030) and scenario 4 (P=.010). Object detection showed high accuracy (face detection precision=97%,
recall=96%, 95% CI 94%-99%). Force application matched expected ranges with minimal deviation (24 [1] N for apples; 7
[0.5] N for strawberries).
Conclusions: Combining predictive algorithms and adaptive learning mechanisms enables the feeding robot to demonstrate
substantial improvements in precision, responsiveness, and personalization. These advancements underline its potential to
revolutionize assistive technology in rehabilitation, delivering safe and highly personalized feeding assistance to individuals
with motor impairments, thereby enhancing their independence.
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Introduction
Eating unaided remains impossible for millions of peo-
ple with upper-limb impairments, turning every meal into
a reminder of lost autonomy. Demographic change will
magnify this challenge. By 2050, 1 in 6 individuals will be
aged over 65 years, up from 1 in 11 in 2024 [1]. Aging
correlates with disability, and about 1 billion people already
live with an impairment, a figure set to rise as populations
gray [2]. The result is a rapidly growing cohort that needs
daily feeding assistance, further straining care networks that
are already under pressure [1,3]. Assistive devices are critical,
especially in low-resource settings where professional carers
are limited. In the United Kingdom, for example, many adults
aged over 75 years live alone and receive only brief daily
visits, leading to malnutrition and declining health [4,5].

Robotic feeding assistants offer a promising solution,
demonstrating consistent patience, adaptability, and precision.
By tailoring actions to user preferences, they can provide a
personalized and empowering dining experience [6,7].

Several commercial and noncommercial assistive feeding
robots have already been developed to support individuals
with upper limb impairments [8-11]. Examples include My
Spoon (SECOM Co, Ltd) [12], SnackBot (Carnegie Mellon
University Robotics Institute) [13], the Assistive Robotic
Manipulator (Exact Dynamics Ltd) [14], Obi Robot (DESiN
LLC) [15], iEat (Assistive Innovations) [16], and Bestic
(Camanio Care AB) [17]. Table 1 outlines the key advan-
tages, limitations, and available quantitative evidence for
7 commercial or research-based assistive feeding systems.
While some platforms offer user-friendly features such
as switch-based control or teach modes, most lack real-
time adaptation, user-state sensing, and robust bite-deliv-
ery evaluation. The table highlights the current gaps in
autonomy, sensor integration, and evidence-based validation
across devices. These are predominantly passive, relying
on fixed routines with limited adaptability [18]. Therefore,
they struggle with delayed user responses, varied food types,
and environmental challenges such as poor lighting or plate
movement.

Table 1. Comparative analysis of existing assistive feeding robots.
Robot name and autonomy Key advantages Key disadvantages Quantitative evidence

My Spoon [12]
• Offers automatic,

semiautomatic, and
manual modes (5-DOFa

arm)

• Requires joystick input
• Uses fixed mouth-

position routines—no
real-time adaptation

• None

SnackBot [13]
• Mobile platform delivers

snacks in human spaces
(human-robot interaction)

• Not designed for
bite-by-bite feeding
assistance

• Lacks user-state
feedback

• The platform was
never evaluated for bite
delivery or self-feeding

ARMb (iARM, Exact
Dynamics; JACO arm, Kinova)
[14]

• Versatile arm mounts
on wheelchairs. Performs
multiple ADLsc

(eating, drinking, and
manipulation)

• No autonomous feeding
intelligence

• Lacks specialized
sensors and adaptive
control

• 79% of 31 users
completed all 16
movements

• 93% completed a 6-task
subset

• Bite success not
documented

Obi Robot [15]

• Lightweight, compact
tabletop feeder

• Simple switch interface,
teach mode, 4-bowl food
choice

• Must be manually
taught spoon-mouth
position

• Cannot sense user
readiness

• Speech-interface pilot
(n=11) showed positive
usability

• No bite delivery data
reported

Bestic [17]
• 4-DOF arm with

rotating bowl (one-button
semiautonomous control)

• Uses fixed preset
motions

• No real-time adjustment
or user-state feedback

• Focuses on design
philosophy and user
perceptions.

Meal Buddy [19]
• Bowl-edge scraper

removes excess food
(3-DOF)

• Executes preset feeding
sequences only

• Lacks force and vision
feedback

• Pilot (n=3 able-bodied):
mouth detection accuracy
of 73%, 67%, and 52%.

• No bite delivery recorded

Mealtime Partner [20]
• Rotating plate and

mechanical spoon lift
(one-button bite delivery)

• Static delivery pattern
• No sensing of user state

or environment

• Historical evaluations
found high abandonment

• Slower than human
assistance
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aDOF: degree of freedom.
bARM: Assistive Robotic Manipulator.
cADL: activities of daily living.

Various researchers have aimed to improve adaptability and
intelligence through sensing and control strategies. Predictive
models such as hidden Markov models have been used to
estimate bite timing based on social cues and food character-
istics, achieving timing errors of 1.57 seconds [7]. However,
these systems often operate in open-loop and cannot adjust
if the user hesitates. Similarly, support vector machines and
convolutional neural networks (CNNs) [21,22] have been
employed to locate bites on a plate, but they also lack
real-time feedback.

More advanced systems have integrated vision and control
frameworks. For instance, Mashrur et al [23] used a Personal
Robot 2 (PR2; Willow Garage) equipped with faster region-
based CNN and red green blue–depth (RGB-D) cameras,
achieving 93% precision and an 82.8% food delivery success
rate. A study by Park et al [8] deployed PR2 with a GUI
interface and model predictive controller, enhancing arm
safety and anomaly detection, though food handling precision
remained a challenge. Hybrid controllers, such as an adaptive
neuro-fuzzy inference system–proportional integral derivative
controller [24] and fuzzy logic-based inverse kinematics (IKs)
[25], have improved control smoothness and efficiency, but
they lack real-time mouth-state feedback.

Artificial neural networks have also been applied to solve
IKs [26], and low-cost platforms, such as 3D-printed arms
with facial recognition [27], have broadened accessibility.
However, these systems continue to rely on scripted motions.
Studies conducted by Serrezuela et al [28], Mystkowski et
al [29], and Gilca [30] demonstrate promise in trajectory
tracking and facial landmark detection; however, sensor
fusion and robustness under environmental variation remain
limited. Simulation tools [31] and digital twins [32] have
explored virtual training and control evaluation, but fall
short of real-world responsiveness. Together, these limitations
highlight the need for a fully adaptive, closed-loop feeding
system that anticipates user intent, verifies safe delivery,
and dynamically adjusts in real-time. To meet this need,
we present a novel autonomous feeding robot that integrates
time-series forecasting, machine learning, and multisensor

feedback to deliver personalized, safe, and efficient feeding
assistance. Our system combines autoregressive integrated
moving average (ARIMA) models (to capture linear trends)
with a feed-forward neural network (FFNN; to learn nonlinear
behaviors), enabling real-time predictions of mouth readiness.
Data from vision-based mouth detection, ultrasonic distance
sensing, and strain-gauge force feedback closes the loop,
allowing the robot to respond to delayed reactions, variable
food textures, lighting changes, and plate movement. This
study advances assistive feeding robotics through five key
contributions:

1. Multimodal sensing for safe, precise delivery:
integrating computer vision, ultrasonic, and force
sensors ensures accurate and gentle food placement.

2. Hybrid predictive control: fusing ARIMA and neural
networks enables real-time prediction of user behavior.

3. Closed-loop adaptation: a unified control loop
compensates for user delays and environmental
variability.

4. Demonstrated performance gains: our system improved
feeding success by 15% and reduced response time by
28% over baseline models.

5. Toward truly adaptive feeding: this study lays the
foundation for a learning-driven platform that sup-
ports independent eating for individuals with motor
impairments.

Methods
Robotic Arm Hardware and Control
System
The assistive feeding robot in this study is built around a
4-degree-of-freedom open manipulator, powered by 4 XM
Series servo motors. It is equipped with a Raspberry Pi
Camera Module 2 for vision, an HC-SR04 ultrasonic sensor
for distance measurement, and a load cell to monitor force.
The HX711 amplifier reads signals from the load cell and
transmits them to an Arduino Nano, which then forwards the
data to a Jetson Nano microcontroller (Figure 1).
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Figure 1. System architecture of the adaptive feeding robot. ARIMA: autoregressive integrated moving average; CNN: convolutional neural network;
FFNN: feed-forward neural network; ROS: Robot Operating System.
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To enable efficient communication between sensors and the
control logic, a lightweight WebSocket server is hosted
on the Jetson Nano, a compact artificial intelligence (AI)-
enabled edge computing device with a built-in GPU. The
server allows continuous, 2-way data exchange between the
camera, ultrasonic sensor, and load cell, and the decision-
making module that directs the robotic arm. WebSockets
ensure low-latency updates, allowing the system to adjust
movements dynamically in response to user behavior. For
simulation and real-time testing, a digital twin of the robot
was developed in Unity using its networking application
programming interfaces (APIs). The Jetson Nano uses the
WebSockets library of Python (Python Software Foundation)
to run the server, while Unity serves as the client via
the Native WebSocket library, maintaining synchronized
sensor and actuator states between the virtual and physical
environments. The Jetson Nano also runs the Robot Oper-
ating System (ROS), which manages the robot’s control
architecture. NVIDIA TensorRT was used to accelerate the

inference of neural networks, while the PyTorch library was
used to train object detection and classification models.
Feeding Simulation Scenarios in Unity
Four scenarios are simulated in Unity to test the control
algorithms for the assistive feeding robot.

Scenario 1: Standard Operation
The robot operates under normal conditions without external
disturbances or unexpected user behavior to measure the
success rate of food delivery, timing, and force accuracy.
The parameters are (1) feeder distance to plate and the
mouth (approximately 10 cm; near), (2) distance to mouth
(medium), (3) lighting (standard indoor lighting), (4) user
behavior (opens mouth as the feeder gets within 15 cm),
and (5) environmental stability (no movement of the table or
plate).

Textbox 1. Input and time-series decomposition.
Parameters

• Degree of freedom (DOF): for the robotic arm (default=4)
• yt−k:t: past states of the robotic arm in time window t−k to t
• straint−k:t: strain gauge data for the same time window
• sonart−k:t: sonar sensor data for the same time window
• camerat−k:t: camera data (.eg, user mouth open or closed)
• ut: optional user input or manual adjustments

Step 1: initialization
• Set the DOFs for the robotic arm (DOF=4).
• Initialize the feed-forward neural network model with multiple layers to extract temporal features.
• Define static parameters (such as arm configuration or user preferences)

Step 2: input
• Collect past states of the arm: yt−k:t = {yt−k, . . . , yt}
• Collect strain gauge data: straint−k:t
• Collect sonar data: sonart−k:t
• Collect camera data: camerat−k:t
• (Optional) receive user input ut for manual adjustments or feedback

Step 3: time-series decomposition
• Decompose past arm states, strain gauge, and sonar data into trend, seasonality, and residuals: trend, seasonality,

residual = decompose(yt−k:t,straint−k:t, sonart−k:t)
Step 4: autoregressive integrated moving average (ARIMA) model

• Fit an ARIMA model to the residuals of the decomposed data: ARIMA_model ← ARIMA(Residual)
• Use the ARIMA model to predict the next state for the residual component

Scenario 2: Delayed User Response
The user delays opening their mouth after the robot delivers
the food, testing the system’s ability to adapt to user behavior.
The parameters are (1) distance to plate (near), (2) distance to
mouth (near), (3) lighting (standard indoor lighting), (4) user
behavior (opens mouth, approximately 1-2 s late), and (5)
environmental stability (no movement of the table or plate).

Scenario 3: Low-Light Conditions
The system operates in low-light conditions, testing the
robustness of the object detection algorithm. Assess object
detection accuracy, success rate, and timing under reduced
visibility. The parameters are (1) distance to plate (medium),

(2) distance to mouth (medium), (3) lighting (dim indoor
lighting; approximately 50 lux), (4) user behavior (opens
mouth as expected), and environmental stability (no
movement of the table or plate).

Scenario 4: Dynamic Environment
The table or plate moves slightly during the robot’s operation,
simulating a dynamic environment, and testing the system’s
ability to adapt to real-time changes in plate position using the
sensor’s feedback and ensure successful food delivery. The
parameters are (1) distance to plate (medium), (2) distance to
mouth (far), (3) lighting (standard indoor lighting), (4) user
behavior (opens mouth as expected), and (5) environmental
stability (plate shifts, 2-3 cm randomly)
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Object Detection and Classification
The robot’s vision system relies on state-of-the-art object
detection techniques, leveraging large datasets and advanced
frameworks. ImageNet, a large-scale image database
organized according to the WordNet hierarchy, was used for
visual object recognition. The system is trained to detect key
objects, such as tables, plates, faces, mouths, and various
fruit types (including apples and strawberries). The ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset
was combined with CNNs for further training.

Since existing datasets were not sufficient for the purpose
(specific tasks), transfer learning was applied. A pretrained
model was fine-tuned using a custom dataset manually
labeled by the research team. The custom dataset was trained
on the Jetson Nano, with models preloaded with 1500 objects
automatically downloaded during the build process. The
system compares real-time captured images with a prebuilt
database of reference images, taken under diverse lighting
conditions and orientations. This ensures robust and accurate
detection of objects and states, even in dynamic environ-
ments.

Predictive Modeling Using ARIMA and
FFNN
Data from sensors generates time-series interactions, serving
as inputs for ARIMA (autoregressive integrated moving
average) and FFNN predictions. These predictions guide the
robotic arm in achieving precise movements and actions.
Time-series decomposition is applied to past states and
sensor data to isolate trends and residuals, with the ARIMA
model predicting the residual component that captures linear
relationships. The FFNN extracts features from the time-
series data, learning nonlinear relationships and temporal
patterns.
Fusion of Time Series Decomposition
With ARIMA and FFNN
To integrate ARIMA into the time-series decomposition
framework, the residual component Rt was modeled with
ARIMA. FFNN was used to capture nonlinear dependencies
and refine predictions. The mean squared error (MSE) and
R² metrics were calculated to evaluate the model’s accuracy,
yielding a combined model MSE of 0.008 and an R2 of 94%.

We first decompose the time series into trend (Tt),
seasonality (St), and residual (Rt), and then apply ARIMA
to model the residuals. This is enhanced by introducing
the FFNN to learn deeper, nonlinear relationships from the
interaction data.

(1)Yt = Tt + St + Rt
where Yt is the observed interaction data at time t (eg,
feeding times and user preferences), Tt is the trend component
(long-term changes in user interaction), St is the seasonal
component (cyclical patterns in user behavior), and Rt is

the residual component (remaining patterns or noise after
removing trend and seasonality).

The residuals Rt are modeled using the ARIMA model:

(2)Rt = φ1Rt − 1 + φ2Rt − 2 +⋯+ φpRt − p+ ϑ1εt − 1 + ϑ2εt − 2 +⋯+ ϑqεt − q + εt
where φ1, . . . , φp are the parameters for the autoregressive
part, which models the dependency of the residuals on their
past values; θ1, . . . , θq are the parameters for the moving
average part, which models the dependency of the residuals
on past forecast errors (shocks or noise); εt is the white noise
(random error term at time t); p is the order of the autoregres-
sive part; q is the order of the moving average part; and d
is the degree of differencing to make the series stationary
(integrated part of ARIMA).

The residuals Rt can also be processed using an FFNN
to further refine the predictions by capturing non-linear and
complex patterns:

(3)RtFFNN = FFNN(Rt − 1, Rt − 2,…, Rt − k)
where FFNN(Rt−1, . . . , Rt−k) represents the application of
the FFNN model on the sequence of past residuals, Rt−k to
Rt−1 for feature extraction and nonlinear modeling, RFFNN

is the refined residual prediction after applying the FFNN
model, and k is the size of the window of past residuals used
as input to the FFNN.

The final combined model is as follows:

(4)Yt = Tt + St + φ1Rt − 1 +⋯+ φpRt − p+ ϑ1εt − 1 +⋯+ ϑqεt − q + εt + RtFFNN
In this framework, the ARIMA model captures the remain-
ing structure in the residuals Rt after removing trend and
seasonality, and the FFNN further refines this by learning
nonlinear dependencies.
Adaptive Learning and Performance
Optimization

Simulation Setup and Evaluation Procedure
Unity simulations were executed over 150 iterations to assess
the system’s learning curve. At each iteration, the robot’s
internal model is updated based on the newly generated data.
Approximately 1000 feeding simulations were conducted in
Unity’s game engine to fine-tune these movements. The
Unity environment allowed precise control over variables,
enabling reproducible testing of different scenarios. MSE
and R2 statistical metrics were computed to evaluate model
performance. ANOVA was used to compare success rates and
timing accuracy across scenarios.

Fuzzy Logic System
A fuzzy logic system was integrated to control the feeder
fork’s actions based on the distance (ultrasonic data), fruit
type (camera), force (load cell), and angle (stepper motor).
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The following rules are: (1) rule 1: if the distance to the plate
is near and the distance to the mouth is medium or far, then
apply normal stabbing force based on the fruit type; (2) rule
2: if the distance to the plate is medium and the distance to
the mouth is near, then reduce the force to avoid overshoot-
ing; and (3) rule 3: if the distance to the plate is far, then do
not proceed with the stabbing action (safety rule). If the fruit
type is apple and the distance to the plate is near, then high
force (20‐30N) is applied with a steep angle (approximately
60◦) for better penetration. If the fruit type is strawberry and
the distance to the plate is near, then a low force (5‐10N)
with a shallow angle (approximately 45◦) is needed to prevent
damage.

A fuzzy logic system regulated the force and angle
adjustments based on food type and distance. First, if the
distance to the plate is near, the distance to the mouth is
medium or far, and the fruit type is apple, then high force
(20‐30N) is applied with a steep angle (60◦). Second, if the
distance to the plate is near, the distance to the mouth is near,
and the fruit type is strawberry, then a low force (5‐10N) is
applied with a shallow angle (45◦).

The operational block diagram of the feeding robot is
shown in Figure 1. It illustrates the integration between the
hardware components (represented by orange dashed boxes)
and the software modules (represented by green dashed
boxes). The top hardware block includes the Jetson Nano,
OpenCR, and Arduino Nano, interfaced with the Pi Cam-
era Module V2.1, HX711 load cell, HC-SR04 ultrasonic
sensor, and XM430-W350R servo motors. These components
collect real-time sensory data to inform feeding decisions.
The software stack comprises TensorRT, PyTorch, and a

CNN trained on ImageNet, which supports object detection
and feature extraction. The control loop is triggered via
a hardware start button, followed by time-series initializa-
tion and standby mode. Two predictive models, FFNN and
ARIMA, work in tandem to drive the feeding logic. The
FFNN handles real-time object and face detection tasks (left:
food pipeline; right: user monitoring), while ARIMA governs
motion planning for food collection and patient feeding. This
closed-loop architecture allows the robot to adapt to user
behavior dynamically, based on synchronized input from all
sensory sources.

The robot operates in 2 primary sequences: scooping
and forking, represented by the green blocks, and feeding,
represented by the orange-colored blocks. Sequence planning
is illustrated using blue arrows for “valid detection” and
orange-colored arrows for “error detection” at each step in
the process. The block diagram also highlights the implemen-
tation of the FFNN in the detection steps and the ARIMA
model in the positioning steps. The robotic arm is equipped
with joint encoders and a force sensor to generate torque
commands that achieve the desired end-effector positions
and orientations. Figure 2 illustrates the hardware setup and
schematic architecture of the feeding robot, along with its
dimensions. Figure 2A is the top view of the robotics arm,
Figure 2B is the top view and Figure 2C is the 3D image
with a corner view. A control system based on IK equations
to execute movements was required for forking food. It
includes the detailed mechanical drawings of the robot arm’s
structure and joint limits. The labeled schematic highlights
each degree of freedom of the arm’s mechanical range and
physical configuration.
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Figure 2. Design and configuration of the assistive robotic feeding arm. (A) 2D schematic of the robot arm showing joint labels, rotational limits, and
key dimensions, including the base Y joint, lower and upper Z joints, and the feeder joint. (B) Top-down orthographic view of the robotic arm layout
for spatial footprint analysis. (C) 3D perspective rendering of the full robotic assembly illustrating joint orientation and end-effector positioning for
feeding tasks.

The controller system was implemented on the physical
robot using an open-source ROS. The system’s physical
components were fabricated using 3D printing and computer
numerical control machining. The camera provided a direct
line of sight for monitoring the food on the plate and the
user’s mouth.
Ethical Considerations
This study was conducted in accordance with ethical
guidelines and received approval from the Anglia Rus-
kin University Research Ethics Committee (approval:
ETH2425-0342). Participant information and consent forms
were obtained before their involvement in the study. This
study exclusively used simulated environments and datasets.
The decision to avoid live participants was made to pri-
oritize safety and ensure reproducibility during the robot’s
development phase. Future work may incorporate user trials
following ethical approval from the National Institute for
Health and Care Research.

Results
After powering on the robot, an initialization subroutine
begins, using stored positioning memory, ARIMA optimiza-
tions, and FFNN refinements. At each step during the robot’s
operation, sensory data were used as training data for the
FFNN and ARIMA models to enhance the patient experience
further. The trained neural network was then used to initialize
subsequent robot startup sequences. Figure 3A shows the
front view of the primary camera in Unity, and Figure 3B
highlights the facial landmarks and distances between points
on the face to identify whether the mouth is open or closed.
Figure 3C presents 2 perspectives: one from the primary
camera and the other from the feeder camera, illustrating the
integration of the object detection algorithm.
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Figure 3. Simulated robotic feeding scenario in Unity. (A) The assistive robot detects the user’s head, mouth, and food position in 3D space using
bounding boxes and landmark features. (B) Real-time mouth state detection, achieved through facial landmarks, distinguishes between open and
closed mouth states to determine feeding readiness. (C) Task environment visualization: left, a full scene of robot-user interaction showing “Mouth:
Closed” status; center, top-down view of the plate with multiple food items; right, bite delivery scene with mouth proximity detection using bounding
box alignment.

The combined ARIMA and FFNN models predict the next
system state to optimize portion size and timing while also
handling sensor-based adjustments. The strain gauge adjusts
pressure for stabbing or scooping food, the sonar sensor
adjusts position and timing based on user proximity, and
the camera ensures the robotic arm only operates when
the user’s mouth is open. This real-time camera feedback
enhances safety and efficiency by adjusting feeding dynam-
ics based on sensor inputs, optimizing the overall feeding
process. Recurring use of the robot by the same patient can
improve response time, reduce delays in sequence execution,
and smooth the robot’s kinematics.

The performance of the feeding robot was evaluated across
4 simulated scenarios, with a focus on success rates, timing
accuracy, and force application. The combined ARIMA

and FFNN models demonstrated significant improvements
in feeding accuracy and personalization. Object detection,
adaptive learning, and statistical validations were conducted
to illustrate system robustness.

Table 2 summarizes the robot’s performance metrics.
Scenario 1 achieved the highest success rate (95%) and the
lowest response time (1.5 s), while scenario 4 demonstrated
adaptability to dynamic environments with a success rate
of 80%. ANOVA revealed significant differences in success
rates across scenarios (F3,146=12.34; P=.002), with scenario
1 (mean success rate of 95%, SD approximately 3.2%)
outperforming scenario 3 (mean success rate of 85%, SD
approximately 4.1%; P=.030) and scenario 4 (mean success
rate of 80%, SD approximately 5.0%; P=.010).
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Table 2. Average performance metrics across scenarios
Metric Scenario 1, mean (SD) Scenario 2, mean (SD) Scenario 3, mean (SD) Scenario 4, mean (SD)
Success rate (%) 95 (approximately 3.2) 90 (approximately 3.8) 85 (approximately 4.1) 80 (approximately 5.0)
Timing accuracy (s) 1.5 (approximately 0.21) 2.0 (approximately 0.32) 2.5 (approximately 0.41) 2.8 (approximately

0.48)
Force application (N) 25 (2) 20 (4) 18 (4) 22 (5)

The four scenarios simulated in Unity to test the control
algorithms for the assistive feeding robot are as follows:

1. Standard operation (scenario 1): the feeding robot
demonstrated optimal performance, achieving the
highest success rate of 95%. The average response time
was 1.5 (SD 0.21) seconds, and the force applied during
the feeding process was exact, remaining within 2 N of
the desired value. This scenario establishes the robot’s
baseline capabilities under normal conditions.

2. Delayed user response (scenario 2): the robot show-
cased adaptability by adjusting its actions when the
user delayed opening their mouth by 1 to 2 seconds.
While the success rate decreased to 90% due to delayed
feedback, the response time increased to 2 seconds
compared to the standard operation. These results
highlight the robot’s ability to manage user-specific
behavior variations effectively.

3. Low lighting conditions (scenario 3): the object
detection system experienced a slight reduction in
precision and recall under dim lighting conditions
(approximately 50 lux). Consequently, the success rate

dropped to 85%, and the response time increased
to 2.5 seconds, reflecting the challenges posed
by reduced visibility. Despite these limitations, the
system maintained a reasonable level of performance,
demonstrating robustness.

4. Dynamic environment (scenario 4): the robot suc-
cessfully adapted to plate movements of 2 to 3
cm, showcasing its real-time recalibration capabilities.
However, this scenario had the lowest success rate at
80% and the highest response time of 2.8 seconds due
to increased task complexity. These results emphasize
the robot’s ability to handle dynamic and unpredictable
conditions.

Table 3 presents the object detection metrics of the system,
including precision, recall, and confidence, across key tasks.
For example, the plate detection precision was 95%, while
the face detection precision reached 97%. These metrics
ensure accurate feeding operations, enhancing user safety and
satisfaction.

Table 3. Object detection metrics
Object Precision (%) Recall (%) Confidence (%)
Plate 95 93 90
Face 97 96 92
Open mouth 92 91 89

The combined ARIMA and FFNN model significantly
outperformed standalone ARIMA and FFNN models. It
achieved the lowest MSE (0.008) compared with 0.015 and
0.012, respectively, and the highest R2 (94%), relative to 85%
and 88%, respectively. These results indicate the superior
capability of the hybrid model to capture user interaction
dynamics.

A fuzzy logic system was used to regulate the force
and angle for food forking. Inputs included plate distance
(ultrasonic), fruit type (camera classification), and resistance
(load cell). Rules were defined for different fruit types:

• Apple: high force (20-30 N), steep angle (approxi-
mately 60°). During operation, the system measured an
average applied force of 24 N (SD 1 N) and an angle of
59° (SD 1°), aligning closely with expectations.

• Strawberry: low force (5–10 N), shallow angle
(approximately 45°). The measured force was 7 N (SD

0.5 N), with an angle of 44° (SD 1°), ensuring minimal
fruit damage and controlled delivery.

Force and angle adjustments were verified by comparing
expected versus measured values recorded by sensors during
the operation.

Figure 4 illustrates the robotic arm in a real-world setting
while performing food targeting, picking, and delivery tasks.
In Figure 4A-B, the apple is successfully forked and picked
up, showcasing the effectiveness of the stabbing mechanism.
Finally, Figure 4C shows the robotic arm delivering the food
to a designated mouth position. This demonstrates the robot’s
operational workflow, covering critical steps of targeting,
stabbing, and delivering food to a target. The experiment
under scenario one yielded an average accuracy rate of 87%
over 50 iterations, emphasizing the system’s reliability and
consistency.
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Figure 4. Operational sequence of the assistive feeding robot during a food delivery task. (A) The robotic arm localizes and targets a food item (apple
slice) for acquisition. (B) The robot successfully pierces and lifts the apple slice using a fork-like end-effector. (C) The arm moves the food toward
the user’s mouth position, demonstrating autonomous bite delivery.

Figure 5 illustrates the iterative improvements in success rate
and response time over 150 iterations in the fourth sce-
nario of the simulated environment. Key parameters analyzed
included stabbing angles, applied forces, and success rates
for apples, demonstrating the robot’s adaptability to vary-
ing conditions. It showed a steady improvement in success
rate, starting at approximately 40% in initial iterations

and stabilizing at 90% after 90 iterations. This progres-
sion underscores the effectiveness of the adaptive learning
approach in optimizing performance. Figure 5 also illustrates
the corresponding reduction in response time, which starts at
3.6 seconds and improves to 2.2 seconds (P<.001), highlight-
ing enhanced efficiency.

Figure 5. Performance improvements across iterations. The red line represents the success rate over 150 iterations. The blue line represents the
reduction in response time over iterations.
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The kinematic response and stability of the robot have
also been enhanced, as demonstrated in Figure 6. Figure
6A illustrates the angular movement of each joint during
a specific motion sequence. In contrast, Figure 6 depicts
the 3D spatial positioning of the actuator during the execu-
tion of the same movement set. Both graphs compare the
optimized system’s performance to the original untrained
control system output. Notable improvements in the robot’s
pathfinding and control system output are evident in both

graphs. In Figure 6A, there is an apparent reduction in the
overshooting and undershooting of servo adjustments needed
to achieve the desired joint angles, minimizing errors and
enhancing precision. These refinements have significantly
reduced the jerkiness in the robot’s arm movements and
diminished vibrations in the final actuator. Consequently,
food delivery to the user is smoother and more controlled,
which underscores the improved kinematic performance and
stability of the robot.

Figure 6. (A) Joint angle trajectories during movement execution show reduced overshooting and undershooting compared to the untrained control
system. (B) The actuator position is in 3D space during the same movement, with an optimized path and control system output. The red line
represents the success rate over 150 iterations, while the blue line represents the reduction in response time over iterations.

Figure 7 illustrates the facial recognition and mouth detection
neural networks integrated into the robot. Using advanced
image recognition techniques. Using a VGG 16 convolutional
network (proposed by the Visual Geometry Group at the
University of Oxford [33]), the robot detects and highlights
the users’ facial features. It determines if they have an open
mouth or not before approaching the user. The neural network
initially separates the user’s face from the background and
then identifies the control volume box where the user’s mouth

is located. Depending on the facial characteristics of a user,
the neural network constantly updates the status of the user
between mouth open and closed. This is a key feature of
the robot that enables it to perform the feeding task relia-
bly, providing a layer of system control within the feeding
sequence. Whenever the user has a closed mouth, the feeding
sequence is halted, waiting for either an override command or
the mouth open status to continue the feeding sequence.
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Figure 7. Mouth state detection using neural network image segmentation. (A) The system detects an open mouth using a region-of-interest (ROI)
around the lips, highlighted in orange. (B) The system detects a closed mouth with a reduced feature response in the ROI, shown with a darker
overlay. This classification supports the robot’s decision-making process for safe and timely food delivery.

Discussion
Principal Findings
In this study, we demonstrated that a hybrid control architec-
ture, combining time-series forecasting (ARIMA), nonlinear
modeling (FFNN), and multisensor feedback, can signifi-
cantly enhance the performance of an assistive feeding robot
in both simulation and physical hardware. Our approach
yielded a combined MSE of 0.008 and an R2 of 94%,
which improved feeding success rates from 75% to 90%
and reduced response times by 28% (from 3.6 s to 2.2 s),
outperforming both ARIMA-only and FFNN-only control-
lers. These results underscore the value of fusing statistical
and machine-learning techniques. ARIMA captures linear
trends in a user’s eating rhythm, while the FFNN models
nonlinear variations, together enabling proactive adjustment
of timing and portion size. The closed-loop integration of
vision-based mouth readiness detection, ultrasonic ranging,
and strain-gauge force sensing further enables the system
to adapt to delayed user responses, diverse food textures,
low-lighting conditions, and plate movements, which are
conditions under which prior passive or semiautonomous
feeders struggle. Our fuzzy logic–driven force and angle
controller also proved effective at tailoring grip strength to
different foods (eg, apples vs strawberries), minimizing spills
and enhancing safety. Compared to legacy systems like My
Spoon and Obi Robot, which rely on fixed trajectories or
manual “teach” modes, our robot autonomously adjusts its
behavior in real-time, reducing caregiver intervention and
improving user autonomy. Despite the promising results,
several limitations remain and will guide future research.
While the Unity simulation enabled rapid iteration and control
benchmarking, it cannot fully replicate the unpredictability
of real-world settings, including table height variability, user
posture changes, and lighting variation.

This study focused on only 2 food types, which lim-
its generalizability to more complex diets involving varied
textures, consistencies, and utensil requirements (eg, soups
or mixed meals). Although the system is designed to operate
autonomously, setup and supervision may still be required.
User-friendly interfaces, minimal daily calibration, and rapid
onboarding for caregivers will be key to adoption. We are
exploring guided setup workflows and voice-driven overrides
to reduce learning curves. Furthermore, no real-user trials
have been conducted, meaning aspects such as user comfort,
adaptability, and long-term acceptance remain unexplored.
To address these limitations, we are transitioning our control
system to a physical robotic arm integrated with the pro-
posed sensor suite. Initial bench-top experiments will assess
trajectory accuracy, timing responsiveness, and force safety
across a broader range of feeding conditions. Following this,
a pilot study involving 3 to 5 individuals with upper-limb
impairments is planned to evaluate comfort, performance, and
real-world usability. By addressing deployment challenges,
including safety, maintenance, training, and personalization,
we aim to ensure that future iterations are not only tech-
nically robust but also clinically viable and user-friendly.
These evaluations will inform iterative improvements and
alignment with clinical standards. Ultimately, our goal is to
deliver a safe, autonomous feeding solution that promotes
independence, comfort, and dignity for individuals with
motor impairments across diverse care environments.
Limitations and Conclusions
In this work, we used simulated environments and data-
sets to validate an adaptive feeding robot that signifi-
cantly advances the state of assistive dining technology.
By integrating time-series forecasting (ARIMA), nonlin-
ear modeling (FFNN), and multisensor feedback (vision,
ultrasonic ranging, and strain-gauge force sensing), our
system anticipates each user’s unique feeding pace. It
dynamically adjusts both timing and force for safe, precise
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spoon-to-mouth delivery. In over 1000 Unity simulations
and on physical hardware, the hybrid controller achieved an
MSE of 0.008 (R2=94%), increased feeding success from
75% to 90%, and reduced response times by 28% (3.6
s-2.2 s; P<.001), outperforming ARIMA-only and FFNN-
only baselines. Despite these promising results, our study
has several limitations. First, performance was primarily
evaluated in simulation; real-world variability, such as
unstructured environments, diverse plate geometries, and
spontaneous user movements, remains to be tested in live
trials. Second, we focused on 2 food types (apple and
strawberry); future work should encompass a broader range of
textures, shapes, and portion sizes. Finally, user acceptance,

comfort, and long-term usability were not assessed; ethical
considerations surrounding autonomy and trust in human-
robot interaction warrant further investigation. Looking
ahead, we plan to conduct clinical pilot studies to evaluate
real-world efficacy and user satisfaction, extend our sensor
suite to include depth cameras and tactile arrays, and explore
advanced forecasting methods (eg, recurrent neural networks
and transformers) for even finer-grained personalization.
By addressing these challenges, we aim to transition from
a laboratory prototype to a robust, user-centered assistive
solution, empowering individuals with motor impairments to
dine independently and with dignity.
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