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Abstract
Background: Declining medication adherence remains a critical health care issue, often assessed through unreliable self-
reporting methods. Wearable devices (WDs) may offer an objective means to improve adherence monitoring by continuously
recording physiological and activity data.
Objective: This study aimed to develop and internally validate personalized predictive models, utilizing objective physiologi-
cal and activity data from WDs, for identifying missed medication doses.
Methods: A 30-day prospective observational study was conducted with 8 participants who wore Apple Watches and used
a dedicated iOS app. The app collected demographics, medication details, psychological factors, mealtimes, and daily missed
dose events. WDs recorded time-series data (ie, activity, heart rate, sleep) at 3-minute intervals. Data were aggregated
into 1-hour segments, and lag (6 and 12 h) as well as rolling (24 h) features were generated. Light Gradient Boosting
Machine models were constructed for each individual’s dosing regimen if the missed dose rate exceeded 20%. Two modeling
approaches were compared: a group cross-validation (CV) model that grouped data by day to avoid data leakage from rolling
features, and a nonrolling feature model that excluded rolling features and used leave-one-out CV. F1-score, accuracy, recall,
and precision were assessed between the 2 models.
Results: Of the 15 enrolled participants, 8 completed the study; 4 had a missed dose rate above 20%. In these 4 individuals,
the group CV model achieved F1-scores of 0.435 to 0.902, with accuracy ranging from 0.711 to 0.911, recall from 0.278 to
0.822, and a precision of 1.000 for the most robust regimens. The nonrolling feature model yielded F1-scores of 0.667 to 0.910,
with accuracy ranging from 0.800 to 0.906, recall from 0.500 to 0.835, and a precision of 1.000. Morning dosing regimens
generally showed higher predictive performance than evening or afternoon. Time-series features, particularly those reflecting
6-, 12-, and 24-hour patterns, emerged as key predictors, indicating that physiological and lifestyle variations prior to dosing
strongly influenced missed dose events.
Conclusions: Personalized predictive models using WD-derived data demonstrated high precision for detecting missed
medication doses, especially in morning and evening regimens. These findings underscore the feasibility of employing
continuous, objective physiological and activity data from WDs to forecast nonadherence events. Although the sample size was
limited, restricting the generalizability of the results, this study demonstrates the potential of WD-based personalized prediction
of medication adherence. Future work should involve larger populations for external validation, strategies to improve recall,
especially for clinically critical medications, and careful consideration of real-world implementation challenges.
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Introduction
Medication adherence is a crucial factor in pharmaceutical
care [1]. A 2020 study revealed that 32% of patients did
not take their medications correctly, and those who did not
adhere properly incurred an additional average monthly cost
of US $97.98 [2]. This indicates that medication nonadher-
ence imposes both health and economic burdens. Given
these significant impacts, identifying effective strategies to
improve medication adherence has become a critical health
care priority. To prevent a decline in medication adherence,
it is necessary to accurately assess adherence at an individ-
ual level [3,4]. Typically, medication adherence is evaluated
by comparing the frequency of clinic visits with prescrip-
tion intervals or by simple questioning [5-7]. However, this
approach faces challenges such as time constraints and the
reliance on self-reporting [5], which is often subject to recall
bias and social desirability bias, limiting its reliability for
accurate monitoring [8].

Various factors influence medication adherence and are
closely related to the patient’s lifestyle [9-12]. We previ-
ously conducted a study on the relative importance of
factors related to medication adherence and suggested that
the consistency of lifestyle habits may be the most impor-
tant factor. Some questionnaires that have been used to
evaluate medication adherence include questions about the
patient’s lifestyle [5,13-16], as inquiring about an individual’s
lifestyle is a common first step toward improving adher-
ence [12]. Lifestyle inquiries often relate to the number of
meals consumed and include subjective lifestyle evaluations.
However, it is currently difficult to quantitatively evaluate
comprehensive aspects of lifestyle beyond meal frequency
using objective indicators [17-19].

Therefore, we focused on wearable devices (WDs) to
continuously monitor a wearer’s physiological and activity
data. WDs accumulate daily information, such as the wearer’s
activity level, heart rate, and sleep duration, allowing the
collection of objective data [20-23], which may reflect
a patient’s lifestyle [24]. Thus, by constructing machine
learning models from these data, it may be possible to
determine predictive factors related to a patient’s medica-
tion adherence. We previously conducted a scoping review
on medication adherence management using WDs, which
revealed that, while reminders and alerts have been widely
used in medication management, some research methods use
WD data as an advanced approach to medication adherence
management [25]. Leveraging WD data, which have not been
widely used to date, and obtaining insights into medication
adherence from unconventional objective information may
result in new medication management approaches that place
less burden on both patients and health care providers. Recent
studies have demonstrated that data-driven approaches using
deep learning and ensemble methods significantly enhance
prediction accuracy of medication adherence compared to
traditional self-reporting methods [26]. Additionally, WDs

have shown promise in improving clinical decision-making
through real-time, noninvasive physiological data collection,
particularly in the management of chronic diseases such as
heart failure [27]. However, successful long-term monitor-
ing using WDs in clinical practice requires consideration of
usability and acceptability, especially among older adults, as
well as strategies to maintain continuous user engagement and
address technical challenges [28]. Moreover, while machine
learning approaches for adherence prediction are advancing,
studies also indicate that many existing predictive models
have a high risk of bias, highlighting the need for enhanced
methodological quality [29].

Therefore, addressing the gaps and the need for objective,
personalized adherence monitoring, the primary aim of this
study was to develop and internally validate personalized
predictive models for identifying missed medication doses,
utilizing objective physiological and activity data prospec-
tively collected from commonly used WDs.

Methods
Development of Data Collection Platform
and Patient Recruitment
Participants were recruited between May 2023 and December
2023. All study recruitment and procedures were conduc-
ted in Japan. Information about the study was disseminated
through flyers posted in local libraries and via a dedicated
project page hosted on our laboratory’s website, inviting
interested individuals to voluntarily download the dedica-
ted study app. Eligibility criteria for participation, which
were confirmed via an initial in-app questionnaire after its
download and prior to obtaining informed consent, were as
follows: (1) aged 18 years or older; (2) taking at least 1
medication prescribed by a hospital with instructions for daily
use for an intended duration of at least 3 months (individuals
whose only medications were for self-adjustment, eg, pro
re nata or “as needed” only, were excluded); (3) routinely
using an Apple Watch (defined as wearing it for an estimated
minimum of 8 hours per day, at least 5 days a week) and
an iPhone; and (4) able to download the dedicated study
app from the Japanese App Store onto their iPhone and
operate the app. The app was developed specifically for iOS
smartphones and made available exclusively on the Japanese
App Store (Figure 1). It included a questionnaire and health
data–sharing capabilities, with collected responses and health
data stored on a cloud server.

The questionnaires collected information on age, usage,
types of medications taken, psychological factors related to
adherence (10 questions on a 5-point scale), nonworking
days of the week, meal start times and durations, and the
presence or absence of missed doses over 30 days. The WD
data collected included exercise time, standing time, active
energy, resting energy expenditure, walking and running
distances, step count, number of flights climbed, maximum
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oxygen uptake, mindfulness time, vital signs (ie, heart rate,
heart rate variability, resting heart rate), oxygen saturation
levels, and sleep time. Specifically, health data, excluding
those related to the questionnaires and sleep (such as wake-up
and bedtime), were obtained as time-series data divided into
3-minute intervals. Missing values arising from nonwear
periods or lack of body movement were imputed with zeros.
This simple imputation approach was chosen for its feasi-
bility in this initial exploratory study. While zero values
might reasonably represent periods of inactivity for some
metrics like step counts, we acknowledge this method is
suboptimal for physiological measures (eg, heart rate) and
that the assumption that missingness equates to zero may
introduce bias if nonwear periods systematically correlate
with adherence behaviors. Alternative imputation strategies
(eg, mean and median imputation, interpolation, forward and

backward fill) exist, and investigating their impact on model
performance represents an area for future refinement. The
subsequent aggregation of the 3-minute data into 1-hour
descriptive statistics may, however, partially mitigate the
direct influence of the initial imputation choice on the final
model features.

The participants downloaded the app, reviewed the
research explanation materials and consent form within the
app, and joined the study after providing informed consent.
After initiating the survey, an initial questionnaire screen was
displayed to collect information on age, medication usage,
and medication types. Subsequently, the app transitioned to
a regular survey screen, where the participants recorded their
medication status up to the previous day at their convenience.

Figure 1. Screenshots of the dedicated study app, including (A) the launch screen, (B) initial questionnaire screen, (C) consent form and agreement
screen, (D) research explanation document, and (E) regular survey screen (input on medication status).

Preprocessing Before Model
Construction and Verification of Time-
Series Components
To evaluate the quality of the collected time-series data
from WDs, the completeness of each data type was visual-
ized. Insufficiently recorded data were excluded from further
analyses (Multimedia Appendix 1). The periodicity of
the included time-series components was examined using
additive decomposition, confirming the absence of trend
components and the presence of seasonal variations on a daily
basis (Multimedia Appendix 1). Spectral analysis with fast
Fourier transformation was performed to verify the lengths
of the periods, confirming that many data types exhibited
strong spectral peaks at 24- or 12-hour intervals (Multimedia
Appendix 1).

To construct predictive models, it is desirable to ensure
a sufficient number of event occurrences and to avoid
extreme imbalances in the distribution of response variables.
Therefore, the missed dose events were aggregated. Using the
number of events during the observation period, the event
occurrence rate was calculated using the following equation:

missed dose event occurrence rate=(number of missed dose
events)/(number of doses that should have been taken during
the period).

In this study, medication adherence refers to the value
calculated as above.

Confirmation of Response Variables and
Creation of Time-Series Features
All data were divided into 1-hour intervals. For each time
segment, descriptive statistics, including the mean, variance,
maximum, minimum, median, and sum, were calculated.
Assuming that the state prior to each time point is related to
the event, time-series–related features, such as lag features
for the previous 6 and 12 hours, and rolling features for
the previous 24 hours, were added. The data were classi-
fied by individual and dosing regimens (morning, afternoon,
and evening). For the portions where a sufficient number
of events (>20%) were secured, models to detect missed
medication events from the WD data were created.

In terms of the dosing regimen, specific timeslots where
events could potentially occur were allocated: 6 AM to 10:59
AM for morning doses, 11 AM to 2:59 PM for afternoon
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doses, and 6 PM to 11:59 PM for evening doses. For
example, data from 6 PM to 11:59 PM were extracted when
constructing a model to predict evening events, resulting
in 6 datasets divided into 1-hour intervals per day. If an
event occurred on that day, it was labeled as 1; otherwise, it
was labeled as 0 as the response variable. If the data were
recorded for 30 days, 180 datasets (6×30) were used for
model construction.
Construction of Predictive Models
Predictive models were constructed using Light Gradient
Boosting Machine (LightGBM). LightGBM was selected due
to its demonstrated high predictive performance on tabular
data tasks similar to ours, its computational efficiency in
terms of training speed and memory usage compared to other
gradient boosting algorithms, and its built-in capability to
provide feature importance rankings, which was utilized in
our analysis. Given that the data were divided into 1-hour
intervals, the newly created rolling features were generated
based on the past 24 hours. In other words, for adjacent time
points, only 1 hour of data differed while the remaining 23
hours of data were the same, potentially resulting in minimal
changes. Therefore, performing random cross-validation (CV)
can lead to other rolling features from the same day being
learned and used as test data during prediction, which may
not be appropriate.

To prevent this, the following two types of models were
constructed [30]: (1) a model in which data from the same
day were grouped together and group CV was performed
(group CV model) and (2) a model in which rolling fea-
tures were excluded from the variables and leave-one-out CV
was performed (nonrolling feature model). The models were
constructed to optimize the F1-scores. Evaluation metrics,
such as the F1-score, accuracy, recall, and precision, were
calculated [31]. In addition, the feature importance of each
model was computed for each fold in the CV, and the average
for each model was provided. All analyses were performed
using Python 3.10.12, and the code used in prediction models
is present in Multimedia Appendix 2.
Ethical Considerations
This study complied with the Ethical Guidelines for Medical
and Biological Research Involving Human Subjects published
by the Japanese Government (Ministry of Health, Labour and
Welfare; Ministry of Education, Culture, Sports, Science and
Technology; and Ministry of Economy, Trade and Indus-
try). All research plans were reviewed and approved by the
Research Ethics Committee of Keio University Faculty of
Pharmacy (23414‐1). We completed a checklist for reporting
studies involving machine learning, following recommended
guidelines for such research (Checklist 1) [32].

Informed consent was obtained electronically from all
participants via the dedicated study app before they com-
menced any study procedures. The consent form provi-
ded detailed information regarding the study’s objectives,
procedures (including the collection of questionnaire data
and continuous physiological and activity data from their
Apple Watch), potential risks and benefits, data handling,
and the voluntary nature of participation. Participation was
entirely voluntary, and participants were clearly informed of
their right to withdraw from the study at any time, for any
reason, without prejudice or penalty, fully ensuring patient
autonomy. To protect privacy and confidentiality, all data
collected through the app and wearable device were anony-
mized at the point of collection before being transmitted
and stored. Anonymized data were managed on a secure
cloud server, employing appropriate technical and administra-
tive safeguards to prevent unauthorized access, disclosure,
or loss. Although this study was conducted exclusively in
Japan using a locally distributed app, and thus not directly
subject to General Data Protection Regulation or Health
Insurance Portability and Accountability Act regulations, data
management practices were designed to align with principles
of robust data protection and security suitable for sensitive
health-related information. The participants who completed
the 30-day survey were compensated with Japanese ¥3000
(US $20.84).

Results
Aggregation of Event Occurrence Rates
Fifteen individuals participated in the survey, and 8 comple-
ted it. A summary of the participants’ data is shown in
Table 1. Among them, 4 (50%) were aged 20-29 years, 2
(25%) were aged 40-49 years, 1 (12.5%) was aged 50-59
years, and 1 (12.5%) did not provide an answer regarding
age. The collected data were divided into individual and
dosing regimens, resulting in 15 arms. Among these arms,
there were 4 in which the event occurrence rate was >20%
(ID1: morning, evening; ID2: evening; ID3: afternoon). These
event occurrence rates ranged from 41.4% to 56.7%, without
significant skewness, and were used as response variables for
predictive model construction. For individuals ID4 and ID5,
although a few events were observed in the evening, none
were observed in the morning. For individuals ID6, ID7, and
ID8, no events were observed. The event occurrence rate per
number of days, without distinguishing the dosing regimens
for each individual, are shown in Table S1 in Multimedia
Appendix 3, and the event occurrence rates per total number
of doses are provided in Table S2 in Multimedia Appendix 3.
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Table 1. Summary of the number of events and medication adherence rates for 8 adult Apple Watch users in Japan from a 30-day prospective
observational study monitoring daily medication use.

ID (age group) and administration Prescribed medications, n Expected doses, n Events occurring, n
Missed dose event
occurrence rate, %

ID1 (20-29 years)
Morning (after a meal) 1 30 17 56.7
Evening (after a meal or before bed) 3 30 15 50

ID2 (20-29 years)
Evening (after a meal) 1 30 17 56.7

ID3 (20-29 years)
Morning (before and after a meal) 6 29 2 6.9

  Afternoon (after a meal) 1 29 12 41.4
Evening (after a meal) 9 29 1 3.4

ID4 (20-29 years)
Morning (after a meal) 5 30 0 0
Evening (before bed) 1 30 4 13.3

ID5 (40-49 years)
Morning (after a meal) 1 29 0 0
Evening (after a meal) 2 29 1 3.4

ID6 (50-59 years)
Morning (after a meal) 4 30 0 0
Evening (after a meal) 3 30 0 0

ID7 (no answer)
Morning (after a meal) 4 30 0 0

  Evening (after a meal or before bed) 4 30 0 0
ID8 (50-59 years)

Morning (after a meal) 2 30 0 0

Predictive Models
The results of the group CV model are presented in Table
2, and those of the nonrolling feature model are presented in
Table 3. Internal validation showed that the F1-score ranged
from 0.435 to 0.902, accuracy from 0.711 to 0.911, and recall

from 0.278 to 0.822. In the nonrolling feature model, the
F1-score ranged from 0.667 to 0.910, accuracy from 0.800 to
0.906, and recall from 0.500 to 0.835. Precision was 1.0 for
both models.

Table 2. Performance of Light Gradient Boosting Machine group cross-validation models in predicting missed medication doses for 4 participants
(adult Apple Watch users, Japan) from a 30-day prospective observational study.

F1-score Accuracy Recall Precision
ID1

Morning (after a meal) 0.902 0.911 0.822 1.000
Evening (after a meal or before bed) 0.784 0.807 0.659 1.000

ID2
Evening (after a meal) 0.793 0.806 0.657 1.000

ID3
Afternoon (after a meal) 0.435 0.711 0.278 1.000

Table 3. Performance of Light Gradient Boosting Machine nonrolling feature models (leave-one-out cross-validation) in predicting missed
medication doses for 4 participants (adult Apple Watch users, Japan) from a 30-day prospective observational study.

F1-score Accuracy Recall Precision
ID1

Morning (after a meal) 0.910 0.906 0.835 1.000
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F1-score Accuracy Recall Precision

Evening (after a meal or before bed) 0.816 0.844 0.689 1.000
ID2

Evening (after a meal) 0.867 0.867 0.765 1.000
ID3

Afternoon (after a meal) 0.667 0.800 0.500 1.000

Feature Importance
The importance of the top 50 features in the group CV model
for ID1 is shown in Figure 2, and the importance of the top 50

features in the nonrolling feature model is shown in Figure 3.
The feature importance values of the other models are present
in Multimedia Appendix 4 .

Figure 2. Top 50 feature importance in the group cross-validation model for ID1: morning (after a meal). SDNN: standard deviation of all normal to
normal R-R (NN) intervals; [Lag6]: 6-hour lag features; [Lag12]: 12-hour lag features; [Rolling]: rolling feature.
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Figure 3. Top 50 feature importance in the nonrolling feature model for ID1: morning (after a meal). SDNN: standard deviation of all normal to
normal R-R (NN) intervals; [Lag6]: 6-hour lag features; [Lag12]: 12-hour lag features; [Rolling]: rolling feature.

Discussion
Findings
In this prospective observational study, we collected WD data
and developed 2 models using missed medication events as
response variables for each individual and dosing regimen.
The internal validation demonstrated good overall perform-
ance, except for the afternoon dosing model. For morn-
ing and evening dosing regimens, the maximum F1-score,
accuracy, and recall were 0.902, 0.911, and 0.822, respec-
tively, with precision consistently reaching 1.0, indicating a
high discriminative performance. The performance ranking
by regimen was morning > evening > afternoon, and the 2
types of models showed generally equivalent results. In terms

of feature importance, time-series features consistently ranked
as highly important across models.

A key contribution of this study was the development
of an integrated system for collecting medication informa-
tion and WD data to construct predictive models. We
herein performed app development, database construction,
and implementation of a prospective data collection proto-
col involving study participants. Despite the limited sample
size, this is the first study to build a predictive model
for missed medication doses using activity, heart rate, and
other physiological data obtained from commonly used WDs,
targeting the general patient population. This methodolog-
ical approach, focusing on personalized prediction using
objective, continuously monitored data streams, represents the
core novelty of the study. By addressing the challenges of
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real-world data collection and focusing on commonly used
devices, this study could serve as a novel foundation for
advancing medication adherence monitoring.

High Precision and Low Recall in the
Models
Both the group CV and nonrolling feature models achieved
high precision, representing their ability to accurately identify
missed medication events with minimal false positives.
However, the recall was relatively low, indicating that
some missed events were not detected. This limitation was
particularly evident during the daytime and evening regimens,
likely due to the large variations in medication patterns and
lifestyle habits during these periods, which the models have
not sufficiently learned. Additionally, certain missed events
may not generate measurable changes in WD data, such as
forgetting to take medications without altering measurable
activity levels or physiological parameters.

In this study, the models were optimized for F1-scores
to balance precision and recall. Consequently, the precision
was high, and recall was low. In situations where adherence
is particularly critical, such as with immunosuppressant or
anticoagulant medications, it is necessary to detect missed
doses more accurately. When targeting such medications, it
may be necessary to construct models emphasizing recall,
such as cost-sensitive learning [33].

Factors Influencing Afternoon Model
Performance
Two primary factors might explain the poorer performance of
the afternoon models. First, unique influences on afternoon
medication adherence compared with those on morning or
evening medication adherence. During the day, activities,
such as going out, work, and school, and factors such as
inaccessibility to medication or the impact of work and eating
out can influence adherence [34-36]. When patients do not
have their medication on their person, despite no signifi-
cant lifestyle changes, WDs may not sufficiently capture
such situations, potentially reducing the predictive model’s
performance. Second, the shorter time window allocated
to the afternoon (4 h) compared to the morning (5 h)
and evening (6 h) may have limited data volume, possi-
bly preventing the model from utilizing sufficient data for
learning. However, the evening model, despite possessing
more data, did not outperform the morning model. This could
be because there is generally more variation in activities
during the evening than during the morning [37,38], making
evening predictions more challenging.
Feature Importance in the 2 Models
Feature importance analysis highlighted the significance of
time-series features. In the group CV model, the rolling
features ranked high, suggesting that data obtained within the
previous 24 hours significantly influenced the prediction of
missed medications [39]. Similarly, in the nonrolling feature
model, the lag features (from 6 and 12 hours prior) were
among the most important. The fact that these 2 time-ser-
ies features rank higher than other features at the time of

the event implies that physiological and lifestyle changes
preceding missed doses are greater predictors of a missed
dose compared with the immediate conditions at the time of
the event.

Although both models demonstrated similar overall
performance, the nonrolling feature model showed slight
superiority over the group CV model. The nonrolling feature
model utilized 270 input variables, which is a relatively large
number compared to the 180 target variables. The group CV
model had 360 variables, 90 more than the nonrolling feature
model, and the inclusion of these additional variables may
have contributed to a decrease in the model’s performance
[40].
Broader Applicability and
Implementation Considerations
This feasibility study employed a single platform (Apple
Watch and iOS) to ensure consistency in data quality and
simplify implementation. However, differences in sensors,
algorithms, and available data across platforms (eg, Android
and Wear OS) may lead to device-specific biases, limit-
ing the generalizability of the findings. Future research
should evaluate model performance across diverse weara-
ble ecosystems to confirm broader applicability and ensure
robustness against platform variability.

Furthermore, translating this predictive approach to
clinical practice poses real-world implementation challenges.
In addition to ensuring consistent user engagement and
managing data gaps, practical use of consumer-grade
devices must contend with technical issues such as bat-
tery life management, device malfunctions, and reliable
data synchronization—all of which may affect data integ-
rity and participant adherence. Moreover, effective inte-
gration of high-volume WD data into clinical workflows
requires attention to infrastructure, data privacy, and usability
concerns for both patients and clinicians. Addressing these
barriers will be essential for realizing the potential of
wearable-based adherence monitoring in routine care.

In addition, while psychological factors related to
medication adherence were collected at baseline via a
questionnaire, they were not incorporated into the current
models, which focused on dynamic, time-series signals
from WDs for within-individual prediction. However, these
baseline psychological traits may provide complementary
value in future model iterations—particularly for interindi-
vidual comparisons or hybrid models that combine static
behavioral characteristics with continuous physiological data.
Limitations
There are some limitations that need to be addressed. First,
the small sample size restricted model development to
within-individual analysis. Only 8 participants completed the
study, and models could only be constructed for 4 participants
who had a missed dose rate above 20%. This extremely small
sample size limits the statistical power and generalizability
of the findings. Furthermore, the demographics of this small
cohort were not well-balanced, particularly concerning age
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distribution (50% were in their twenties, with no participants
in their thirties). This skew towards younger adults, poten-
tially influenced by the requirement of owning and using an
Apple Watch and the recruitment methods employed, further
limits the representativeness of our sample and the applicabil-
ity of the findings to older or more diverse patient popula-
tions typically on chronic medications. Recruitment targeted
patients regularly wearing smartwatches and taking medica-
tions for >3 months, as per participant eligibility. Moreover,
only a subset of participants provided sufficient data for
model construction. Expanding the number of participants
and ensuring a more representative demographic distribution
is necessary for generalization. Future studies should focus
on recruiting a larger and more diverse population to confirm
these preliminary findings and assess the broader applicability
of the proposed approach; achieving this necessary scale and
diversity may require specific strategies such as multicenter
recruitment or potentially leveraging integration with larger
existing wearable datasets where feasible and appropriate.

Second, the training data were limited to a 1-month period,
yielding >10,000 data points per variable as time-series data.
While sufficient for data collected from WDs, the variables
measurable by WDs are inherently limited. Factors such
as forgetting to carry medications or external disruptions
(eg, work or dining out) were not captured, limiting model
applicability. Although it is possible to consider methods
to measure variables other than those from WD, this often
involves a trade-off with patient burden and may hinder
practicality [27,28]. Furthermore, the choice of zero-imputa-
tion for missing raw wearable data, while straightforward,
warrants further investigation regarding potential biases, and
the exploration of more sophisticated imputation techniques
could be beneficial for future model development.

Third, this study did not include a control group or
a direct comparison with traditional adherence monitoring
methods, such as self-reporting or pill counts. The study
was designed primarily as a feasibility and proof-of-con-
cept investigation to determine if personalized predictive
models could be constructed using WD data. Therefore,
while our results demonstrate the potential of this approach,
we cannot draw conclusions about its relative effectiveness

or superiority compared to existing methods based on this
study alone. Comparative studies are needed to evaluate how
this WD-based approach performs with respect to estab-
lished adherence monitoring techniques in terms of accuracy,
cost-effectiveness, and patient and provider burden.

Another limitation is that this study did not examine the
potential influence of specific medication characteristics, such
as drug type, indication, regimen complexity, or experienced
side effects, on adherence patterns or model performance.
To reduce participant burden and facilitate recruitment for
this 30-day observational study involving WDs and daily
app reporting, we intentionally limited the scope of col-
lected medication-related data. However, these factors are
well-known to significantly impact medication adherence,
and their interaction with lifestyle patterns measured by WDs
warrants investigation.

Finally, external validation was not performed. Variability
among individuals and differences in WD hardware limited
interindividual analysis. Additionally, in models aimed at
monitoring long-term adherence, even for the same individ-
ual, the patient’s lifestyle may gradually change, potentially
rendering the initial training data ineffective [26]. Future
studies should address these issues through external valida-
tion and real-world testing.
Conclusions
This study developed and compared 2 predictive models,
the group CV and nonrolling feature models, to identify
the occurrence of missed medication events using WD data.
Overall, both models demonstrated high precision, confirming
that there were few false detections of missed medication
events. However, challenges in predicting afternoon events
revealed the limitations of WD-measured variables. Our study
also highlighted the relevance of physiological and lifestyle
changes in the hours preceding missed doses, emphasizing the
relationship between daily routines and medication adher-
ence. Future studies should focus on expanding participant
numbers, conducting external validation, and refining models
to enhance recall for critical medications. These findings may
pave way for developing a robust system to monitor and
improve patients’ medication adherence in clinical settings.
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