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Abstract

Background: Many mental health conditions (eg, substance use or panic disorders) involve long-term patient assessment and
treatment. Growing evidence suggests that the progression and presentation of these conditions may be highly individualized.
Digital sensing and predictive modeling can augment scarce clinician resources to expand and personalize patient care. We discuss
techniques to process patient data into risk predictions, for instance, the lapse risk for a patient with alcohol use disorder (AUD).
Of particular interest are idiographic approaches that fit personalized models to each patient.

Objective: This study bridges 2 active research areas in mental health: risk prediction and time-series idiographic modeling.
Existing work in risk prediction has focused on machine learning (ML) classifier approaches, typically trained at the population
level. In contrast, psychological explanatory modeling has relied on idiographic time-series techniques. We propose state space
modeling, an idiographic time-series modeling framework, as an alternative to ML classifiers for patient risk prediction.

Methods: We used a 3-month observational study of participants (N=148) in early recovery from AUD. Using once-daily
ecological momentary assessment (EMA), we trained idiographic state space models (SSMs) and compared their predictive
performance to logistic regression and gradient-boosted ML classifiers. Performance was evaluated using the area under the
receiver operating characteristic curve (AUROC) for 3 prediction tasks: same-day lapse, lapse within 3 days, and lapse within 7
days. To mimic real-world use, we evaluated changes in AUROC when models were given access to increasing amounts of a
participant’s EMA data (15, 30, 45, 60, and 75 days). We used Bayesian hierarchical modeling to compare SSMs to the benchmark
ML techniques, specifically analyzing posterior estimates of mean model AUROC.

Results: Posterior estimates strongly suggested that SSMs had the best mean AUROC performance in all 3 prediction tasks
with ≥30 days of participant EMA data. With 15 days of data, results varied by task. Median posterior probabilities that SSMs
had the best performance with ≥30 days of participant data for same-day lapse, lapse within 3 days, and lapse within 7 days were
0.997 (IQR 0.877-0.999), 0.999 (IQR 0.992-0.999), and 0.998 (IQR 0.955-0.999), respectively. With 15 days of data, these
median posterior probabilities were 0.732, <0.001, and <0.001, respectively.

Conclusions: The study findings suggest that SSMs may be a compelling alternative to traditional ML approaches for risk
prediction. SSMs support idiographic model fitting, even for rare outcomes, and can offer better predictive performance than
existing ML approaches. Further, SSMs estimate a model for a patient’s time-series behavior, making them ideal for stepping
beyond risk prediction to frameworks for optimal treatment selection (eg, administered using a digital therapeutic platform).
Although AUD was used as a case study, this SSM framework can be readily applied to risk prediction tasks for other mental
health conditions.
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Introduction

Data-driven psychological modeling methods can help
researchers leverage increasingly available patient data to better
understand and treat pressing mental health conditions [1-3].
In parallel, digital interventions introduce new, low-burden
treatment pathways to patients [4,5]. Together, these
advancements give providers exciting new tools for low-barrier,
personalized risk monitoring and treatment, which are core
elements of continuing care for chronic mental health conditions
[6]. Continuing care is an important recovery support for chronic
conditions, such as alcohol use disorder (AUD) and other
substance use disorders (SUDs) [7,8], but is underavailable and
underutilized [9]. Novel approaches are needed to close this
gap.

Advances in personal sensing have spurred new modeling
approaches by empowering researchers to collect rich
longitudinal patient datasets [10]. Ubiquitous mobile devices,
such as smartphones and wearables, increase both the types and
quantities of available measurements. Diary-type methods, such
as ecological momentary assessment (EMA) [11], have long
been an important way to gather in situ measurements of a
patient’s experience or mental state, and this type of active data
collection has been made easier by the prevalence of mobile
devices [12]. In addition to actively queried measurements like
EMA, researchers can also use mobile devices to gather patient
data passively, such as physiological measurements or a patient’s
GPS location. The explosion of data availability has led
researchers to examine mental health conditions in more
quantitative ways through 2 (often parallel) perspectives:
explanation-focused modeling and prediction-focused modeling.

Explanation-focused modeling has largely turned to time-series
methods to better understand the dynamics of different mental
health conditions [13], sometimes explicitly focused on
identifying causal mechanisms [14]. This line of research has
generated a rich set of modeling approaches, typically using
various forms of network analysis or structural equation
modeling [15-23]. These approaches create mathematical models
that explain variations in individual patient behavior over time,
often implemented as multilevel models that separate
group-level and person-specific model effects. Implicit in this
separation is the notion of an idiographic-nomothetic spectrum
[24-27]. While some behaviors may be well-described by
nomothetic principles that hold on average across a population,
there is no guarantee that those principles will apply well to a
particular individual. Importantly, there is evidence suggesting
that the presentation and progression of many mental health
conditions are meaningfully individualized (eg, in mood
dynamics [28,29], suicidal thoughts [30], depression [31], and
panic disorder [32]). These examples emphasize the importance
of personalized modeling approaches that can capture
person-specific heterogeneity. Note that here we use
“idiographic” synonymously with “personalized” and
“person-specific,” describing when separate models are fit to

each individual, even if group-level information is incorporated
into the patient’s model in some way. Under a strict definition
of idiographic, such a model might be better described as
“idiothetic” [33]. For our purposes, the important distinction is
whether each participant has a separate model.

In contrast to explanatory modeling, prediction-focused
modeling emphasizes building models that predict behavior
well, even if doing so does not necessarily give insights into
the underlying behavior-generating process [34]. For instance,
many mental health conditions exhibit high-acuity binary
outcomes (eg, lapse in individuals with SUDs, suicidal ideation,
panic attacks, binge eating, etc) that fit naturally into a machine
learning (ML) prediction framework. ML classifier methods
like logistic regression (LR) or gradient boosting models have
used digital sensing data to successfully predict, for example,
patient risk for AUD lapse or binge eating [6,35-38]. This type
of risk assessment is an important component of successful
patient intervention. In situations where treatments may be
costly or scarce, such as appointments with clinicians, accurate
patient risk assessment could help direct treatment resources to
high-risk individuals. In settings like digital therapeutics, where
intervention costs and resource scarcity are less relevant,
accurate risk assessment could inform the urgency, intensity,
or type of a just-in-time adaptive intervention [4].

However, ML classification approaches have 2 important
drawbacks with respect to idiographic risk prediction. First, it
is difficult to fit classifier models idiographically when outcomes
are rare, so they are often fit at the population level instead. In
the most extreme case, an exclusively person-specific model
cannot be fit at all until the positive outcome label (eg, lapse)
is observed. In practice, a person-specific classifier model might
not show adequate performance until it can train on a sufficient
number of positive outcomes, at which point it may no longer
be relevant (eg, a person with SUD would likely have already
relapsed). These concerns can sometimes be alleviated by
modifications to incorporate prior or group-level information,
such as Bayesian estimation or multilevel modeling, depending
on the classifier approach being used.

The second drawback of classifier methods, however, is entirely
structural: they are not time-series methods. Classifier models
are trained only to make a prediction for a particular outcome,
such as the probability of a patient lapsing today, and thus, they
do not give insights into how a patient’s behavior will evolve
over time. If a clinician is also interested in a patient’s lapse
risk for other time windows (eg, tomorrow or within the next
week), a separate classifier model must be trained for every
such circumstance. While this type of predictive capability is
clearly important, our broader goal is to use quantitative
modeling to inform personalized treatment recommendations.
This involves understanding “what treatment, by whom, is most
effective for this individual with that specific problem under
which set of circumstances” [39]. Models that output a single
predictive risk score provide limited insights into these
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questions. A dynamic model describing how relevant aspects
of a patient’s state of mind evolve over time would be much
more helpful. Time-series models directly capture these
behavioral dynamics as part of model fitting and can be used
to produce risk scores (eg, by simulating trajectories of patient
behavior, including responses to different treatment approaches).
Time-series models are thus better integrated into intervention
planning frameworks to optimize long-run patient outcomes.

We advocate combining these explanation- and
prediction-focused research areas by using idiographic,
time-series models for prediction. Specifically, we propose the
use of an approach called state space modeling that supports
fitting person-specific time-series models of patient behavior.
State space models (SSMs) originate from the field of control
engineering and share much in common with structural equation
modeling and network analysis. We believe that SSMs are
particularly well-suited for idiographic modeling as they focus
specifically on modeling the behavior of a single subject (for a
deeper discussion of commonalities and differences between
structural equation models and SSMs, see [40]).

To demonstrate how SSMs can be applied to personalized
mental health prediction, we use the setting of predicting lapse
for individuals with AUD as a case study. We provide an
overview of state space modeling and present a framework for
fitting person-specific SSMs for AUD lapse prediction with
longitudinal EMA observations. We compare the predictive
performance of SSMs to that of commonly used ML classifiers
and demonstrate that this idiographic, time-series approach can
have comparable or better predictive performance than ML
approaches used in the literature. As part of this analysis, we
explicitly characterize how predictive performance changes
when more data are available for each study participant. This
is an important practical consideration for the real-world use of
personalized models. Further, we discuss how the SSMs we
propose are readily integrated into advanced personalized
intervention frameworks. Lastly, we discuss how the SSM
frameworks presented here can be similarly applied to other
mental health conditions beyond AUD, such as anxiety and
panic disorders, depression, and suicidal ideation.

Methods

Ethical Considerations
This study conducted analyses to address the second aim of a
larger grant-funded parent project (R01 AA024391). This parent
effort collected the study data between 2017 and 2019. The
University of Wisconsin-Madison Institutional Review Board
approved all procedures (IRB #2015-0780). All study
participants provided written informed consent prior to their
participation. Study consent documentation is provided in a
persistent repository (see [41]) on Open Science Framework
(OSF). To protect participant data privacy, the parent study that
collected these data received a Certificate of Confidentiality
from the National Institutes of Health. Further, no identification
of individual data is possible from this manuscript or
supplementary materials. We do not present individual patient
data; all data are presented for the complete population using a
deidentified version of the original dataset. Participants were
compensated up to approximately US $800, depending on
measure adherence (see Section S2 in Multimedia Appendix
1).

Transparency and Openness
We adhere to research transparency principles that are crucial
for robust and replicable science. Data, analysis scripts,
annotated results, measures, preregistration of the hypotheses
and analysis plan (see [42]), and other study materials are
publicly available at our OSF repository (see [41]). We report
how the sample size, all data exclusions, all manipulations or
procedures, and all study measures were determined. Measures
and procedures that were collected as part of the parent project
but were not relevant to this study have been described in [6,43].
We also provide a transparency report [44] in Multimedia
Appendix 2 and a biomedical ML checklist [45] in Multimedia
Appendix 3.

Recruitment
We analyzed 148 study participants in early remission from
AUD (1-8 weeks of abstinence). Participants were recruited
from Madison, Wisconsin and surrounding communities through
print and targeted digital advertisements and partnerships with
treatment centers. The requirements for inclusion are provided
in Textbox 1. For additional information regarding recruitment,
please refer to the study design documentation available on OSF
(see [41]) and in the parent study [6].

Textbox 1. Criteria for inclusion in the parent project.

Inclusion criteria

1. Age ≥18 years

2. Ability to write and read English

3. Presence of at least moderate alcohol use disorder (≥4 symptoms from the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition,
measured with a self-report survey during a screening visit)

4. Abstinence from alcohol for at least 1 week but no longer than 2 months

5. Willingness to use a single smartphone (their personal phone or one provided to them) while enrolled in the study

Alcohol abstinence was used as a behavioral indicator of a
commitment to recovery. Although recovery may be possible

without complete abstinence, clinicians typically recommend
abstinence for patients who present with moderate or more
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severe AUD. Individuals were excluded if they exhibited severe
symptoms of psychosis or paranoia, defined as scores greater
than 2.2 or 2.8, respectively, on the psychosis or paranoia scales
in the Symptom Checklist-90 [46]. The sample size for the
parent project was determined based on power analyses for its
broader set of aims. The authors of the parent project determined
preliminary eligibility by phone and completed screening and
obtained written informed consent at a subsequent in-person
screening visit. The study period for each participant lasted up
to 3 months, beginning with an instructional intake visit, which
was followed by in-person visits every 30 days.

Measures
The study collected baseline demographics and participant
characteristics relevant to alcohol use at the screening and intake
visits. Participants completed brief EMAs (7-10 questions) 4
times each day following prompts sent by text messages. These
text messages included a link to a Qualtrics survey that was
optimized for completion on their smartphones. All EMAs
contained a common set of 7 questions asking about any alcohol
use that had not yet been reported, current affective state
(pleasantness and arousal), greatest urge to drink alcohol since
the last EMA, any pleasant or positive events and any hassles
or stressful events that occurred since the last EMA, and any
exposure to risky situations (ie, people, places, or things) since
the last EMA. The first EMA each day (the “morning EMA”)
asked 3 additional questions about how likely participants were
to encounter a risky situation, encounter a stressful event, and
drink alcohol in the upcoming week. A copy of the morning
EMA is available on OSF [41].

Although the parent study collected up to 4 EMAs per
participant each day over the 3-month study period, we believe
that 1 EMA per day represents a more realistic sensing burden
for real-world implementation, especially for situations where
patients might be followed for longer time periods [43,47].
Accordingly, we chose to compare models built using only 1
EMA response from participants each day, specifically the
morning EMA. We chose the morning EMA as it contained the

most informative set of questions and occurred at a similar time
near the beginning of each participant’s day. The first EMA
question was used to report past alcohol consumption, leaving
9 Likert-style questions for analysis. Note that all 4 daily EMAs
were used, along with in-person follow-up visits, to collect
self-reported lapse (ie, outcome label) information, but only the
Likert-style questions from the morning EMA were used as
inputs in our modeling. We do not believe this has a practical
impact on our findings, as a future implementation could
equivalently collect the same lapse information using only 1
EMA per day. The original study [6] had 151 participants, but
we excluded 3 participants who responded to fewer than 25%
of the morning EMAs during their study period, leaving 148
participants for analysis.

Labels and Prediction Tasks
For each participant, we constructed binary labels indicating if
the participant drank alcohol each day. Days began and ended
at 4 AM. If the participant self-reported alcohol use during this
interval, the day was labeled as 1; otherwise, it was labeled as
0. As all study participants stated a goal of abstinence, any use
of alcohol was inconsistent with their goals. For brevity, we
refer to any such goal-inconsistent use as a lapse. We established
the 4 AM start and end time for each day to align better with
the waking hours between periods of sleep. For instance, if a
participant’s study began on January 1 and they experienced a
lapse at 2 AM on January 2, this lapse would be included as
part of day 1 in their study. For 2 participants who typically
woke up before 4 AM, study days were defined to begin and
end at 3:30 AM.

To provide a richer view of how well each method assesses
participant risk, we compared the predictive performance of the
methods on 3 lapse prediction tasks ranging from same-day to
week-long windows, as given in Textbox 2. Window-style
predictions were only generated for days where the window
was contained entirely within the participant’s study period (ie,
for a participant with a 90-day study, 7-day window predictions
were only made up to day 83).

Textbox 2. Prediction tasks.

Given a participant’s ecological momentary assessment data from day 1 to day t and lapse data from day 1 to day t–1, our models made lapse predictions
for 3 intervals of increasing length:

1. Predict the risk of lapse on day t (same-day lapse prediction)

2. Predict the risk of lapse occurring on any day between day t and day t+3, inclusive (lapse within 3 days)

3. Predict the risk of lapse occurring on any day between day t and day t+7, inclusive (lapse within 7 days)

State Space Modeling
SSMs are equations that describe how a system changes over
time. This framework comes from the field of control
engineering and was critical, for instance, in the navigation and
control of rockets in the Apollo space program [48,49]. Since
then, the same modeling framework has proven valuable in
many domains, such as ecology (eg, modeling wildlife
population dynamics [50]) and psychology (eg, modeling
affective mood dynamics [51]). State space modeling has many
commonalities with structural equation modeling [40], often

used for explanatory psychological modeling, but typically
focuses on modeling the dynamics of a single subject.

The “state” of a system is something that usually cannot be
observed directly. For a rocket, this might be its exact position
or speed. In ecology, it could refer to the true size of an animal
population. For more abstract systems, such as those in
psychology, it might describe the intensity of a particular
emotion or some other mental construct. The core insight of
SSMs is the separation of a process model from an observation
model. The process model governs how that system state
changes over time, while the observation model describes how
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we can gather, often noisy, measurements of the system state.
For a physical system like a rocket, the process model would
be the relevant laws of physics, while the observation model
would come from the noisy sensors we use to measure the
system. For psychological systems, the correct, causal process
model may not be known, and discovering or defining such a
model is not the focus of this study. Instead, we seek to
demonstrate that simple models can be good approximations
for complex psychological processes and can thus be useful for
patient risk assessment.

In our state space modeling, the unobserved state (also called
the hidden or latent state) can be thought of as representing a
set of mental constructs, relevant to lapse, that evolve from one
day to the next. We cannot observe these constructs directly
and instead rely on passively or actively sensed data from the
participants. In this study, we observed the participants’
responses to 9 EMA questions each morning and their lapse

behavior each day. For each study participant, we defined 2 key
equations: the observation equation and the transition (or
process) equation.

The observation equation mathematically defines the
relationship between the quantities we cannot observe (the
participant’s mental states) and those that we can observe (how
they respond to EMAs and whether they lapse). The transition
equation describes how the hidden state evolves over time. In
our modeling, time steps are discretized as days of the study
period. Figure 1 provides a visualization of the modeling
framework. Note that this representation is a more general
formulation of other autoregressive models, such as vector
autoregression, that model observed quantities as functions of
previously observed quantities. SSMs readily handle missing
data without the need for deletion or imputation, as measured
quantities are used for inference about the hidden state and not
directly to predict future observations.

Figure 1. Visual representation of state space modeling for this alcohol use disorder study, following the time series for a single participant from day
1 to the end of their study period (day T). This modeling framework explains observable quantities (ie, a participant’s lapse decision and ecological
momentary assessment [EMA] responses each day) in terms of hidden states (ie, the participant’s state of mind) that change over time. The observation
equation explains how the participant’s hidden state produces EMA responses and lapses each day, while the transition equation explains how the hidden
state evolves from one day to the next.

Many different equation structures are possible under the broad
framework of SSMs. More complex equation structures may
better describe the underlying processes but can become more
difficult or even intractable to fit. We use a simple structure for
the observation and transition equations: linear dynamics with
b noise. This formulation is a common approximation and has
convenient mathematical properties. Concretely, let yt be the
response to a particular EMA question on day t and xt be the
hidden state on that day. This gives the following equations:

yt = axt + c + vt (observation equation) (1)

xt+1 = bxt + d + wt (transition equation) (2)

where vt and wt represent independent, zero-mean Gaussian
noise at each time step. Concretely, this structure states that on
day t, the response to an EMA question (or the chance of lapse)
is a linear function of the participant’s current hidden mental
state plus random noise. The participant’s mental state the
following day, t+1, is a separate linear function of their current
mental state plus random noise. More generally, the observable
quantities (EMA responses and lapse behavior) are expressions
of the hidden state (mental constructs relevant to lapse), which
evolve noisily over time. Model fitting identifies the joint
“story” (ie, the observation and transition equations) that best

explains the individual’s observed behavior over time.
Predictions are straightforward to obtain by simulation, for
instance, by “playing forward” the transition equation over the
desired horizon and passing the state quantities through the
observation equation. For additional details, see Section S3.5
in Multimedia Appendix 1.

Note that this approach is inherently personalized, as the
parameters a, b, c, d, and noise variance are estimated separately
for each participant rather than for the overall population. All
participants have the same linear-Gaussian model structure, but
the parameters are estimated individually to create a
personalized model that best explains their observed behavior.
Importantly, since these fitted equations directly use the
observed EMA responses and lapse values, this approach does
not require the manual creation of features. We detail the vector
forms of these equations used to model all 9 EMA questions
and lapse in Section S3 in Multimedia Appendix 1.

Fitting SSMs of this form is computationally inexpensive, so it
is feasible to improve parameter estimates over time by refitting
the model for each participant with each new day of available
data. A common approach for fitting such models is maximum
likelihood estimation (MLE) [52]. MLE identifies the parameters
that best explain the participant’s behavior, but this approach
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is problematic for model fitting with rare outcomes. If a
participant has never been observed to lapse, the best fitting
parameters will be those that suggest they will not lapse in the
future either. To address this, our modeling uses a Bayesian
fitting approach called maximum a posteriori estimation [53],
which incorporates prior distributions for the model parameters.
The resultant fit is one that best explains both the participant’s
observed data and the parameter priors, leading to models that
better anticipate lapse risk even when the participant has never
before lapsed. When limited data for the participant are
available, the fit relies heavily on the prior distributions for the
model parameters. The influence of these prior distributions
diminishes as more data become available and the model fit
primarily reflects the participant’s data. The prior distributions
used in this paper were found by fitting models using MLE on
the full trajectories of other participants within this studied
cohort, gathering the set of estimates for each parameter, and
fitting well-behaved distributions to those parameter sets. For
a detailed explanation, see Section S3.6 in Multimedia Appendix
1.

Note that this approach combines idiographic and nomothetic
principles. For instance, fitting a model to each participant is

fundamentally idiographic, but this process incorporates
nomothetic principles as well. First, this approach assumes that
the behavior of all participants can be well-approximated by a
common linear-Gaussian model structure built from observations
of the same set of EMA questions. Further, we incorporate
information from other participants through the parameter prior
distributions. These priors are built from the results of MLE
model fits for other participants. This means that we begin by
assuming that participants behave similarly (ie, have similar
parameter values) but personalize these model fits as data for
each participant become available. We provide thorough
descriptions of SSM fitting, implementation, prediction, creation
of priors, and limitations in Section S3 in Multimedia Appendix
1.

Benchmark ML Methods
We compared SSM performance to that of LR and gradient
boosted classifiers. LR was implemented using Scikit-learn
[54], and gradient boosting was implemented with extreme
gradient boosting (XGB) [55]. Both LR and XGB used a
common feature set given in Textbox 3 and the lapse labels
described previously.

Textbox 3. Features used in the logistic regression and extreme gradient boosting models.

Features

• Day of the week: Expressed as one-hot encoding for each day of the week. One of the 7 Booleans was dropped for logistic regression to avoid
collinearity issues.

• Most recent ecological momentary assessment (EMA) responses: The ordinal responses to the most recent available morning EMA, scaled to
[0,1]. As noted previously, the first morning EMA question dealt with reporting previous lapses, so these features correspond to the 9 ordinal
responses provided from EMA questions 2-10.

• Short-run mean of EMA responses: The average of the participant’s responses in the 3 most recent available morning EMAs (9 questions), scaled
to [0,1]. Fewer EMAs were used to calculate these features when 3 EMAs were not available.

• Long-run mean of EMA responses: The average of the participant’s responses to all available morning EMAs in their study period up to the
current day (9 questions), scaled to [0,1]. For the data availability analysis, this average was calculated using smaller intervals (eg, the most recent
15 days of data).

• Recent lapses: Three Booleans indicating whether the individual had lapsed on any day in the last 1, 3, and 5 days.

Given the difficulty of fitting classification models for rare
outcomes, these models were fit at the population level. On one
hand, this is a fundamentally nomothetic approach as it creates
1 model mapping features to risk for the entire population.
However, this approach allows for some measure of
personalization through the model’s features. For instance, by
including calculations of short- and long-run mean values for
each EMA question as features, the model can capture risk
associated with deviations from an individual’s baseline
response level. For additional technical details, see Section S4
in Multimedia Appendix 1.

Fitting Procedures
The SSMs in this study are time-series models trained for each
participant, meaning they have inherently different fitting
procedures than the population-trained benchmark ML
classifiers. This section describes the idea of data availability
used to assess the impact of model personalization and explains
the fitting procedures used for each method.

Data Availability
A model’s ability to personalize to an individual becomes
relevant as more of that individual’s data become available. The
SSMs are explicitly personalized, with a separate model fit to
each participant. While the benchmark ML classifiers are fit at
the population level, they allow for limited personalization
through feature construction. We evaluated the impact of model
personalization on performance by varying what we call “data
availability,” which is the number of days of EMA data available
to a model from the test participant. For the benchmark ML
models, this meant varying the number of days of EMA data
available for feature construction. For the SSMs, which were
trained separately for each individual, this meant varying the
number of days of data used to train the model. To make this
notion more concrete, we provide examples in the training
procedures below for each model type.

LR and XGB
LR and XGB were trained and evaluated using 15 repeats of
5-fold nested cross-validation. In each repeat, the dataset was
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divided into 5 participant-stratified folds. We relied on
scikit-learn’s StratifiedGroupKFold function [54]. This function
forms folds such that the overall proportion of positive labels
is similar across folds, and all data for each participant are
contained in exactly 1 fold. Each fold was used once for testing,
with the remaining 4 folds used for hyperparameter tuning and
model training. We tuned model hyperparameters by grid search,
using 5-fold participant-stratified cross-validation nested within
the training folds. Additional details regarding hyperparameter
tuning can be found in Section S4.2 in Multimedia Appendix
1. The model was refit on the training folds using the best
performing hyperparameters and tested on the held-out fold. To
assess how the performance of LR and XGB changed with
respect to data availability, we created separate featurizations
for the test fold using 15, 30, 45, 60, and 75 days of data
availability. For example, the 15-day test set included only study
days from day 15 onward, and its features were constructed
with only the most recent 15 days of data (ie, the long-run
average EMA features for day 70 included only data from study
days 56-70). In contrast, the 45-day featurization for day 70
used data from days 26-70 to calculate long-run average values.
These alternative featurizations were used only at test time and
not for model training. Models were trained using the full study
periods of all participants in the training folds.

Approach Involving SSMs
The SSMs were fitted using the same 15 repeated 5-fold
cross-validation splits as the LR and XGB models. However,
SSMs differ from population-trained models in that they are
idiographic, with a different model trained for each participant.
For each iteration within a cross-validation repeat, fitting
proceeded as follows. Data from the participants in the 4 training
folds were used to create prior distributions for the SSM
parameters. We then fit an idiographic model to each participant
in the test fold using their EMA and lapse data. To assess how
the SSMs performed with respect to data availability and provide
a direct comparison to LR or XGB predictions, we used rolling
training periods of fixed length (15, 30, 45, 60, and 75 days).
Figure 2 provides a diagram illustrating this fitting procedure.
This fitting process created a set of predictions from the SSMs
that was directly comparable to the LR or XGB predictions.
While the fitting procedures differed between models, they had
access to the same data and made predictions for the same set
of tasks each day. For example, consider the 15-day case. Each
model type produced predictions for each participant’s study
day from day 15 onward. For the SSMs, predictions were made
with models trained on the most recent 15 days of EMA and
lapse data. For LR and XGB, the models were trained on
participants from the 4 training folds and tested using the 15-day
featurizations of EMA and lapse data.

Figure 2. Illustration of the data availability fitting procedure used for state space models in this study. Data availability refers to the amount of the
participant’s data that is available to use when training the model. As an example, this graphic considers 15 days of data availability, leading to models
trained with data from days 1-15, 2-16, 3-17, and so on. The red bracketed case describes the scenario where a model is trained on ecological momentary
assessment data from days 4-18 and lapse data from days 4-17. The trained model is used to make a same-day lapse prediction for day 18 and 2
window-style predictions for day 18 (ie, a lapse between days 18-21 and 18-25). This fitting procedure is repeated for each participant for different data
availabilities (15, 30, 45, 60, and 75 days).

Statistical Analysis of Model Comparisons
Although fitting procedures differed between the models, they
generated predictions that could be used to directly compare
model performance. We gathered all predictions made for each
test fold to create a receiver operating characteristic curve and
summarized performance using the area under the receiver
operating characteristic curve (AUROC) [56]. We focused our
analysis on AUROC because we plan to directly use the

continuous probability scores output by the models to inform
treatment strategies and not to make a classification decision
involving a particular decision threshold. However, other
performance metrics, for instance, the area under the
precision-recall curve (AUPRC), provide additional value in
interpreting model performance [57]. For all assessments
presented in terms of AUROC, we provide comparable
assessments by AUPRC in Section S6.3 in Multimedia Appendix
1.

JMIR Form Res 2025 | vol. 9 | e73265 | p. 7https://formative.jmir.org/2025/1/e73265
(page number not for citation purposes)

Pulick et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We compared the models using Bayesian hierarchical modeling
[58,59] to quantify uncertainty in different aspects of the
experiments, namely separating uncertainty in mean model
AUROC performance from uncertainty in the cross-validation
process. In this approach, the AUROC performance of a model
on cross-validation repeat i and test fold j was modeled using
a generalized linear model with a logit link function as follows:

where bi is a cross-validation repeat intercept, cij is a
fold-within-repeat intercept, β is the model type’s mean AUROC
performance, and εij is zero-mean Gaussian noise. This structure
implies that each method has logit-transformed Gaussian mean
AUROC performance, but that the mean is shifted based on the

specific repeat and fold of the cross-validation process. The
repeat intercept implies that, across all models, the test folds
within a given repeat are expected to show similar AUROC
performance since the training folds share large amounts of
training data. The fold-within-repeat intercept reflects that
common AUROC trends are expected for each test fold (ie,
easier or harder across all methods). Analysis was performed
using the TidyPosterior package [60]. Additional details are
provided in Section S5 in Multimedia Appendix 1.

Results

Study Cohort Demographics
The collected demographic information for the study cohort is
provided in Table 1.

Table 1. Demographic information of the alcohol use disorder study participants considered in our modeling (N=148).

ValueCharacteristic

40.8 (11.9)Age (years), mean (SD)

Sex, n (%)

76 (51.4)Male

72 (48.6)Female

Race, n (%)

3 (2.0)American Indian/Alaska Native

2 (1.4)Asian

7 (4.7)Black/African American

129 (87.2)White/Caucasian

7 (4.7)Other/Multiracial

Hispanic, Latino, or Spanish origin, n (%)

4 (2.7)Yes

144 (97.3)No

34,249 (31,517)Personal income (US$), mean (SD)

8.6 (31.0)Number of quit attempts, mean (SD)

8.8 (1.8)DSM-5a alcohol use disorder symptom count, mean (SD)

aDSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition.

EMA Adherence and Lapses
We measured EMA adherence as the proportion of study days
that each participant completed a morning EMA. The
distribution of adherence across the study population is shown

in Figure 3. Lapses were relatively rare, with approximately
7.5% of study days containing lapses across the study
population. The distribution of total lapses by participants in
the study period is shown in Figure 4.
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Figure 3. Histogram describing the distribution of ecological momentary assessment (EMA) adherence for the complete study cohort. We characterize
adherence as the proportion of study days that each participant responded to the EMA after being prompted each morning. The median adherence was
approximately 0.86.

Figure 4. Histogram describing the distribution of total lapses during the study for the study cohort. Specifically, this histogram summarizes the fraction
of the study cohort that reported each number of total lapses for the complete study period. Note that nearly 45% of participants reported no lapses
during the study. The median lapse count for a participant was 1.
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Lapse Prediction Performance
Figure 5 shows the posterior mean AUROC performance
obtained from Bayesian hierarchical modeling across prediction
tasks and data availability.

Plots of the raw AUROC values from repeated cross-validation
are provided in Section S6.1 in Multimedia Appendix 1. Table
2 provides a particular summary of the posterior distribution,
specifically the posterior probability that SSMs had the best
mean AUROC across all methods. These probabilities were

calculated by drawing posterior samples of model performance
from the Bayesian hierarchical model and identifying the
fraction of samples with mean AUROC performance for the
SSMs greater than that for LR and XGB. Note that additional
posterior summaries discussed in the OSF preregistration are
available in Section S5.3 in Multimedia Appendix 1.

Section S6.3 in Multimedia Appendix 1 contains plots and tables
for AUPRC, which are analogous to those presented here for
AUROC.

Figure 5. Plots of posterior mean area under the receiver operating characteristic curve (AUROC) performance for 3 prediction tasks and 3 model
types (state space model [SSM], logistic regression [LR], and extreme gradient boosting [XGB]). Medians are marked with dots, and 95% credible
intervals (CrI) are provided as error bars. Each panel describes performance on a different prediction task (ie, same-day lapse, lapse within 3 days, and
lapse within 7 days). The values reported for the 3 models at each x-value (number of days of data availability) are offset slightly by method for easier
viewing of the median and CrIs. Note that there is substantial correlation between the performance of the different models in the posterior samples,
making visual ranking comparisons using the CrIs incomplete. Model ranking is instead assessed by a separate summary calculation of posterior samples
that accounts for this correlation.

Table 2. A summary of state space model performance (posterior probability that the state space models had the highest mean area under the receiver
operating characteristic curve across all methods) relative to the benchmark methods for each prediction task and amount of data availability.

Data availability (days)Prediction task

7560453015

0.9950.9990.7600.9990.732Same-day lapse

0.9990.9990.9850.999<0.001Lapse within 3 days

0.9990.9990.9130.997<0.001Lapse within 7 days

Discussion

Principal Findings
We noted excellent performance across the tested methods, and
our findings echo the sentiment of previously cited works
[6,35-38]. The use of predictive modeling has the potential to
meaningfully improve clinical treatment for AUD through
accurate and automated risk assessment. Specifically, the
experiments provide strong posterior evidence that SSMs can
outperform existing ML approaches for AUD lapse prediction.

Figure 5 provides a coarse visual summary of mean AUROC
performance, showing that the SSMs generally displayed higher
mean performance than the benchmark methods. More formally,
we rank-ordered the methods for each level of data availability
using the posterior samples from our Bayesian hierarchical
modeling. Table 2 provides the posterior probabilities that the

SSMs had the best mean AUROC among all 3 assessed model
types. We found strong evidence that, given 30 or more days
of data availability, the SSMs outperformed the LR and XGB
models. This held across all 3 prediction types, with the
difference between the SSMs and LR or XGB models typically
growing as data availability increased. There was significant
posterior correlation between the mean AUROC performance
of the different models. This explains why we obtained strong
posterior evidence for the SSMs outperforming the other
methods, even when there was overlap in the credible intervals
for mean model AUROCs (Figure 5). A deeper discussion of
this posterior correlation is provided in Section S6.2 in
Multimedia Appendix 1.

More broadly, these results suggest a threshold of data
availability occurring between 15 and 30 days of data
availability, which divides 2 relevant performance regimes.
Above this threshold, we noted uniformly better performance
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across all tasks using the SSMs as compared to the benchmarks.
Below this threshold, the performance results were mixed, with
posterior estimates suggesting the SSMs had better same-day
prediction performance but worse performance than the
benchmark classifiers on longer prediction window tasks. We
believe that this performance trend reflects the fact that SSMs
are idiographic (training a unique model for each participant).

In the regime of low data availability (ie, only 15 days of data
for a given participant), SSMs have very little patient-specific
information to personalize a model beyond the initial parameter
priors. SSMs estimate a model of each participant’s time-series
behavior, and this single model generates predictions for all
tasks by simulating trajectories of the behavior over 1, 3, or 7
days. This means that errors in the participant’s estimated model
can be magnified when making predictions for longer time
windows, likely explaining the poorer performance of SSMs
on the latter prediction tasks.

As data availability increases, however, idiographic SSMs have
more flexibility than population-trained ML benchmarks to
capture the nuances of each participant’s behavior. Since a
unique model is trained for each participant, it can learn
personalized patterns of behavior without impacting predictive
performance for the rest of the population. Once a critical
amount of participant data is available, the benefits of
personalization dominate and SSMs outperform benchmark
approaches across all tasks.

These performance differences highlight the importance of
idiographic modeling for AUD lapse risk. If there were no
meaningful heterogeneity in the presentation of AUD symptoms
and lapse behavior, we would not expect to see a gap between
idiographic and population-trained models. Further, AUD is a
chronic, relapsing condition calling for continuing care for
months or years. While population-trained models may have
superior performance in the initial weeks of observation
(depending on the prediction task), the vast majority of treatment
would occur in a regime of data availability favoring idiographic
SSMs.

Extensions to Intervention Frameworks
Beyond improved predictive performance, the use of SSMs
enables exciting new approaches to treatment selection. SSMs
build an approximate dynamic system model for how an
individual’s state of mind evolves over time. Using this, we can
draw on powerful mathematical tools like control theory [61-65]
to guide treatment decision-making. Control problems have 3
core components: a system model, a set of possible actions to
take, and a defined objective. For example, in the case of
automobile cruise control, the control task is to choose the
amount of acceleration or braking to comfortably maintain a
particular speed or distance from a neighboring vehicle. Critical
to calculating the optimal action is the dynamic system model,
which describes how the vehicle will respond to a given amount
of acceleration or braking [13].

With an approximate system model for a patient’s state of mind,
we can apply a similar approach to treatment decisions. Using
a digital therapeutics platform, a patient submits an EMA each
morning. In response, the platform could automatically provide

a risk estimate and a treatment recommendation to best support
the patient’s recovery (eg, performing a mindfulness or
treatment-related exercise, recalling a particular strategy to
control craving, meeting a supportive friend for lunch, providing
a reminder to avoid high-risk locations, etc). This type of
automated support, which considers the personalized factors
driving each patient’s risk, is a promising way to expand and
improve care.

In principle, one could construct this type of
treatment-recommendation platform using the benchmark
classifier models, but SSMs offer a few specific advantages.
First, as time-series models, SSMs allow for treatment
recommendations that take the individual’s behavioral dynamics
into account. In control theory, this notion is called planning.
Choosing the optimal action considers both the state of the
system today and how the system might evolve in the future
(including its response to today’s chosen action). Interventions
that myopically address factors causing elevated lapse risk today
might be suboptimal choices to support the patient’s long-term
recovery. As classifier models do not model the time series
dynamics of a patient, they do not support this type of principled
treatment selection.

Second, since SSMs are trained separately for each patient, they
can capture the effectiveness of a treatment for an individual
patient rather than for the overall population. To make this
concrete, we recall the SSM transition equation. This equation
describes how an individual’s hidden mental state (x) evolves
over time, for instance, from day t to day t+1. Treatments would
be included as additive terms in the transition equation:

A γ term is added to the right-hand side and signifies the
treatment effect of the chosen intervention. This treatment effect
may differ between individuals and is thus an important
consideration for how to optimally recommend treatments. Just
as the parameters related to the individual’s behavioral
dynamics, such as b and d here, are better estimated over time,
we can similarly learn the personalized value of each treatment
(γ) as additional patient data are collected. Note that this
approach extends to cases where multiple possible interventions
are considered. This would be expressed as a summation of
distinct treatment effect terms (γi), each multiplied by a binary
decision variable reflecting the choice to recommend that
treatment, such that only the selected treatments impact the
patient’s system dynamics.

Further, a critical consideration in implementing effective digital
therapeutic interventions is patient engagement [66]. The SSMs
presented here can be augmented to include a state representing
the participant’s capacity for engagement. This would allow
the model to consider how engagement evolves over time and
to incorporate this information in the treatment selection
problem. For instance, a higher burden treatment exercise might
only be effective when the patient has the mental capacity to
engage fully with it, compared to when they are stressed or
overwhelmed. By including engagement dynamics in the patient
model, the digital therapeutic platform could better recommend
treatments to support patient recovery.
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Clinical Interpretability of Modeling Approaches
Broadly, we believe that SSMs have the potential to provide
improved clinical interpretability over the tested benchmark
approaches, specifically through their personalization and the
modeling of patient dynamics. To make these notions more
concrete, we consider interpretability approaches for each model
type.

LR models offer significant interpretability, as a clinician can
directly evaluate fitted model coefficients to understand how
input features impact risk assessment, and further examining
the patient’s specific covariates surrounding lapses can provide
insights into what factors are driving lapse risks for a particular
patient. Importantly, however, these interpretations are limited
when models are fit at the population level, as the model
coefficients are not necessarily representative of an individual
patient.

Boosted tree-based models like XGB typically offer improved
predictive performance but are less directly interpretable than
an LR model. To understand which features are driving a
patient’s risk, a clinician might employ feature explainability
tools like Shapley values [67]. These provide a way to assess
the contribution of a particular feature (or groups of features)
to predictions. Similar to LR, these values are somewhat limited
when models are fit at the population level rather than to
individuals.

SSMs are similar to LR models in that a clinician can directly
examine coefficient values within the observation equations to
see how particular mental constructs affect lapse risk. Analyzing
specific latent state values can further inform which constructs
are driving a patient’s lapse risk. Importantly, since SSMs are
fit to each individual, these coefficients reflect the behavior of
a specific patient rather than the overall population.
Additionally, SSMs capture the dynamics of these mental
constructs through the transition equation. For instance, a
patient’s dynamics might indicate that one mental construct
tends to decay from elevated levels toward baseline levels very
slowly compared to another more transient construct (these
quantities are directly visible as fitted parameters within the
transition equations). Even if the current values of these example
constructs contribute similarly to immediate risk, a clinician
might choose to address the slower-decaying construct to better
mitigate both immediate and longer-term lapse risk. This type
of insight is not possible without a model that captures an
individual’s time-varying dynamics.

Limitations and Opportunities
The SSMs and study data presented in this manuscript have
several limitations and considerations relevant for future work.
We provide a discussion of the broader limitations here and
point technically interested readers to additional modeling
discussions in Section S3 in Multimedia Appendix 1.

Limited Demographic Diversity in the Study Population
This study is limited by its consideration of a narrow
geographical area with correspondingly limited demographic
diversity. This is typically a concern because trained models
may show poor performance in populations that are

underrepresented in the training sample [68,69]. We believe
that such fairness concerns may be partially alleviated by the
type of idiographic modeling framework presented here. Rather
than applying a single, population-trained model to everyone,
we advocate fitting personalized models to each patient that
capture their unique patterns of behavior. However, whether
this approach truly alleviates such concerns will require
validation in separate studies. Evaluating the potential
algorithmic fairness benefits of personalized models will be the
focus of future work.

Limited Interpretability of SSMs due to Latent State
Definition
The SSMs presented here have specific interpretability
limitations, but these are not necessarily reflective of SSM
approaches in general. In principle, SSMs can be constructed
such that each latent state represents a specific mental construct.
In this case, it is helpful to carefully structure EMA questions
to provide targeted measurements of each relevant construct.
Our modeling was performed after the parent study was designed
and completed, and thus, we could not influence the existing
EMA format. As such, we chose to use 2 latent states with no
specific interpretations. This demonstrates that it is possible to
approximate behavior well even with a low-dimensional linear
model but indicates that this work cannot highlight the additional
explanatory benefits of SSMs relative to classifier methods. We
hope that future work will explore interpretable latent structures
to bring SSMs closer to the existing literature of
explanation-focused psychological modeling. Doing so would
allow clinicians to examine fitted models to improve
personalized treatment planning with patients [70].

Proposed SSMs Assume Time Invariance for Patient
Models
The SSMs we presented assume that participants’ dynamic
models are time invariant. Over the 3-month study period, this
may be a plausible assumption but is a clear limitation for longer
time horizons. If individuals are trending toward recovery, this
change should be represented through time-varying model
parameters. For example, while craving might strongly influence
lapse early in a participant’s recovery, these dynamics may
change over time as the participant learns to better address
cravings, which can diminish their influence. SSMs can be
structured to model these types of time-varying parameters [71],
but this structure would require modifications to the model
estimation strategies presented in this manuscript.

Performance Results Should be Considered in the
Context of the Study Cohort
The predictive performance values achieved by our SSMs and
the benchmark methods were linked to the size and composition
of the study cohort as well as our chosen cross-validation
structure. In the case of SSMs, the study cohort size and
cross-validation fold count affected the number of other
participants included in the fitting of prior distributions for
individuals in the test fold. As our prior distributions were
entirely data-driven, this effective cohort (ie, the count and
composition of the individuals in the training folds) determined
the strength of the priors constructed for the test fold. For the
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benchmark methods, the cohort size and cross-validation fold
count determined the size of the model training set. In future
work, we plan to examine larger participant cohorts to rigorously
characterize the impact of these factors on model performance.

Actively Collected Patient Data Have Important
Limitations and Potential Biases
EMA data collection naturally imposes a burden on participants,
although EMA data collection once per day, as used in this
study, appears to be well-tolerated by patients for monitoring
over months or years [43,47]. We thus believe that the
performance reported in this study sets a plausible benchmark
for the real-world use of such methods. However, we note that
we excluded 3 of 151 participants from the original study based
on poor EMA compliance (responding to fewer than 25% of
prompted EMAs), as EMA noncompliance can introduce
problems for all tested methods. Without reasonably up-to-date
patient data, the prediction problem is not well-posed. While
this decision represents a relatively small exclusion, it does
mean that our results are more representative of compliant
individuals. The use of passively collected data, such as GPS
or sleep quality data, will be the focus of future work, as this
may provide a means of gathering sufficient patient data for
prediction, even with limited EMA compliance.

Further, while EMA represents an important step forward in
patient data collection, it is still important to consider its
structural limitations. For instance, as noted above, the primary
use of EMA data introduces the possibility of participant
selection bias [72], participant responses may be influenced by
social desirability factors [73], and data quality may suffer from
inattentive or careless responding [74]. Despite these potential
limitations, we are encouraged to find that all tested models still
performed well in our testing. We believe that the integration
of passively collected data can help address the limitations of
EMA data and make predictive systems more robust.

None of the modeling approaches (SSM, LR, or XGB) in this
study incorporated passively sensed information, such as GPS,
but all could, in principle, be modified to do so. For the LR or
XGB models, integrating passively collected data would require
the creation of new model features. For SSMs, integrating
passive data would involve adding elements to the observation
equations that relate passively observed quantities, such as the
fraction of time spent in low-risk locations versus high-risk
locations, to new functions of the latent states. We plan to
incorporate passively sensed data in future work to decrease the
sensing burden on participants, potentially improve prediction
quality, and mitigate sources of bias.

Extensions to Other Mental Health Conditions
This work presents a case study for the use of SSMs in the
context of AUD lapse prediction. The promising performance
of SSMs in this domain suggests that they merit examination
for risk assessment tasks in other mental health conditions (eg,
predicting panic attacks or suicidal ideation). Of course, whether
SSMs similarly outperform the benchmark ML approaches for
other conditions will require validation in separate studies. It

may be that, for instance, the benefits of personalization are
more pronounced in some conditions versus others. For
conditions with minimal patient heterogeneity, we would expect
all approaches (SSM, LR, and XGB) to have similar predictive
performance. However, even in these cases, we believe the
structural benefits of SSMs (eg, easier integration into
intervention frameworks for treatment selection) may make
them a compelling choice for clinicians.

From an implementation standpoint, both SSMs and the
benchmark ML approaches (LR and XGB) would require similar
modifications to adapt them to new risk assessment tasks. SSMs
model observable quantities (eg, EMA responses or clinically
relevant events like lapse for AUD) as functions of dynamic
processes of unobserved quantities (eg, a patient’s evolving
state of mind). Applying this framework to new conditions
would involve determining which observable quantities are
relevant to the condition under study. For instance, this might
involve a different set of EMA questions (which could be
smaller or larger than the 9-question EMA in this study) and a
different primary prediction target (eg, panic attacks rather than
AUD lapses). This is similar to the changes needed to apply LR
or XGB approaches to a new condition. These models would
also require potentially different EMA data sources, redefinition
of appropriate features, and redefinition of the prediction target.

It is possible that different mental health conditions would
require further structural modifications to the tested models.
For the benchmark ML methods, this could entail different
strategies in feature construction or the exploration of different
model hyperparameters. Structural modifications to SSMs could
involve changes, such as a larger or smaller number of latent
states, a different granularity in time discretization, or
modifications to the structure of the transition equations. These
changes may drive modifications to the fitting approaches
proposed in this manuscript but would not alter the types of
predictions that can be made or the possible time series and
personalization benefits of SSMs over the benchmark
approaches. To begin exploring these questions more deeply,
we plan to validate this approach in other forms of SUD
prediction, such as lapses in opioid use.

Conclusion
This work presents a framework for the use of SSMs to predict
lapses in individuals with AUD. Using a 3-month study of 148
individuals in early recovery from AUD, we demonstrated that
SSMs can offer better lapse prediction performance compared
to benchmark ML methods used in the literature. We have
discussed the additional benefits of state SSMs as time-series
methods. In particular, time-series approaches bring
prediction-focused work closer to the methodologies used in
explanation-focused psychological modeling and enable exciting
new continuing care approaches using digital therapeutics. While
our work deals specifically with AUD, we believe that the same
modeling principles are suitable for evaluation in a variety of
pressing mental health conditions. New approaches for
automated risk monitoring and treatment suggestion can both
improve care and help extend care to undertreated populations.
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