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Abstract

Background: Surgical site infections (SSIs) are one of the most common health care-associated infections, accounting for
nearly 20% of all health care—associated infectionsin hospitalized patients. SSIs are associated with longer hospital stays, increased
readmission rates, higher health care costs, and amortality rate twice that of patients without infections.

Objective: This study aimed to develop and evaluate machine learning (ML) models for augmenting SSI surveillance after
colon surgery with the goal of improving the efficiency of infection control practices by prioritizing patients at high risk.

Methods: We conducted a retrospective study using data from 1508 patients undergoing colon surgery treated between 2018
and 2023 at a single academic medical center. Of these 1508 patients, 66 (4.4%) developed SSls as adjudicated by infection
control practitioners following Centers for Disease Control and Prevention National Healthcare Safety Network criteria. Data
included 78 structured variables (eg, demographics, comorbidities, vital signs, laboratory tests, medications, and operative details)
and 2 features derived from unstructured clinical notesusing natural language processing. ML model s<strong>—</strong>logistic
regression, random forest, and Extreme Gradient Boosting (X GBoost)<strong>—</strong>were trained using stratified 80/20
train-test splits. Classimbalance was addressed using cost-sensitive learning and the synthetic minority oversampling technique.
Model performance was evaluated using precision, recall, F;-score, area under the receiver operating characteristic curve, and
Brier scores for calibration.

Results: Of the 1508 patients, those who developed SSIs had longer hospital stays (mean 8.1, SD 6.8 days vs mean 6.3, SD
10.5 days, P<.001), higher rates of an American Society of Anesthesiologists scoreof 3 (52/66, 79% vs 653/1442, 45.3%; P<.001),
and elevated white blood cell counts (51/66, 77% vs 734/1442, 50.9%; P<.001). XGBoost achieved the best overall performance
with an area under the receiver operating characteristic curve of 0.788, precision of 50%, recall of 38%, and Brier score of 0.035.
Random forest yielded perfect precision (100%) but lower recall (23%), with aBrier score of 0.034. Logistic regression showed
the highest recall (46%) but the lowest precision (10%), with a Brier score of 0.139. Feature importance analysis using Shapley
additive explanations (SHAP) values revealed that the top predictors included recovery duration (SHAP=1.18), SSI keyword
frequency (SHAP=1.12), patient age (SHAP=1.12), and American Society of Anesthesiologists score (SHAP=0.94), with natural
language processing—derived features ranking among the top 10.
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Conclusions: ML models can augment traditional SSI surveillance by improving early identification of patients at high risk.
The XGBoost model offered the best trade-off between discrimination and calibration, suggesting its utility in clinical workflows.
Incorporating structured and unstructured el ectronic health record data enhances model accuracy and clinical relevance, supporting

scalable and efficient infection control practices.

(JMIR Form Res 2025;9:€75121) doi: 10.2196/75121
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Introduction

Methods

Background

Surgical siteinfections (SSIs) areasignificant category of health
care—-associated infections, representing a serious challenge to
health care systems worldwide. SSIs are estimated to account
for nearly 20% of al health care-associated infections among
hospitalized patients [1]. In the United States, SSIs occur in
approximately 2% to 4% of patients undergoing inpatient
surgical procedures[2]. SSIs can lead to severe complications,
including increased morbidity, extended hospital stays, higher
readmission rates, and increased health care costs, ultimately
impacting patient outcomes and putting a strain on health care
resources[3-5]. Thefinancial burden of SSIsissubstantial, with
associated costs reaching billions of dollars annually. SSIs are
the third most costly type of health care-acquired infection,
with an estimated cost of US $20,785 per patient case [6].
Patients with SSIs have a mortality rate twice that of patients
without infections [7].

The current surveillance process for SSIsisresource intensive,
requiring manual chart reviewsby infection control practitioners
to monitor surgica procedures and screen for potential
infections. This manual surveillance is time-consuming and
labor intensive and detracts from direct patient care [8]. The
Centers for Disease Control and Prevention (CDC) National
Healthcare Safety Network (NHSN) has established
comprehensive guidelines to support the systematic tracking
and identification of SSIs; yet, the manua workload remains
significant [9].

Several studies have applied machinelearning (ML) and natural
language processing (NLP) to improve the detection and
prediction of SSIs. These approaches have shown promise in
automating surveillance and improving accuracy by using
structured and unstructured clinical data. However, previous
research has largely focused on retrospective detection rather
than prospective prediction, relied on limited data sources, or
failed tointegrate both structured and unstructured data[10-13].

Objectives

To addressthese limitations, our study introduces an ML-based
surveillance tool designed to enhance SSI monitoring. By
integrating structured data and clinical notes, our approach
improves detection efficiency and accuracy. Automating
surveillance through ML reduces the burden on infection control
practitioners, allowing them to focus on patients at high risk
and critical tasks, ultimately improving patient outcomes and
optimizing resource allocation.

https://formative.jmir.org/2025/1/€75121

Ethical Considerations

This study was reviewed by the University of Massachusetts
Chan Medica School (UMass Chan) Institutional Review Board
and deemed exempt under institutional guidelines for quality
improvement. As aretrospective analysis of existing electronic
health record (EHR) data with no patient contact, informed
consent was not required. The institutional review board
confirmed that secondary use of clinical datadid not necessitate
additional consent. All data were deidentified in accordance
with HIPAA (Health Insurance Portability and Accountability
Act) and anayzed within a secure, access-controlled
environment at UMass Chan. Only authorized personnel had
access to the data. No identifiable patient information appears
in images or supplementary materias; all figures are fully
anonymized.

Data Extraction and Preparation

Data for this study were extracted from the UMass Chan Data
Lake, which is a copy of the Epic Clarity EHR system at the
hospital and refreshes weekly. This data repository comprises
2.5 million unique patients since November 2017. We focused
on patients who underwent colon surgeries between 2018 and
2023, identified using Current Procedural Terminology (CPT)
codes according to the NHSN guidelines. Our cohort included
1508 procedures, with 66 (4.4%) confirmed SSI cases.

Cohort Inclusion and Exclusion Criteria

Weidentified all adult patients (aged =18 years) who underwent
colon surgery at the University of Massachusetts Memorial
Medical Center between January 1, 2018, and December 31,
2023, using CPT procedure codes per NHSN guidelines. Patients
wereincluded if they were aged =18 years at thetime of surgery,
underwent elective or urgent colon resection procedures (CPT
codes 44140-44160 and 44204-44208), and had available
postoperative follow-up data for at least 30 days. We excluded
patients with noncolon procedures or combined multiorgan
resections, those with missing critical EHR data (eg, American
Society of Anesthesiologists [ASA] score, surgery date, or
outcome label), and patients who were deceased before
completion of the 30-day postoperative surveillance window.
After applying these criteria, 1508 unique procedures remained
for analysis.

Outcome Labeling and Gold Standard

All SSI labels were assigned by the hospital’s infection
prevention and control (IPC) team according to CDC NHSN
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criteria. Each postoperative patient who underwent colon surgery
ismanually reviewed daily by IPC specialists, who screen charts,
microbiology reports, wound assessments, and nursing notes
against the NHSN definitions. Ambiguous cases areflagged for
discussion at a weekly consensus meeting with at least 2 IPC
specialists and a supervising epidemiologist, and final SSI
determinations are made through consensus. The | PC department
also conducts monthly peer audit exercisesto ensure consistency
with NHSN standards.

Celik et &

To ensure clinical relevance, infection control nurses provided
input during the term selection processfor clinical noteanalysis
and validated the model’s outputs against real-world clinical
scenarios. The dataset included 78 structured variables, such as
demographics, medications, laboratory test results, and medical
histories (Table 1). In addition, 2 variables—SS| keyword count
and SSI negation term count—were derived from unstructured
clinical notes using NL P techniques.

Table 1. Candidate predictors used to train machine learning models in a retrospective cohort study of postoperative surgical site infection (SSI) after
colon surgery at the University of Massachusetts Memorial Medical Center (Worcester, Massachusetts, United States) from January 1, 2018, to December

31, 2023.
Datadomain Data points
Demographics Gender, race, ethnicity, age, alcohol usage and smoking status
Comorbidities Obesity, cancer, diabetes, immunological disease, depression, dementia, anemia, heart failure, AIDS, and & cohol
Encounters Total stay days and inpatient stay
Laboratory tests Hemoglobin, culture, white blood cell count, and C-reactive protein
Medications Antibiotics, immunosuppressants, and steroids
Patient Patient ID and patient encounter |D
Surgery details Surgery class, surgery procedure code, physician | D, number of procedures, surgery duration, surgery recovery duration,
department, room number, wound status, anesthesia type, ASA?score, incision closure, and SSI
Vital signs BMI

NL P°-derived features SSI_Keyword and SSI_Negation

SSI keywords
“abscess,” and “infection”

“Fever,” “nausea,” “vomiting,” “pain,” “tenderness,” “odynophagia,” “dysphagia,” “ hypotension,” “jaundice,” “dysuria,”

8ASA: American Society of Anesthesiologists.
BNLP: natural language processing.

Unstructured Data Processing

Specifically, we used the spaCy library (Explosion Al) [14] for
tokenization and named entity recognition to identify relevant
keywords associated with SSIs, such as “redness,” “swelling,”
“drainage,” and “purulent discharge” Negation detection was
conducted using the NegEx algorithm [15], which allowed us
to determine whether an identified keyword was negated in the
context of the clinical note. For example, “no signs of infection”
or “denies fever” would be identified as negated terms. These
NLP tools enabled us to accurately quantify the occurrence of
SSl-related terms and their context within the notes.

Infection-related termswerefirst extracted fromthe CDC NHSN
SSI surveillance criteriaand then reviewed and finalized by IPC
nurses—who conduct daily chart surveillance—to ensure
relevanceto our colon surgery population. No formal statistical
testing was conducted on theterm list. All SSI related keywords
were curated and validated by the IPC nurses based on daily
practice. While transformer-based embeddings (eg, BioBERT)
may capture richer linguistic patterns, we deferred their use
because our IT department could not approve deployment of
large language models in the current infrastructure. These
contextual methods will be explored in follow-up work.

https://formative.jmir.org/2025/1/€75121

Data Processing and Feature Engineering

Data preprocessing involved imputing missing values in
numerical columns using column-wise means, one-hot encoding
categorical variables, and validating datatypesfor compatibility
with ML agorithms. The dataset was processed using the Python
pandas library [16] and then deployed to a secure workspace,
the Platform for Learning Health System environment at UM ass
Chan, for further analysis[17].

After median imputation of numerical variables and one-hot
encoding of categorical variables, the dataset expanded to 150
featuresin total: the original 78 numerical inputs, 2 NLP-derived
counts, and 70 dummy variables from one-hot encoding. For
the logistic regresson model, we then generated all
second-degree polynomial interaction terms, yielding 11,325
featuresin the final matrix used for model fitting.

To better understand the relative impact of different
imbal ance-handling techniques, we conducted an abl ation study
on al 3models (logistic regression, random forest, and Extreme
Gradient Boosting [ XGBoost]). Three strategies were compared:
cost-sensitive approach only by applying class weights
(class weight=balanced for tree and linear models and
scale pos weight for XGBoost), oversampling only via 1:1
random upsampling of the minority (SSI) class in the training
set, and oversampling combined with cost-sensitive approaches.
Pipelines for each strategy were retrained and evaluated on the
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same held-out test set (n=302), and metricsincluding precision,
recall, F;-score (for the SSI class), area under the receiver
operating characteristic curve (AUC-ROC), and Brier score
were recorded.

M odel Development

The dataset was split into training (80%) and validation (20%)
sets using stratified sampling to maintain the class distribution.
To address class imbalance, we applied cost-sensitive learning
[18] and the synthetic minority oversampling technique
(SMOTE) [19]. SMOTE works by creating synthetic examples
of theminority class by interpolating between existing i nstances,
thereby balancing the class distribution in the training set.

We developed 3 ML models: logistic regression [20], random
forest [21], and XGBoost [22]. Each model was chosen based
on specific strengths—logistic regression for interpretability,
random forest for handling complex interactions, and X GBoost
for efficient structured data analysis.

Logistic regression was chosen due to its simplicity and
interpretability, which allows health care professionas to
understand the relationships between features and outcomes,
making it useful for clinical decision-making. Random forest
was selected for its ability to handle complex featureinteractions
and itsrobustnessin managing missing data, making it effective
for capturing nonlinear patterns in the dataset [23]. X GBoost
wasincluded for itshigh predictive performance and efficiency,
particularly with structured datasets, and its ability to handle
imbalanced data effectively through boosting techniques.

For logistic regression, we used L 2 regul arization [24] to prevent
overfitting and applied polynomial features (adding interaction
terms between features) to capture potential nonlinear
relationships in the data. For random forest, we optimized the
number of trees, maximum depth, and minimum samples per
leaf to ensure robustness. We used the same feature set for all
models, including the polynomial features, to ensure a fair
comparison. For XGBoost, we tuned hyperparameters such as
learning rate, maximum depth, and regularization parameters
through grid search using cross-validation [25].

M odel Calibration

To assess thereliability of each model’s predicted probabilities
inaclinical context, we conducted both quantitative and visual
calibration analyses on the held-out test set. We computed the
Brier score (using scikit-learn’s [Google Summer of Code]
brier_score loss function), which measures the mean squared
difference between predicted probabilities and observed
outcomes (lower=better calibration). We aso generated
calibration (reliability) plotsviascikit-learn’s calibration_curve
function, dividing predictionsinto 10 equal-width bins, and for
each bin, we plotted the mean predicted probability against the
observed SS| rate, overlaying the 45° line to represent perfect
calibration. All cdibration calculations were conducted in
Python (version 3.8; Python Software Foundation) using
scikit-learn (version 1.0).

M odel Evaluation

Because SSIsrepresent only approximately 4% of cases, overall
accuracy can be misleading. Therefore, we report precision,

https://formative.jmir.org/2025/1/€75121
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recall (sensitivity), F;-score, and AUC-ROC as our primary
performance metrics for the minority class, with accuracy
included only for compl eteness.

To assess performance stability, we performed 5-fold stratified
cross-validation on the training set and report each metric's
mean and SD.

Performance metrics, including precision, sensitivity (recall),
specificity, F;-score, and AUC-ROC, were calculated to
comprehensively evaluate model performance, especialy given
theimbalanced nature of the dataset. Sensitivity and specificity
help assessthe model’s ability to correctly identify positive and
negative cases, respectively, whereas the AUC-ROC offers an
overall measure of discriminative performance. Thefinal models
were validated on the reserved 20% of the dataset to assesstheir
generalizability.

Results

Study Population and Char acteristics

A total of 1508 patients met the inclusion criteria (n=66, 4.4%
with SSIs and n=1442, 95.6% without SSIs). Table 2 presents
the comprehensive characteristics of the study population
comparing patientswith and without SSIs. Thetableisorganized
into demographic, clinical, surgical, and medication-related
variables to facilitate interpretation (Multimedia Appendix 1).

Demographically, patients with SSIs were significantly older
(mean age 61.1, SD 8.9 years, P=.01) than those without SSIs
(mean age 58.5, SD 15.4 years), with most SSI cases (38/66,
58%) occurring in the category of 61 to 80 years. A higher
proportion of female individuals developed SSls (43/66, 65%
Vs 765/1442, 53.1% in the non-SSI group), although this
difference did not reach statistical significance (P=.07).

The ASA score [26] differed significantly between groups
(P<.001), with asubstantially higher percentage of patientswith
SSIs having an ASA score of 3 (52/66, 79% vs 653/1442,
45.3%), indicating greater preoperative risk and comorbidity
burden. Patients who developed SSIs showed a higher
preval ence of several comorbidities, including diabetes (17/66,
26% vs 265/1442, 18.4%; P=.18), depression (17/66, 26% vs
296/1442, 20.5%; P=.18), anemia (24/66, 36% vs 423/1442,
29.3%; P=.28), hypertension (36/66, 55% vs 655/1442, 45.4%;
P=.18), and chronic kidney disease (9/66, 14% vs 123/1442,
8.5%; P=.23), although these differences individually did not
reach statistical significance.

Surgical and procedural characteristics revealed important
differences. Patients who developed SSls underwent longer
surgeries (mean duration 262.5, SD 137.3 min vs 229.9, SD
103.6 min), had a significantly higher number of procedures
(mean 1.7, SD 1.1 vs 1.4, SD 0.7; P=.02), and experienced
substantially longer hospital stays (mean 8.1, SD 6.8 days vs
6.3, SD 10.5 days; P<.001). Wound classification showed
significant variation, with contaminated wounds being more
common in the SSI group (27/66, 41% vs 397/1442, 27.5%;
P=.03) and clean-contaminated wounds being less common
(24/66, 36% vs 799/1442, 55.4%; P=.004).
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L aboratory and medication factors al so demonstrated significant
associations with SSI devel opment. Abnormal white blood cell
(WBC) countswere significantly more common in patientswith
SSlIs (51/66, 77% vs 734/1442, 50.9%; P<.001), defined as
WBC counts of >11 before surgery. Steroid use, categorized as

Celik et &

receiving any steroid within 12 months before surgery, was
significantly higher in the SSI group (55/66, 83% vs 846/1442,
58.7%; P<.001). All patients who developed SSIs had received
antibiotics.

Table 2. Bivariate comparisons of patient, operative, |aboratory, and medication characteristics by 30-day National Healthcare Safety Network—defined
surgical site infection (SSI) status in a retrospective single-center cohort of patients undergoing colon surgery at the University of Massachusetts
Memorial Medical Center (Worcester, Massachusetts, United States) from 2018 to 2023. Only variables with P<.05 are shown.

Variable No SSI (n=1442) SSI (n=66) P value
Age (y), mean (SD) 58.5 (15.4) 61.1(8.9) .01
ASA?score of 3, n (%) 653 (45.3) 52 (78.8) <.001
Contaminated wound, n (%) 397 (27.5) 27 (40.9) .03
Length of stay (d), mean (SD) 6.3 (10.5) 8.1(6.8) <.001
WBC® flag—high, n (%) 734 (50.9) 51 (77.3) <.001
Steroid use, n (%) 846 (58.7) 55 (83.3) <.001

8ASA: American Society of Anesthesiologists.
BWBC: white blood cell.

Imbalance Handling and Ablation Study Results

To evaluate the effectiveness of different approaches for
handling class imbalance in our dataset, we performed an
ablation study that compares three strategies: cost-sensitive
learning, random oversampling, and a combination of both

techniques. Each strategy was applied to all three ML models
(logistic regression, random forest, and X GBoost) and evaluated
on the same held-out set to ensure fair comparison. The results
of thisablation study are presented in Table 3, which showsthe
performance metrics for each model and strategy combination.

Table 3. Ablation study comparing class imbalance-handling strategies—cost-sensitive learning, random oversampling, and their combination—for
predicting 30-day National Healthcare Safety Network—defined surgical site infections after colon surgery in a retrospective single-center cohort
(University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States, 2018-2023).

Model and strategy Precision (%) Recall (%) F1-score AUC-ROC? Brier score
Logistic regression
Cost-sensitive learning 9.84 46.15 0.162 0.709 0.143
Oversampling only 10.34 46.15 0.169 0.704 0.140
Oversampling+cost-sensitive learning 10.34 46.15 0.169 0.704 0.140
Random forest
Cost-sensitive learning 100 15.38 0.267 0.776 0.032
Oversampling only 100 15.38 0.267 0.777 0.031
Oversampling+cost-sensitive learning 100 15.38 0.267 0.777 0.031
XGBoost”
Cost-sensitive learning 57.14 30.77 0.400 0.719 0.036
Oversampling only 41.67 38.46 0.400 0.758 0.043
Oversampling+cost-sensitive learning 41.67 38.46 0.400 0.758 0.043

8AUC-ROC: area under the receiver operating characteristic curve.
bX GBoost: Extreme Gradient Boosting.

Model Performance and Calibration

Table 4 summarizes each model’s precision, recall, F;-score,

and AUC-ROC for SSI detection asmeansand SDsfrom 5-fold
cross-validation alongside Brier scores on the held-out test set.
Accuracy was high for all models but less informative given

https://formative.jmir.org/2025/1/€75121

the 4.4% (66/1508) SS| rate. Confusion matirces for al three
models on the held-out test are shown in Figure 1.

In terms of discrimination, XGBoost achieved the highest
AUC-ROC (0.788), followed by random forest (0.778) and
logistic regression (0.706; Figure 2). Regarding calibration,
random forest and XGBoost both exhibited low Brier scores
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(0.034 and 0.035, respectively), indicating well-calibrated
probability estimates, whereas|ogistic regression’shigher Brier
score (0.139) reflects moderate miscalibration (Figure 3).

Among the 3 models, XGBoost demonstrated the highest
AUC-ROC score (0.788) and F;-score (0.43), suggesting the

best overall discriminative ability and balance between precision

Celik et &

and recall. The random forest model showed perfect precision
but lower recall, indicating that it was highly conservative in
predicting SSIs. Logistic regression had the highest recall but
the lowest precision, suggesting that it was more liberal in
flagging potential SSI cases but at the cost of many false
positives.

Table 4. Model performance for predicting 30-day National Healthcare Safety Network—defined surgical site infections after colon surgery in a
retrospective single-center cohort (University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States; 2018-2023)2

Model Precision (%), mean (SD) Recall (%), mean (SD) F4-score, mean (SD) AUC-ROC®, mean (SD) Brier score
Logistic regression 10.7 (3.9) 56.0 (18.5) 0.18 (0.06) 0.775 (0.059) 0.139
Random forest 80.0 (40.0) 11.1(6.8) 0.19 (0.11) 0.756 (0.046) 0.034
XGBoost® 40.0 (17.0) 20.5 (8.6) 0.27 (0.11) 0.735 (0.059) 0.035

8Five-fold stratified cross-validation results are shown; Brier scores were computed on the 20% held-out test set.

PAUC-ROC: area under the receiver operating characteristic curve.
®X GBoost: Extreme Gradient Boosting.

Figure 1. Confusion matriceson the 20% held-out test set for the logistic regression, random forest, and Extreme Gradient Boosting (X GBoost) models
predicting 30 day National Healthcare Safety Network—defined surgical siteinfections (SSIs) after colon surgery in aretrospective single-center cohort
(University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States; 2018-2023; N=1508 with 66/1508, 4.4% SSIs).
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Figure 2. Receiver operating characteristic (ROC) curves on the 20% held-out test set for the logistic regression, random forest, and Extreme Gradient
Boosting (XGBoost) models trained to predict 30-day National Healthcare Safety Network—defined surgical site infections following colon surgery in
aretrospective single center cohort (University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States; 2018-2023). Area
under the ROC curve values summarize discrimination. AUC: area under the curve.
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Statistical Comparison of Area Under the Curve

To formally assess whether observed area under the curve
(AUC) differences were significant, we conducted a paired
bootstrap analysiswith 1000 resamples of thetest set. The 95%
Clsand P valuesare shownin Table 5. All intervals overlapped,
and both pairwise P vaues exceeded .05, indicating no
statistically significant differences between X GBoost and the
other models.

Celik et &

Becauseall intervals overlapped substantially and both P values
exceeded .05, we conclude that the small observed AUC
differences were not statistically significant. These results
support our interpretation that XGBoost and random forest
performed equivalently in discriminating SSI risk and that
XGBoost's edge over logistic regression did not reach
significance under bootstrap testing.

Table 5. Statistical comparison of model areas under the curve (AUCS) via paired bootstrap (1000 resamples) on the 20% held-out test set in a
retrospective single-center study predicting 30-day National Healthcare Safety Network—defined surgical siteinfections after colon surgery (University
of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States; 2018-2023).

AUC (95% CI) P value
LR? 0.706 (0.538-0.850) b
RF¢ 0.778 (0.588-0.935) —
XGBY 0.788 (0.607-0.933) _
XGB vsLR — 50
XGB vsRF — .79

3_R: logistic regression.

BNot applicable.

°RF: random forest.

dX GB: Extreme Gradient Boosting.

Feature Importance (Shapley Additive Explanations

Analysis)

Table 6 lists the top 10 features by mean absolute Shapley
additive explanations (SHAP) value for the XGBoost model,
demonstrating the influence of both structured EHR variables
and our NLP-derived metrics on SSI risk prediction.

Feature importance analysis revealed that the most predictive
factors for SSI risk included ASA score, patient age, wound

classification (particularly contaminated wounds), steroid use,
and laboratory indicators such asWBC count. The NL P-derived
features (SSI keyword count and negation term count) also
contributed significantly to the models’ predictive performance,
highlighting the value of incorporating unstructured clinical
notes in SSI risk assessment. Notably, ssi_keyword (rank 2)
and ssi_negated (rank 7) were among the top predictors—on
par with established clinical features such asage and ASA score.

Table 6. Top 10 predictors of 30-day National Healthcare Safety Network—defined surgical site infections (SSIs) after colon surgery based on mean
absolute Shapley additive explanations (SHAP) values from the final Extreme Gradient Boosting model trained on the retrospective single-center cohort
(University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States; 2018-2023)a.

Rank Feature SHAP value, mean (SD)
1 surgery_minutes_in_recovery 1.1761
2 ssi_keyword 1.1217
3 surgery_patient_age 1.1188
4 asa_score 0.9354
5 surgery_minutes in_or 0.7716
6 average_bmi 0.7397
7 ssi_negated 0.7311
8 surgery_physician_id_E8779 0.4223
9 length_of_stay 0.3408
10 patient_gender_female 0.3100

Predictors include structured electronic health record features (eg, American Society of Anesthesiologists score, operative times, BMI, and length of
stay) and natural language processing—derived features from clinical notes (SSI keyword and negation counts).
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Discussion

Principal Findings

This study aimed to develop and evaluate ML models for the
early prediction of SSIs following colon surgery using both
structured EHR data and unstructured clinical notes. Our main
findings show that ML models, particularly XGBoost, can
effectively augment traditional surveillance practices by
providing well-calibrated, discriminative risk predictions that
prioritize patients at high risk. Among the models tested,
XGBoost demonstrated the best balance between precision and
recall (AUC-ROC=0.788; precision=50%; recal|I=38%), whereas
random forest achieved perfect precision at the cost of low
sensitivity (recall=23%).

A more detailed analysis reveals that each model has specific
strengthsthat may suit different clinical priorities. The XGBoost
model providesapractical compromise between sensitivity and
specificity, whichisideal for resource-limited infection control
teams aiming to balance workload and risk. Random forest’'s
high precision makes it suitable for contexts in which false
positives must be minimized, whereas|ogistic regression offers
higher recall but risks overburdening staff due to its lower
precision. Our findings are consistent with those of previous
literature in emphasizing the importance of model calibration
for real-world implementation; the low Brier scores for both
XGBoost and random forest suggest reliable probability
estimates that can guide clinica triage. Furthermore, the
integration of NLP-derived features—such as SSI keyword
frequency and negation detection—significantly improved
predictive performance, with these variabl es ranking among the
top 10 predictors by SHAP value. This supports previous work
[27,28] on the added value of unstructured clinical data in
infection surveillance, but our study differs by using these data
prospectively—Il everaging information avail able before infection
onset—rather than relying on retrospective documentation after
SSlIs have aready occurred.

Previous studies have al so demonstrated strong performancein
SSl identification using ML but with important methodol ogical
differences. One study using NLP achieved a sensitivity and
positive predictive value of 97% for SS| detection [29] but relied
on postinfection clinical notes, limiting its utility for early
intervention. Another study applied logistic regression and
tree-based models to preoperative blood test results, achieving
an AUC of 86% [30], although it used amore balanced dataset
and focused narrowly on laboratory values. In contrast, our
approach emphasizes prospective prediction using only
preinfection data and incorporates a broader set of
features—including operative and demographic characteristics
and unstructured clinical text—to support earlier, more
comprehensive risk assessment and real-time clinica
deployment. This multimodal integration increases the
generalizability and interpretability of our model, making it
better suited for prospective deployment within existing clinical
workflows.

To support clinical adoption, we propose embedding the model’s
SSI risk scores directly into the EHR’s surveillance dashboard.
Each morning, the model generates risk scores for al patients

https://formative.jmir.org/2025/1/€75121
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undergoing colon surgery, automatically flagging those above
a configurable threshold (eg, the top 10%). Flagged patients
appear on an IPC nurse worklist for prioritized chart review,
focusing on vital signs, wound assessments, and microbiol ogy.
The threshold can be adjusted based on operationa
capacity—for example, flagging the top 5% during busy periods
or expanding to 15% during lower volume. Nurse adjudications
(SSI vsno SSl) are fed back into the system to support model
retraining and recalibration over time. This workflow focuses
human effort on high-risk cases, enhances surveillance
efficiency, and remains adaptable to fluctuating staffing or
patient volumes.

Limitations

Our evaluation showed that SMOTE was more effective than
cost-sensitive learning inimproving model performance for the
minority class, increasing recall by approximately 15% while
maintaining similar precision. However, both approaches still
exhibited some bias toward the mgjority class, particularly the
random forest model. The severe classimbalancein our dataset
(only 66/1508, 4.4% were SS| cases) presents a significant
challenge for model devel opment and evaluation. Although we
used techniques to address this imbalance, the models
performancein identifying positive cases remained suboptimal,
as evidenced by the modest recall values. Future work could
explore advanced synthetic generation methods [31] to address
severe classimbalance.

Due to the severe class imbaance, feature importance
scores—particularly from tree-based models—may be driven
primarily by patternsin the mgjority (non-SSl) class. Although
we applied both SMOTE and cost-sensitive learning to mitigate
this imbalance before model training, readers should interpret
importance rankings with caution. In future work, we plan to
explore class-specific importance measures (eg, SHAP values
stratified by outcome) to obtain a more balanced view of
predictors for the minority class.

In addition, the use of retrospective data from a single health
care center may introduce biases related to specific patient
populations and clinical practices, potentially limiting the
generalizability of the results. The predictive factorsidentified
in our specific setting might not hold the same importance in
other hedth care environments with different patient
demographics, surgical practices, or infection control protocols.

Furthermore, our approach to processing unstructured clinical
notes was limited to keyword counting and negation detection.
More sophisticated NL P techniques such as embedding-based
methods or transformer models might yield better feature
extraction and, ultimately, enhance predictive performance
[32-34].

Conclusions

This study demonstrates that ML models can enhance SSI
surveillance by helping clinicians prioritize patients at high risk.
Our ML-based tool, which integrates structured EHR data and

unstructured clinical notes, offers a scalable approach toimprove
monitoring efficiency.
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Among the models evaluated, XGBoost provided the best
balance of precision, recall, and calibration, although each model
presents unique strengths suited to different clinical needs. By
triaging patients based on predicted risk, the tool can reduce
manual workload and support more timely, targeted
interventions to improve patient outcomes.

Whilethispilot study shows proof of concept, broader validation
isneeded to ensure generalizability and clinical utility. We plan

Celik et &

training. Performance will be assessed through calibration,
discrimination, and operational impact metrics.

Beyond technical refinement, thiswork underscoresthe potential
of artificial intelligence—driven tools to transform infection
surveillance from reactive monitoring to proactive, risk-based
care. Future efforts should focus on handling class imbalance,
improving NL P feature extraction, and ensuring model reliability
through post hoc calibration and multisite validation.

to partner with other ingtitutions using the Observational
Medica Outcomes Partnership Common Data Model and
federated learning to enable privacy-preserving, cross-site model

Ultimately, this research advances the responsible and scalable
integration of artificial intelligence into clinical workflows to
support more targeted, efficient infection prevention.
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