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Abstract

Background: Social frailty poses a potential risk even for relatively healthy older adults, necessitating development of early
detection and prevention strategies. Recently, consumer-grade wearable devices have attracted attention due to their ability to
continuously collect physiological and activity-related data. These data can potentially be used to calculate digital biomarkers
for screening social frailty in older adults.

Objective: The objective of this study was to explore digital biomarkers associated with social frailty using sensor data recorded
via Fitbit devices and evaluate their relationship with health outcomes in older adults.

Methods: This cross-sectional study was conducted in 102 community-dwelling older adults. Participants attending frailty
prevention programs wore devices from the Fitbit Inspire series on their nondominant wrist for at least 7 consecutive days, during
which step count and heart rate data were collected. Standardized questionnaires were used to assess physical functions, cognitive
functions, and social frailty, and based on the scores, the participants were categorized into 3 groups: robust, social prefrailty,
and social frailty. The sensor data were analyzed to calculate nonparametric and extended cosinor rhythm metrics, along with
heart rate–related metrics.

Results: The final sample included 86 participants who were categorized as robust (n=28, 33%), social prefrailty (n=39, 45%),
and social frailty (n=19, 22%). The mean age of the participants was 77.14 (SD 5.70) years, and 91% (78/86) were women.
Multinomial logistic regression analysis revealed that a step-based rhythm metric (intradaily coefficient of variation) was
significantly associated with social frailty (odds ratio 1.05, 95% CI 1.01-1.11; P=.01). The heart rate metrics, including the delta
resting heart rate and time of transition from rest to activity, showed significant associations with both social prefrailty (odds
ratio 0.82, 95% CI 0.68-0.99; P=.04) and social frailty (odds ratio 0.69, 95% CI 0.50-0.95; P=.01). Specifically, delta resting
heart rate, defined as the difference between the overall average heart rate and resting heart rate, exhibited significant negative
associations with social prefrailty (odds ratio 0.82, 95% CI 0.68-0.97; P=.02) and social frailty (odds ratio 0.74, 95% CI 0.58-0.94;
P=.02). Furthermore, analysis using a linear regression model revealed a significant association between the intradaily coefficient
of variation and the word list memory score, a measure of cognitive decline (β=−0.04; P=.02).

Conclusions: This study identified associations between novel rhythm and heart rate metrics calculated from the step count and
heart rate recorded by Fitbit devices and social frailty. These findings suggest that consumer-grade wearable devices, which are
low cost and accessible, hold promise as tools for evaluating social frailty and its risk factors through enabling the calculation of
digital biomarkers. Future research should include larger sample sizes and focus on the clinical applications of these findings.
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Introduction

Background
In an aging society, early detection and prevention of frailty are
urgent priorities. Frailty is a multifaceted concept encompassing
physical, cognitive, and social aspects, all of which play critical
roles in comprehensively assessing the health status of older
adults [1,2]. Among these, social frailty precedes physical frailty
and has been reported to promote unhealthy aging while
increasing the risks of all-cause mortality and functional
impairment [3,4]. Bunt et al [5] proposed that, in addition to
general resource–related factors such as living alone and
economic difficulties, social resource factors such as connections
with neighbors and friends, as well as basic social needs such
as social behavior, social isolation, and social support, are
critical components of social frailty. Social frailty profoundly
affects the lifestyles of older adults and has been associated
with a poor nutritional status, depression, reduced physical
capability, and decreased activity levels [6]. Furthermore, it has
been linked to declines in activities of daily living [7] and
instrumental activities of daily living [8,9]. Rest-activity rhythm
(RAR) has long garnered attention as an established indicator
for evaluating health conditions related to such lifestyle factors.

Previous studies using actigraphy have used RAR parameters
derived from activity trackers to predict various health outcomes,
including physical frailty, cognitive decline, and depression
[10-14]. These parameters quantify 24-hour cycles of rest and
activity based on activity counts and have been widely used in
health research. However, their application to social frailty
remains underexplored [15], and studies leveraging wearable
sensors for this purpose are particularly scarce.

Recently, wearable devices such as Fitbit smartwatches have
enabled the collection of detailed physiological and behavioral
data, including heart rate, respiratory rate, and sleep data in
addition to traditional activity data. These advancements have
spurred the development of innovative digital biomarkers such
as heart rate–based rhythm metrics, which complement
conventional activity count–based indicators [16,17]. Fitbit
devices, known for their affordability and accessibility, have
demonstrated accuracy comparable to research-grade devices
for measuring step count and heart rate [18-20]. Despite their
potential, the use of wearable devices to evaluate social frailty
and its associated risk factors remains limited, highlighting the
need for further investigation, such as studies similar to the one
reported in this paper.

Objectives
Fitbit and other wearable devices provide step count, heart rate,
and other data that allow for the calculation of digital biomarkers
to predict health outcomes. However, studies using raw data
from these devices to compute novel metrics and evaluate their
associations with health outcomes remain insufficient.

The primary aim of this study was to identify digital biomarkers
associated with social frailty. Social frailty has been linked to
reduced daytime physical activity, as demonstrated in previous
research [7,9]. Although there is limited evidence directly
connecting social frailty to heart rate, it is plausible that
decreased physical activity in individuals with social frailty
leads to lower overall heart rate variability (HRV) and altered
heart rate patterns. Therefore, we hypothesized that the frailty
group would exhibit significant associations with RAR
parameters (nonparametric and extended cosinor analysis) and
heart rate–based parameters (eg, nighttime heart rate and resting
heart rate [RHR]), assessed by leveraging Fitbit data. These
parameters have the potential to shed light on the physiological
and behavioral characteristics of social frailty.

The secondary aim of this study was to explore the relationship
between RAR metrics derived from Fitbit data and cognitive
function. While previous research has linked nonparametric and
cosinor-based RAR metrics to cognitive decline, most studies
have relied on research-grade actigraphy devices. This study
introduces novel RAR metrics derived from Fitbit data to
exploratorily assess their associations with cognitive function.

Methods

Study Design and Participants
This study was designed as a cross-sectional analysis to
investigate the relationship between digital biomarkers and
social frailty in community-dwelling older adults in Akita
Prefecture, Japan. To determine the appropriate sample size for
the logistic regression analysis, we used G*Power (version
3.1.9.6) with the likelihood-ratio test as the test statistic. The
estimation indicated that a minimum of 82 participants would
be required to detect a clinically significant effect based on the
following parameters: 3 groups, a significance level (α) of .05,
a statistical power of 80%, and an odds ratio (OR) of 2.0 [21].
Considering a potential dropout rate of 20% to 30%, we
recruited a total of 102 older adults between October 2023 and
December 2024. Recruitment sites included municipally
organized programs conducted at care management centers in
the Yabase, Kawabe, Ushijima, Goshono, Iijima, and
Shimoshinjo districts of the city of Akita, as well as in the city
of Yurihonjō and the town of Mitane. Additional participants
were recruited from a community-based exercise group regularly
followed by the principal investigator held at a temple in the
Katsuhira area. The inclusion criteria were (1) age of ≥65 years,
(2) independent walking ability in daily life, and (3) residence
at home. The exclusion criteria were (1) a central nervous system
disorder, (2) requiring assistance in daily living, (3) a cardiac
condition, or (4) requiring support or care as certified under
Japan’s public long-term care insurance system.

Data collection used consumer-grade fitness trackers,
specifically the Fitbit Inspire 2 and 3 (Google). The accuracy
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of Fitbit data has been evaluated in several studies. According
to systematic reviews [22,23], Fitbit devices consistently
demonstrate acceptable levels of accuracy for daily step counts
and heart rate measurements despite a tendency to underestimate
these metrics under certain conditions. Generally, Fitbit
wearables provide activity assessment accuracy comparable to
research-grade devices but tend to overestimate moderate to
vigorous physical activity under free-living conditions. One of
the major challenges faced by medical researchers when
interpreting physical activity data is related to participants
forgetting to wear the activity tracker [23]. However, the Inspire
series of Fitbit devices, being waterproof and offering a battery
life of up to 10 days, minimizes interruptions in data collection.
These features contribute to ensuring high-quality data with
fewer missing values, making them particularly advantageous
for calculating rhythm metrics.

Participants were instructed to wear the device for at least 7
consecutive days. The research staff placed the device on the
participants’ nondominant wrist, approximately 1 inch below
the wrist bone, ensuring that the back of the device was in
contact with the skin. Participants were instructed to wear the
tracker at all times, including during bathing, whenever possible.
However, they were advised not to use the device in situations
prohibited by the manufacturer, such as diving under high water
pressure or in high-temperature environments such as saunas.

Ethical Considerations
This study was conducted in accordance with the ethical
principles outlined in the Declaration of Helsinki. The research
protocol and informed consent forms were approved by the
institutional review board of Akita University School of
Medicine (approval 3063). All participants provided written
informed consent before taking part. This study involved both
the collection of wearable device data and in-person
assessments, including evaluations of social frailty and cognitive
performance. To ensure participant confidentiality and data
protection, all collected data were anonymized before analysis.
Participants did not receive monetary compensation, nor did
they incur any costs by taking part in the study. As a token of
appreciation, each participant received a booklet summarizing
their individual results and interpretations.

Classification of Social Frailty Index and Assessment
Demographic data, including age (years), sex (female or male),
and educational level (years), were collected from all
participants. Social frailty was classified using the social frailty
index developed by Makizako et al [24], which reflects the
accumulation of social risk factors and indicates reduced social
participation or roles. The index consists of five components:
(1) living alone (yes), (2) talking with someone every day (no),
(3) feeling helpful to friends or family (no), (4) going out less
frequently compared with the previous year (yes), and (5)
visiting friends sometimes (no). Participants with a total score
of 0 were classified as robust, those with a score of 1 were
classified as social prefrailty, and those with scores of 2 to 5
were classified as social frailty. Physical performance was
assessed by measuring grip strength (kg) and usual walking
speed (m/s) over a 5-m course. Cognitive performance was
evaluated using 4 subtests from the National Center for

Geriatrics and Gerontology–Functional Assessment Tool [25].
The word list memory (WLM) test included immediate
recognition and delayed recall tasks, where the mean correct
answers across 3 trials (range 0-10) and the number of correct
answers in delayed recall (range 0-10) were summed to calculate
a total score (range 0-20). The trail making test versions A and
B was used to measure cognitive flexibility, with completion
times recorded in seconds. Finally, the digit symbol substitution
task was conducted to assess information processing speed,
where the number of correct responses in 90 seconds was
recorded.

Wearable Data Preprocessing
After the monitoring period, devices were collected, and their
stored data were synchronized via Bluetooth to a smartphone
before being transferred to the Fitbit database. Researchers then
accessed the Fitbit developer platform linked to a Google
account [26], generated an access token (refreshed every 8
hours), and executed a Python script (Python Software
Foundation) in Google Colaboratory to retrieve the raw step
count and heart rate data at 1-minute intervals. To ensure data
integrity, periods without heart rate data were excluded, and
corresponding step count data were marked as invalid; only
time points with both valid heart rate and step count data were
retained as clean data. Consistent with the work by Rykov et al
[17], a valid day was defined as one with at least 20 hours of
concurrent heart rate and step count data. On the basis of
evidence that 5 days of wear yield reliable RAR parameters in
older adults [27], only participants with at least 5 valid days
were included in the study.

Extraction of Digital Biomarkers
Raw data from Fitbit were used to extract digital biomarkers
related to circadian rhythms and heart rate variation. Step count
and heart rate data were processed using a modified version of
the script developed by Rykov et al [17] to calculate both
extended cosine-based and nonparametric circadian rhythm
indexes.

The Extended Cosinor Metrics
Extended cosine-based indexes included the midline estimating
statistic of rhythm (MESOR), acrophase, amplitude, minimum,
pseudo–F statistic, time of transition from rest to activity
(UpMesor), time of transition from activity to rest
(DownMesor), and the α and β parameters. These indexes were
derived using an extended cosinor model, which incorporates
nonlinear transformations to refine the classic cosine function
c(t):

r(t) = mes + amp × c(t)

In these equations, mes is the rhythm-adjusted mean level, amp
is the amplitude, and ϕ (acrophase) is the time of the
mathematically defined peak.

In contrast, the extended cosinor model applies nonlinear
transformations to c(t), enabling it to represent more complex
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waveform shapes. Three transformation methods are commonly
used: (1) hill transformation, (2) antilogistic transformation,
and (3) arctangent transformation.

These transformations allow for better modeling of circadian
rhythms that deviate from simple cosine waveforms [28,29].
This study used the antilogistic transformation, which is defined
as follows:

The extended cosinor model, incorporating this transformation,
is expressed as r(t) = min + amp × l(c[t]), where min is the
minimum value of the function, amp is the difference between
the minimum and maximum values, c(t) represents the classic
cosine wave, and l(c[t]) is the antilogistically transformed
function.

Interpretation-wise, min is the minimum value of the function,
amp is the difference between the minimum and maximum of
the function, ϕ is the time at which r(t) has its mathematically
well-defined “peak,” α controls the “width” of the function,
and β controls the “steepness” of the function.

In this study, we used the extended cosinor model to analyze
rhythmic patterns derived from Fitbit data. Minimum represents
the lowest value of the fitted function, indicating the period of
least activity or lowest heart rate within a 24-hour cycle.
Amplitude measures half the extent of predictable variation
within a cycle, serving as an indicator of the maximum

achievable activity level. The α parameter determines whether
the peaks of the curve are wider or narrower than the troughs;
specifically, a small α value signifies narrow troughs and wide
peaks, whereas a large α value indicates wide troughs and
narrow peaks. The β parameter assesses the steepness of the
rise and fall of the curve relative to a standard cosine wave, with
large β values producing nearly square waveforms that represent
abrupt transitions between high and low activity levels.
Acrophase refers to the time of day at which the peak of the
rhythmic pattern occurs, initially measured in radians and
subsequently converted into time units (hours) and referred to
as acrotime when necessary. F_pseudo measures the
improvement in the fit obtained through the nonlinear estimation
of the transformed cosine model, serving as an indicator of the
robustness of the rhythm. UpMesor denotes the time of day
when activity transitions from low to high, reflecting the timing
of the RAR; lower (earlier) values suggest an earlier onset of
daytime activity and a more advanced circadian phase.
DownMesor indicates the time of day when activity transitions
from high to low, representing the cessation of peak activity
within the RAR; lower (earlier) values imply an earlier decline
in daily activities, also suggesting a more advanced circadian
phase.

Finally, MESOR is an estimated 24-hour average activity level
calculated as the sum of the minimum plus half the amplitude
(MESOR = [minimum + amplitude]/2) and provides a measure
of the central tendency in the daily activity cycle. It should be
noted that the MESOR in the extended cosinor model differs
from the MESOR in the standard cosinor model [29]. A visual
representation of the extended cosinor variables used in this
study is presented in Figure 1.
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Figure 1. Illustration of the extended cosinor model applied to 24-hour heart rate data from a representative participant. The green curve represents
the fitted extended cosinor function used to estimate rhythm-related parameters: minimum (lowest value), amplitude (half the predictable variation),
midline estimating statistic of rhythm (MESOR; 24-hour mean), acrotime (time of peak), transition from rest to activity (UpMesor), transition from
activity to rest (DownMesor), α (width of peak), and β (steepness of transition). Data were collected as part of a cross-sectional study conducted between
October 2023 and December 2024 using Fitbit Inspire 2 and 3 devices worn by community-dwelling older adults in Akita Prefecture, Japan.

Compared to the classic cosine model, the extended cosinor
model provides greater flexibility to capture complex waveform
shapes. The extended cosinor model—through the application
of an antilogistic transformation—can accommodate, for
example, rapid activity onset in the morning, sustained daytime
activity, and gradual transitions into nighttime rest. This
approach enables a more realistic fit of circadian patterns while
preserving interpretability [29].

Nonparametric Metrics
Nonparametric indexes included interdaily stability (IS),
intradaily variability (IV), daytime activity level (most active
10-hour activity level [M10]), nighttime activity level (least
active 5-hour activity level [L5]), relative amplitude (RA),
intradaily coefficient of variation (ICV), autocorrelation, and
peaks. Among these, IS, IV, M10, L5, and RA were originally
proposed in studies by Van Someren et al [30] and Witting et
al [31]. ICV, autocorrelation, and peaks have been introduced
in more recent studies to provide complementary insights into
circadian rhythm variability and stability.

IS measures the stability and regularity of activity patterns across
24-hour cycles. It is calculated as the ratio of the variance of
the average 24-hour activity profile to the total variance of data
aggregated by the hour across all days. A higher IS value
indicates a more stable and regular circadian rhythm.

IV quantifies the fragmentation of rest and activity periods
within a 24-hour cycle. It is calculated as the mean square of
the differences between successive hourly aggregated data
normalized by the total variance across all days. A higher IV
value indicates a more fragmented rhythm, characterized by
shorter alternating periods of rest and activity rather than 1
extended active period and 1 extended rest period.

RA reflects the difference between the most and the least active
periods during the day. It is calculated as the difference between
M10 (mean activity level during the most active 10 hours of
the day) and L5 (mean activity level during the least active 5
hours of the day) divided by the sum of M10 and L5. Higher
RA values indicate a greater amplitude in activity levels.

ICV is a novel measure of rhythm stability proposed by Rykov
et al [17]. Unlike IS, which evaluates the stability and regularity
of daily rhythms across days by calculating the variance of the
mean 24-hour activity profile relative to the total variance, ICV
focuses on the variation within a single day. ICV is calculated
as the 24-hour mean of the coefficients of variation (CVs), where
the CV is the ratio of the SD of the mean for each hour across
days. Higher ICV values indicate greater variation and less
stable rhythms within a day. In general, individuals with more
regular and healthy lifestyles tend to exhibit higher IS values,
reflecting their stable and consistent daily rhythms, and lower
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ICV values, indicating more stable activity patterns within each
hour of a day. Conversely, higher ICV values may suggest
fragmented or inconsistent activity patterns, often characterized
by intermittent bursts of activity and prolonged periods of
inactivity.

Autocorrelation is another measure of rhythm stability calculated
as the lagged autocorrelation of time-series data. Autocorrelation
was computed for time series aggregated into 15-, 30-, and
60-minute intervals, with a lag corresponding to 1 day.

In addition, a robust peak detection algorithm based on z scores
was applied to the time-series data to identify peaks in steps
and heart rate data [32]. For this, the daily mean number of
peaks and its SD were calculated.

Heart Rate Metrics
Extracted heart rate–based metrics included the overall average
heart rate, RHR, delta RHR (dRHR), daytime and nighttime
heart rate, and the variability of these measures calculated using
the SD and CV. In addition, the root mean square of successive
differences (RMSSD) of the heart rate was calculated.

RHR was defined as the average heart rate during 15-minute
intervals with 0 recorded steps, representing resting periods.
Daytime heart rate was calculated as the mean heart rate between
2 PM and 4 PM, whereas nighttime heart rate was calculated
by averaging values from 3 consecutive 2-hour intervals:
midnight to 2 AM, 2 AM to 4 AM, and 4 AM to 6 AM. These
intervals and metrics were selected following the approach used
by Rykov et al [17].

The SD and CV were computed for each heart rate measure to
assess variability. dRHR, reflecting the difference between
activity and rest, was calculated as the difference between the
overall average heart rate and RHR. RMSSD, an established
metric for assessing HRV, was calculated using both raw data
and hourly aggregated data.

Custom Modifications to Digital Biomarker Calculation
Programs
The calculation of digital biomarkers in this study was conducted
using step and heart rate data by executing the R script provided
by Rykov et al in R (version 4.4.1; R Foundation for Statistical
Computing). However, for extended cosinor–based metrics, the
ActCR package available on the Comprehensive R Archive
Network was used instead of the actigraphy package used by
Rykov et al [17]. The ActCR package offers functionality to
calculate a greater number of extended cosinor–based metrics
than the actigraphy package and was adopted to
comprehensively capture the participants’ circadian rhythms
[33].

Although only days with >20 hours of data were included in
the analysis, missing values were still present in some datasets.

Specifically, for the calculation of peaks, the original program
by Rykov et al [17] did not include a mechanism to skip missing
values, which could result in errors and prevent the metric from
being calculated correctly. To address this limitation, we
modified the program by adding a process to skip missing values
during the calculation of peaks, ensuring that the metric could
be computed accurately using the available data points. In total,
we extracted 69 digital biomarkers. The R scripts used for
feature extraction are available in Multimedia Appendix 1.

Statistical Analysis
The normality of the variables was assessed using the
Shapiro-Wilk test. For variables following a normal distribution,
multiple regression analysis was conducted with the WLM score
as the dependent variable, and explanatory variables were
selected based on Pearson correlation coefficients. For
nonnormally distributed variables, the Spearman correlation
analysis was conducted. The Spearman analysis was applied to
the entire dataset (all participants) as well as separately to the
robust, social prefrailty, and social frailty groups. Kruskal-Wallis
tests, followed by Dunn post hoc tests, were used to evaluate
differences across the 3 frailty groups. Finally, multinomial
logistic regression models were constructed to identify predictors
of social frailty status (robust, social prefrailty, and social
frailty). On the basis of the results of the Kruskal-Wallis tests,
models I and III included age- and sex-adjusted factors as
independent variables, whereas models II and IV were
unadjusted for these factors. All analyses were conducted using
RStudio (version 4.4.1; Posit PBC).

Results

Characteristics of the Data and Participants
The average device wearing time per participant was 186 (SD
26) hours, of which an average of 164 (SD 30) hours per
participant consisted of complete data recorded on days with at
least 20 hours of valid data. Of the 102 participants, only 86
(84.3%) had sufficient data for at least 5 days and were included
in the analysis.

The participants had a mean age of 77.14 (SD 5.7; range 65-88)
years, and most were women (78/86, 91%). The average daily
step count was 7824 (SD 3794), and the mean heart rate was
72.3 (SD 5.9) beats per minute. According to the social frailty
criteria defined by Makizako et al [24], the sample was
categorized into robust (28/86, 33%), social prefrailty (39/86,
45%), and social frailty (19/86, 22%) groups.

Figure 2 presents the averaged 24-hour profiles of hourly heart
rate and step count for all participants (n=86). Figure 3 shows
the same 24-hour profiles stratified by social frailty status
(robust, social prefrailty, and social frailty).
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Figure 2. Hourly profiles of heart rate and step count across a 24-hour period among community-dwelling older adults (N=86) in Akita Prefecture,
Japan. Data were collected between October 2023 and December 2024 as part of a cross-sectional study examining social frailty and circadian biomarkers.
Participants wore Fitbit Inspire 2 and 3 devices for at least 7 consecutive days. The hourly averages (eg, midnight-12:59 AM and 1 AM-1:59 AM) of
heart rate and step count were computed using only time windows with at least 30 minutes of valid data per participant. Red and blue lines indicate
mean values, and gray shaded areas represent SDs. bpm: beats per minute.
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Figure 3. Average 24-hour profiles of heart rate and step count measured using Fitbit Inspire 2 and 3 devices among 3 groups of community-dwelling
older adults in Akita Prefecture, Japan: robust (n=28), social prefrailty (n=29), and social frailty (n=19). Data were collected between October 2023
and December 2024 as part of a cross-sectional study on digital biomarkers of social frailty. The hourly means (eg, midnight-12:59 AM and 1 AM-1:59
AM) and SDs were calculated for heart rate and step count. Only time windows with at least 30 minutes of valid data per participant were included in
the analysis. The horizontal axis represents the hour of the day. bpm: beats per minute.

The demographic data for all participants and each social frailty
group are summarized in Table 1, including key variables such
as age, sex, and variables from physical and cognitive domains,

as well as digital biomarkers. Only the key variables are shown
in this table, with the full version available in Table S1 in
Multimedia Appendix 2.
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Table 1. Demographic information for all participants and each group (robust, social prefrailty, and social frailty; N=86)a.

Social frailty (n=19)Social prefrailty (n=39)Robust (n=28)All participantsVariable

Demographics

78.32 (6.01)77.18 (5.88)76.29 (5.38)77.14 (5.70)Age (y), mean (SD)

Sex, n (%)

18 (95)34 (87)26 (93)78 (91)Female

1 (5)5 (13)2 (7)8 (9)Male

6005 (3424)7809 (3104)9080 (4529)7824 (3794)Step count, mean (SD)

Physical domain variables, mean (SD)

22.11 (5.61)24.61 (5.91)23.84 (4.37)23.81 (5.38)Grip strength (kg)

1.33 (0.30)1.38 (0.30)1.34 (0.29)1.36 (0.29)Usual walking speed (m/s)

Cognitive domain variables, mean (SD)

11.26 (3.02)12.49 (3.26)12.62 (3.07)12.26 (3.14)WLMb (score)

1.40 (0.37)1.30 (0.29)1.31 (0.39)1.33 (0.34)TMT-Ac (s)

3.09 (1.13)3.42 (3.51)3.04 (2.61)3.22 (2.80)TMT-Bd (s)

39.58 (10.40)45.56 (12.88)46.96 (15.81)44.70 (13.50)DSSTe (score)

Circadian rhythm metrics—nonparametric analysis, mean (SD)

0.38 (0.13)0.45 (0.16)0.51 (0.19)0.46 (0.17)IS.stf

1.39 (0.28)1.29 (0.27)1.20 (0.23)1.28 (0.27)IV.stg

12 (10)28 (34)20 (24)22 (27)L5.sth

465 (292)570 (230)655 (339)575 (287)M10.sti

0.93 (0.07)0.90 (0.11)0.94 (0.06)0.92 (0.09)RA.stj

1.25 (0.16)1.09 (0.16)1.08 (0.25)1.12 (0.20)ICV.stk

Circadian rhythm metrics—extended cosinor analysis, mean (SD)

61.72 (6.82)57.19 (12.78)58.79 (7.10)58.71 (10.04)Minimum.hr

17.52 (3.97)23.57 (19.70)21.88 (8.49)21.68 (14.24)Amplitude.hr

−0.41 (0.13)−0.35 (0.32)−0.48 (0.15)−0.41 (0.24)α parameter.hr

20.96 (30.25)13.51 (15.58)20.98 (21.19)17.59 (20.99)β parameter.hr

14.50 (1.01)13.7 (1.21)14.12 (0.85)14.01 (1.09)Acrotime.hr (h)

1063.72 (759.72)1483.74 (1553.21)2011.37 (1314.32)1562.73 (1361.06)F_pseudo.hrl

6.85 (0.98)6.14 (1.41)6.15 (0.92)6.30 (1.20)UpMesor.hrm

22.15 (1.30)21.26 (2.55)22.08 (1.25)21.73 (1.97)DownMesor.hrn

70.48 (5.98)68.97 (6.50)69.73 (5.74)69.55 (6.07)MESOR.hro

HRp metrics, mean (SD)

72.72 (5.89)71.52 (6.00)73.10 (5.98)72.30 (5.91)HR (bpm)

12.20 (2.30)12.26 (2.25)13.71 (2.74)12.72 (2.48)SD of the HR (bpm)

66.01 (6.70)63.54 (6.46)63.39 (6.57)64.04 (6.52)RHRq (bpm)

6.70 (1.96)7.98 (2.69)9.71 (3.55)8.26 (3.03)dRHRr (bpm)

3.51 (0.99)3.59 (1.06)3.85 (1.04)3.66 (1.03)RMSSDs of the HR

7.63 (1.71)7.64 (1.62)8.53 (2.21)7.93 (1.86)RMSSD of the HR based on hourly means
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aThis table presents demographic characteristics, cognitive performance scores, and rhythm-based digital biomarkers for community-dwelling older
adults (N=102) participating in a cross-sectional study conducted in Akita Prefecture, Japan, between October 2023 and December 2024. Participants
were classified into 3 groups: robust, social prefrailty, and social frailty. Cognitive tests included the word list memory test, the trail making test versions
A and B, and the digit symbol substitution task. Wearable-derived metrics obtained from Fitbit Inspire 2 and 3 devices included average daily step
counts and rhythm indicators derived from steps or heart rate data: interdaily stability, intradaily variability, least active 5-hour period, most active
10-hour period, relative amplitude, and interdaily coefficient of variation. The suffix “.st” denotes rhythm indicators based on steps; “.hr” denotes those
based on heart rate. Additional physiological measures included resting heart rate, delta resting heart rate, and heart rate variability indexes such as root
mean square of successive differences and root mean square of successive differences based on hourly means. Mean 186 (SD 26) sampling hours; mean
164 (SD 30) analyzed hours.
bWLM: word list memory.
cTMT-A: trail making test version A.
dTMT-B: trail making test version B.
eDSST: digit symbol substitution task.
fIS: interdaily stability.
gIV: intradaily variability.
hL5: least active 5-hour activity level.
iM10: most active 10-hour activity level.
jRA: relative amplitude.
kICV: interdaily coefficient of variation.
lF_pseudo: the improvement in the fit obtained through the nonlinear estimation of the transformed cosine model.
mUpMesor: time of transition from rest to activity.
nDownMesor: time of transition from activity to rest.
oMESOR: midline estimating statistic of rhythm.
pHR: heart rate.
qRHR: resting heart rate.
rdRHR: delta resting heart rate.
sRMSSD: root mean square of successive differences.

Statistical Analysis Results
Figure 4 illustrates the results of the Spearman correlation
analysis conducted across the entire dataset (all participants)
and separately for the robust, social prefrailty, and social frailty

groups. Age, physical domain, and cognitive domain variables
are included in the analysis, whereas other variables are reported
only if their correlation coefficients showed significant
associations in at least 3 of the panels. Tables S2-S5 in
Multimedia Appendix 2 provide detailed correlation coefficients.
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Figure 4. Correlation matrices of rhythm-based digital biomarkers derived from Fitbit Inspire 2 and 3 devices among community-dwelling older adults
(N=86) in Akita Prefecture, Japan. This cross-sectional study was conducted between October 2023 and December 2024. Participants were post hoc
classified into 4 groups: all participants (A), robust (B; n=28), social prefrailty (C; n=29), and social frailty (D; n=19). The strength and direction of
correlations are visualized using ellipses—deep red indicates strong negative correlations, deep blue indicates strong positive correlations, and lighter
shades indicate weaker correlations. Variables other than age, physical function, and cognitive function are displayed only if their correlation coefficients
showed significant differences across at least 3 of the 4 panels. α parameter.hr: the width of troughs and peaks in the rhythm; Amplitude.hr: half the
extent of predictable variation within a cycle; DHR: daytime heart rate (average heart rate between 2 PM and 4 PM); dRHR: delta resting heart rate
(HR); DSST: digit symbol substitution task; F_pseudo.hr: the improvement in the fit obtained through the nonlinear estimation of the transformed cosine
model derived from HR; ICV.hr: intradaily coefficient of variation; M10.hr: most active 10-hour activity level; Peaks.hr: number of heart rate peaks
per day detected in time-series data; RHR: resting HR; TMT-A: Trail Making Test version A; TMT-B: Trail Making Test version B; UpMesor.hr: time
of transition from rest to activity; WLM: word list memory.

Table 2 presents the results of the multiple linear regression
analyses with WLM score as the dependent variable. In total,
2 models were analyzed. Model I included age and ICV × 100
as independent variables, whereas model II added one more

variable to the predictors. ICV × 100 represents the step-based
intrahourly CV scaled by multiplying the original values by 100
to enhance interpretability.
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Table 2. Models according to multiple logistic regression analysisa.

P valueβ coefficient (SE; 95% CI)

Model Ib

.01−0.15 (0.06; –0.26 to –0.03)Age

.02−0.04 (0.02; –0.07 to –0.01)ICV.stc × 100

Model IId

.03−0.13 (0.06; –0.25 to –0.02)Age

.03−0.04 (0.02; –0.07 to 0.00)ICV.st × 100

.19−0.39 (0.29; –0.97 to 0.20)Peaks.hre

aThe dependent variable for the analysis was word list memory score, derived from cognitive assessments. Independent variables included age, the
step-based intrahourly coefficient of variation standardized and scaled by 100, and the number of heart rate peaks per day detected in time-series data.
This cross-sectional study was conducted among community-dwelling older adults in Akita Prefecture, Japan, with data collected between October

2023 and December 2024. Model fit was evaluated using R2 (proportion of variance explained), adjusted R2 (adjusted for the number of predictors),
and the F statistic (testing the overall model significance).
bR2=0.150; adjusted R2=0.129; F statistic P=.001.
cICV.st: step-based intradaily coefficient of variation.
dR2=0.167; adjusted R2=0.137; F statistic P=.002.
ePeaks.hr: number of heart rate peaks per day detected in time-series data.

In model I, both age (β=−0.15, 95% CI −0.26 to −0.03; P=.01)
and ICV × 100 (β=−0.04, 95% CI −0.07 to −0.01; P=.02) were
significant predictors of WLM score. In model II, age (β=−0.13,
95% CI −0.25 to −0.02; P=.03) and ICV × 100 (β=−0.04, 95%
CI −0.07 to 0.00; P=.03) remained significant.

Table 3 summarizes the results of the Kruskal-Wallis and Dunn
post hoc tests for digital biomarkers across the robust, social

prefrailty, and social frailty groups. The Dunn post hoc tests
were conducted following the Kruskal-Wallis test to identify
pairwise differences, and the P values from these tests were
adjusted using the Bonferroni method. The table reports only
the 17 variables with significant associations identified through
the Dunn test (P<.05). Notably, comparisons between the robust
and social frailty groups revealed significant differences in 13
biomarkers.
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Table 3. Analysis of digital biomarkers by social frailty categories using the Kruskal-Wallis and Dunn testsa.

Social prefrailty vs
social frailty P val-
ue

Robust vs
social frailty
P value

Robust vs social
prefrailty P val-
ue

Overall P
value

Social frailty
(n=19), median
(IQR)

Social prefrailty
(n=39), median
(IQR)

Robust (n=28),
median (IQR)

Variable

.04.008.58.025114 (2782)7488 (4832)7685 (6562)Steps

.28.01.15.030.38 (0.19)0.43 (0.18)0.52 (0.21)IS.stb

.22.045.50.101.33 (0.42)1.25 (0.41)1.22 (0.23)IV.stc

.09.03.78.06383 (261)527 (342)577 (406)M10.std

.04.63.20.0710 (10)16 (19)10 (16)L5.ste

.003<.001.61.0011.24 (0.14)1.08 (0.22)1.04 (0.24)ICV.stf

.08.046>.99.070.18 (0.21)0.30 (0.16)0.30 (0.17)AC.st.60mg

.09.02.66.050.14 (0.13)0.25 (0.16)0.24 (0.17)AC.st.30mh

.16.04.63.080.11 (0.10)0.18 (0.16)0.18 (0.15)AC.st.15mi

.14.01.30.0345.74 (74.92)65.50 (150.43)111.30 (169.36)F_pseudo.stj

>.99.047.03.0311.74 (2.32)11.95 (2.79)13.28 (2.74)SD of the HRk

(bpm)

.22.003.07.0086.85 (2.86)7.31 (3.27)10.23 (5.02)dRHRl (bpm)

>.99.11.02.04−0.36 (0.16)−0.36 (0.19)−0.49 (0.17)α parameter.hr

.81.02.04.02665.80 (1064.46)1036.27
(1448.31)

1586.53
(1436.61)

F_pseudo.hrm

.06.03.87.0466.87 (0.95)6.39 (1.15)6.39 (1.13)UpMesor.hrn

aComparison of digital biomarkers related to circadian rhythm and heart rate among the robust, social prefrailty, and social frailty groups using the
Kruskal-Wallis and post hoc Dunn tests. Data were collected in a cross-sectional study conducted between October 2023 and December 2024 among
community-dwelling older adults in Akita Prefecture, Japan. The table reports the median and IQR for each variable by group. P values reflect overall
group differences and pairwise comparisons between groups, with significance corrected using the Bonferroni method. Only variables showing at least
one significant pairwise difference (P<.05) are included in the table. The suffix “.st” denotes rhythm indicators based on steps; “.hr” denotes those based
on heart rate.
bIS: interdaily stability.
cIV: intradaily variability.
dM10: most active 10-hour activity level.
eL5: least active 5-hour activity level.
fICV: intradaily coefficient of variation.
gAC.st.60m: autocorrelation of step counts aggregated in 60-minute intervals.
hAC.st.30m: autocorrelation of step counts aggregated in 30-minute intervals.
iAC.st.15m: autocorrelation of step counts aggregated in 15-minute intervals.
jF_pseudo.st: the improvement in the fit obtained through the nonlinear estimation of the transformed cosine model derived from steps.
kHR: heart rate.
ldRHR: delta resting heart rate.
mF_pseudo.hr: the improvement in the fit obtained through the nonlinear estimation of the transformed cosine model derived from heart rate.
nUpMesor: time of transition from rest to activity.

Table 4 summarizes the results of the multiple logistic regression
analysis, with models I and III adjusted for age and sex and

models II and IV excluding these adjustments. The robust group
was used as the reference category.
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Table 4. Models according to multiple logistic regression analysisa.

P valueOdds ratio (95% CI)β coefficient (SE)

Model Ib

Social prefrailty group

.761.01 (0.95-1.08)0.01 (0.03)Age (y)

.490.59 (0.13-2.58)−0.53 (0.76)Sex (male=1; female=0)

.040.82 (0.68-0.99)−0.21 (0.10)dRHRc

.0061.05 (1.01-1.08)0.05 (0.02)α parameter × 100

.030.58 (0.36-0.93)−0.55 (0.25)UpMesor.hrd

.931.00 (0.99-1.00)0.00 (0.00)F_pseudo.hre

Social frailty group

.081.06 (0.99-1.13)0.06 (0.03)Age (y)

<.0010.14 (0.07-0.28)−1.98 (0.38)Sex (male=1; female=0)

.010.69 (0.50-0.95)−0.37 (0.15)dRHR

.611.01 (0.97-1.05)0.01 (0.02)α parameter × 100

.271.39 (0.77-2.50)0.33 (0.30)UpMesor.hr

.171.00 (0.99-1.00)0.00 (0.00)F_pseudo.hr

Model IIf

Social prefrailty group

.020.82 (0.68-0.97)−0.20 (0.09)dRHR

<.0011.05 (1.02-1.07)0.05 (0.01)α parameter.hr × 100

<.0010.57 (0.46-0.71)−0.56 (0.11)UpMesor.hr

.971.00 (1.00-1.00)−0 (0.00)F_pseudo.hr

Social frailty group

.020.74 (0.58-0.94)−0.31 (0.13)dRHR

.681.01 (0.98-1.04)0.01 (0.02)α parameter.hr × 100

.011.45 (1.09-1.94)0.37 (0.15)UpMesor.hr

.191.00 (1.00-1.00)0.00 (0.00)F_pseudo.hr

Model IIIg

Social prefrailty group

.791.01 (0.92-1.11)0.01 (0.05)Age (y)

.761.02 (0.92-1.13)0.02 (0.05)Sex (male=1; female=0)

.961.00 (0.97-1.03)0.00 (0.02)ICV.sth × 100

.021.05 (1.01-1.12)0.05 (0.02)α parameter.hr × 100

.060.55 (0.30-1.01)−0.59 (0.31)UpMesor.hr

.020.75 (0.59-0.96)−0.29 (0.12)SD of the HRi

Social frailty group

.471.04 (0.93-1.16)0.04 (0.06)Age (y)

.180.11 (0.01-1.69)−2.22 (1.65)Sex (male=1; female=0)

.011.05 (1.01-1.11)0.05 (0.02)ICV.st × 100

.681.01 (0.96-1.07)0.01 (0.02)α parameter.hr × 100

.261.55 (0.72-3.35)0.44 (0.39)UpMesor.hr
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P valueOdds ratio (95% CI)β coefficient (SE)

.200.83 (0.63-1.11)−0.18 (0.15)SD of the HR

Model IVj

Social prefrailty group

.991.00 (0.97-1.03)0.00 (0.01)ICV.st × 100

.021.05 (1.01-1.09)0.05 (0.02)α parameter.hr × 100

.060.55 (0.30-1.01)−0.60 (0.31)UpMesor.hr

.020.75 (0.59-0.94)−0.29 (0.12)SD of the HR

Social frailty group

.011.04 (1.01-1.08)0.04 (0.02)ICV.st × 100

.701.01 (0.96-1.06)0.01 (0.02)α parameter.hr × 100

.241.58 (0.74-3.32)0.46 (0.38)UpMesor.hr

.250.85 (0.64-1.12)−0.17 (0.14)SD of the HR

aMultiple logistic regression analyses predicting social prefrailty and social frailty status relative to the robust group among community-dwelling older
adults in Akita Prefecture, Japan. Data were collected between October 2023 and December 2024 in a cross-sectional study. This table summarizes the
results of 4 models (models I-IV), each using a different combination of predictors related to heart rate variability and rhythm metrics derived from
wearable Fitbit devices. The dependent variable was group classification (robust, social prefrailty, or social frailty), with the robust group used as the
reference category. Independent variables included delta resting heart rate, α parameter (scaled by 100), rest-activity transition timing, step-based
intradaily variability, model fit from the extended cosinor analysis, and SD of the heart rate. The suffix “.st” denotes rhythm indicators based on steps;

“.hr” denotes those based on heart rate. Model fit was evaluated using the likelihood-ratio test, the Nagelkerke R2, and the Akaike information criterion

(AIC). Model IV demonstrated the best fit, indicated by the lowest AIC (170.1) and a relatively high R2 (0.351).
bLikelihood-ratio test P value=.002; Nagelkerke R2=0.343; AIC=179.0.
cdRHR: delta resting heart rate.
dUpMesor: time of transition from rest to activity.
eF_pseudo.hr: the improvement in the fit obtained through the nonlinear estimation of the transformed cosine model derived from heart rate.
fLikelihood-ratio test P<.001; Nagelkerke R2=0.315; Akaike information criterion=173.9.
gLikelihood-ratio test P=.001; Nagelkerke R2=0.378; Akaike information criterion=175.2.
hICV: intradaily coefficient of variation.
iHR: heart rate.
jLikelihood-ratio test P<.001; Nagelkerke R2=0.351; Akaike information criterion=170.1.

In model II, the dRHR showed significant negative associations
with both social prefrailty (OR 0.82, 95% CI 0.68-0.97; P=.02)
and social frailty (OR 0.74, 95% CI 0.58-0.94; P=.02). Similarly,
UpMesor.hr demonstrated significant associations with both
social prefrailty (OR 0.57, 95% CI 0.46-0.71; P<.001) and social
frailty (OR 1.45, 95% CI 1.09-1.94; P=.01).

In model IV, the α parameter.hr × 100 was significantly
associated with social prefrailty (OR 1.05, 95% CI 1.01-1.09;
P=.02). The SD of the heart rate showed a significant negative
association with social prefrailty (OR 0.75, 95% CI 0.59-0.94;
P=.02). For social frailty, ICV.st × 100 demonstrated a
significant positive association (OR 1.04, 95% CI 1.01-1.08;
P=.01).

The results of models I and III, which were adjusted for age and
sex, were generally consistent with their corresponding models
(model I corresponds to models II, and model III corresponds
to model IV). The primary difference was observed in
UpMesor.hr, which was significantly associated with both social
prefrailty and social frailty in model II but only with social
prefrailty in model I. Regarding other variables, dRHR, ICV.st
× 100, the α parameter.hr × 100, and the SD of the heart rate
showed consistent associations across corresponding models.

Discussion

Principal Findings
Our results lent support to the hypothesis that the frailty group
would exhibit significant associations with RAR parameters
(nonparametric and extended cosinor analysis) and heart
rate–based parameters. The observed significant relationships
with dRHR, UpMesor, and other heart rate–derived metrics
validate their relevance in understanding social frailty. In
addition, Fitbit-derived RAR metrics were found to be associated
with cognitive function, particularly memory decline, in partial
alignment with the proposed hypothesis.

The results of the analyses using the multinomial logistic
regression models partially supported the primary hypothesis.
Among the step-based rhythm metrics, only the ICV was
significantly associated with social prefrailty. On the other hand,
the dRHR and UpMesor showed significant associations with
both social frailty and prefrailty. Furthermore, the α parameter
and the SD of the heart rate were significant predictors of social
prefrailty. Notably, except for the ICV, all the significant
predictors of social frailty were derived from heart rate data.
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First, the dRHR showed significant negative associations with
both social prefrailty (OR 0.82, 95% CI 0.68-0.97; P=.02) and
social frailty (OR 0.74, 95% CI 0.58-0.94; P=.02) in model II.
The dRHR reflects the difference between the daily average
heart rate and the RHR, which may provide insights into the
activity levels and physiological responses to rest and activity.
In this study, we found that the dRHR values were smaller in
the social frailty and prefrailty groups, potentially indicating
reduced daytime activity levels and a closer approximation of
the average heart rate to the RHR.

Figure 2 illustrates our finding of lower daytime heart rates and
higher nocturnal heart rates in the social frailty group. This
pattern corresponds to smaller dRHR values, suggesting a
possible disruption in the typical fluctuations between rest and
activity. Notably, insufficient nocturnal heart rate reduction in
persons with social frailty might contribute to an elevated RHR.
In addition, increased physical activity has been associated with
reduced RHRs, likely mediated by autonomic nervous system
regulation [34]. Therefore, lower dRHR values might reflect
both reduced daytime activity and limited heart rate reduction
during rest. In this context, dRHR can be interpreted as a metric
associated with variations in heart rate across periods of activity
and rest.

Studies on the association between the severity of depression
and heart rate variation have suggested that reduced activity
levels can lead to altered heart rate fluctuation patterns [35].
Specifically, a higher nocturnal resting mean heart rate has been
associated with more severe depressive symptoms (β=0.09;
P<.001), whereas greater daytime heart rate variation (β=−0.34;
P<.001) and a higher SD of daytime heart rate (β=−0.18;
P<.001) have been linked to a lower severity of depression [35].

Similarly, previous research has identified a high RHR as a risk
factor for dementia [36], worsening of depression [35],
noncardiac disability [37], and physical frailty [38]. Social frailty
has also been reported to predict disability [24], cognitive
decline [39], depression [40], and physical frailty [6,39,41]. On
the basis of these findings, dRHR may function as a
comprehensive indicator reflecting these interconnected factors.

However, research on the dRHR is limited. Only the studies by
Rykov et al [16,17] have examined dRHR in patients with heart
disease and depression. Our study is the first to report on dRHR
in the context of social frailty and has highlighted its relevance
and potential value for understanding social frailty.

In addition, another heart rate indicator, the SD of the heart rate,
was identified as a predictor of social prefrailty (OR 0.75, 95%
CI 0.59-0.94; P=.02; model IV). Similarly to dRHR, the SD of
the heart rate can be interpreted as an indicator of the heart rate
fluctuations associated with daily physical activity levels. It is
also classified as a measure of the HRV, a widely recognized
method for assessing autonomic nervous system function. The
SD of the heart rate has been classified as a time-domain HRV
metric in previous research [42]. While the SD of the heart rate
has been less frequently studied compared with other HRV
metrics such as the RMSSD and SD of the NN interval, its
potential relevance in the context of social frailty is noteworthy.
In this study, we also calculated the RMSSD, but no significant
differences were observed between groups. While HRV is a

well-established metric for assessing autonomic nervous system
function, its specific significance in social frailty remains
underexplored. Future research should incorporate not only
time-domain measures such as RMSSD, which primarily reflect
parasympathetic nervous system activity, but also
frequency-domain metrics, including low- and high-frequency
components and their ratio (LF/HF), which reflect the balance
between sympathetic and parasympathetic activity [43]. This
may lead to a deeper understanding of the role of HRV in the
context of social frailty.

Second, this study found that the UpMesor was delayed in the
social frailty group (OR 1.45, 95% CI 1.09-1.94; P=.01; model
II). Although previous studies have not used heart rate–based
UpMesor, our results align with reports from previous studies
that delayed activity onset is associated with depressive
symptoms and functional decline [44]. Given the association
between social frailty and depression [45-47], delayed activity
rhythms may represent a characteristic feature of social frailty.

Conversely, the UpMesor was advanced in the social prefrailty
group (OR 0.57, 95% CI 0.46-0.71; P<.001; model II).
Typically, social frailty progresses linearly from robust to
prefrailty and then to frailty, suggesting that UpMesor would
also be progressively delayed across these stages. However, our
findings present an apparent contradiction.

According to the report by Ji et al [48], UpMesor, DownMesor,
and acrophase are parameters reflecting temporal rhythms,
including the onset and cessation of nighttime sleep and peak
daytime activity levels. The observed opposing patterns of
UpMesor suggest the importance of understanding how specific
temporal rhythm elements impact health across the stages of
social frailty.

Previous research has reported on acrophase, revealing complex
associations. For example, delayed acrophase has been linked
to developing dementia or mild cognitive impairment [49],
whereas early acrophase has been associated with cognitive
decline [50,51]. These studies indicate that temporal rhythms
do not exhibit simple linear relationships with health; both
excessively delayed and advanced rhythms may negatively
impact health.

The observed delay in UpMesor in the social frailty group and
its advancement in the social prefrailty group may support this
nonlinear association. Specifically, early activity onset in the
prefrailty stage and delayed activity onset in the frailty stage
may each contribute to health risks. This finding underscores
the need for further research to examine how factors such as
sex, age, and physiological characteristics might influence these
associations.

Third, the α parameter × 100 was significantly associated with
social prefrailty (OR 1.05, 95% CI 1.01-1.09; P=.02; model
IV), suggesting that an increase in α may heighten the risk of
social prefrailty. High α values reflect shorter activity periods
and longer rest periods, corresponding to insufficient daytime
activity. This aligns with the findings of Smagula et al [44],
which linked high α values to increased health risks such as
depression.
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However, α may also indicate rhythm clarity, as suggested by
Ji et al [48] using the sleep regularity, satisfaction, alertness,
timing, efficiency, and duration model [48]. Therefore, α must
be interpreted cautiously as it may reflect both the quantity and
quality of daytime activity and nighttime rest.

Fourth, the ICV × 100 was significantly associated with social
frailty (OR 1.04, 95% CI 1.01-1.08; P=.01; model IV). ICV
reflects the intrahourly CV, with higher values indicating greater
variability in activity levels. In this study, individuals with social
frailty exhibited more frequent alternations between short
activity bursts and rest, consistent with the report that reduced
physical activity and limited social engagement are associated
with the risk of frailty [6]. These results suggest that intradaily
rhythm instability may be a key feature of social frailty.

In addition, we found a significant association between ICV
and WLM score (β=−0.04; P=.02), suggesting that higher
rhythm variability may be linked to lower cognitive
performance. This finding aligns with those of previous research
indicating that increased IV and decreased IS are associated
with cognitive decline [52,53]. These results may imply that
the ICV metric, which reflects short-term rhythm fragmentation,
is related to cognitive function. However, as Fitbit does not
record activity counts, relying solely on step-based data may
lead to underestimation of activity levels in individuals with
impaired mobility.

Strengths and Limitations
One of the significant strengths of this study is its use of Fitbit
data to elucidate new rhythm-related characteristics associated
with social frailty. Fitbit devices have demonstrated acceptable
precision comparable to that of research-grade devices and are
also affordable and accessible, making them promising tools
for the development of digital biomarkers. In this study, step
count and heart rate data recorded by Fitbit were used to
replicate rhythm metrics based on the scripts by Rykov et al
[17], and new rhythm metrics were also calculated. We
demonstrated in this study that this comprehensive approach
offers the potential for evaluating rhythm-related characteristics
in social frailty.

Furthermore, the combined use of nonparametric metrics and
extended cosinor metrics has shown that multifaceted evaluation
of rhythm characteristics is achievable. Nonparametric metrics
are well suited for capturing the daily regularity of rhythms,
whereas extended cosinor metrics are useful for analyzing phase
changes along the time axis. This complementary use uncovered
new aspects of social frailty that were not previously identifiable
through conventional methods.

In addition, extended cosinor metrics, which have traditionally
been calculated based on activity counts, were applied to heart
rate data in this study, revealing new possibilities for rhythm
analysis. This development suggests that rhythm evaluations
can be conducted even for individuals with reduced walking
ability or limited daytime movement. The use of heart
rate–based data expands the scope of analysis to groups that
have been challenging to evaluate previously, providing a more
comprehensive understanding of the rhythm characteristics.

Despite its strengths, this study had several limitations. First,
the sample size posed a constraint. Due to the limited sample
size, the findings should be interpreted as observational results.
For example, determining the “optimal range” for UpMesor
requires validation in larger sample sizes. Furthermore, the
small sample size restricted our ability to conduct
comprehensive analyses integrating nonlinear models or multiple
health outcomes.

Second, sex differences may have influenced the results. The
potential impact of sex on the outcomes necessitates cautious
interpretation of the regression model estimates. Future research
should incorporate sex considerations to provide more nuanced
insights.

Third, there is the issue of uncertainty surrounding the
standardization of social frailty indexes. According to a
meta-analysis conducted by Jia et al [54], lack of a standardized
social frailty index and reliance on operational choices by
individual researchers remain significant challenges. This calls
for further discussion and validation of the reliability of social
frailty indexes.

Fourth, although a significant association between rhythm
metrics and cognitive function (WLM score) was observed, this
analysis was exploratory and secondary in nature. As the
primary objective of this study was to model social frailty, these
findings should be interpreted as preliminary. Advanced
modeling techniques such as machine learning were not used
in this study due to the limited sample size and the descriptive
aim of the cognitive analysis. Future studies with larger samples
should incorporate machine learning to develop predictive
models for cognitive outcomes and validate the utility of
rhythm-based digital biomarkers.

In addition, the interpretation of extended cosinor metrics
presents a challenge. The current body of research on extended
cosinor metrics remains limited, and careful consideration
tailored to specific objectives and populations is required. Unlike
nonparametric metrics, cosinor metrics do not allow for simple
binary evaluations such as “stable” or “unstable.” Both excessive
stability and instability of rhythms may be associated with health
risks, which necessitates a comprehensive approach to rhythm
evaluation.

Finally, there are limitations related to Fitbit data. While Fitbit
and similar smartwatches provide minute-by-minute step data
through their application programming interfaces, they do not
provide activity count data. This lack of activity count data
raises questions about the validity of rhythm metrics derived
solely from step data, highlighting the need for future research
to address this issue.

Conclusions
This study revealed associations between novel rhythm metrics
derived from step count and heart rate data recorded via Fitbit
devices and social frailty. These findings suggest that digital
biomarkers for evaluating social frailty and its risk factors can
be derived from data provided by consumer-grade wearable
devices, which are affordable and accessible.
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In particular, it was shown that heart rate–based metrics such
as dRHR, UpMesor, and the α parameter may play a crucial
role in the assessment of social frailty and prefrailty. These
metrics have the potential to complement existing activity
count–based rhythm analyses by capturing new dimensions of
health that were previously overlooked.

Furthermore, the findings of our study suggest that social frailty
is associated with specific rhythm characteristics such as
decreased daytime activity levels and increased nighttime heart
rates. These findings indicate that rhythm metrics may be
valuable for early detection and assessment of social frailty.

This research provides preliminary insights into the evaluation
of social frailty using Fitbit data. However, limitations such as
the small sample size and uncertainty surrounding standardized
indexes for social frailty must be addressed. Future studies
should focus on validating these findings in larger samples and
conducting comparative research using other devices. In
addition, further exploration is needed to determine whether
heart rate–based metrics can be applied to assess other health
conditions and diseases.
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CV: coefficient of variation
DownMesor: time of transition from activity to rest
dRHR: delta resting heart rate
HRV: heart rate variability
ICV: intradaily coefficient of variation
IS: interdaily stability
IV: intradaily variability
L5: least active 5-hour activity level
M10: most active 10-hour activity level
MESOR: midline estimating statistic of rhythm
OR: odds ratio
RA: relative amplitude
RAR: rest-activity rhythm
RHR: resting heart rate
RMSSD: root mean square of successive differences
UpMesor: time of transition from rest to activity
WLM: word list memory

Edited by A Mavragani; submitted 08.02.25; peer-reviewed by V Gupta, K Esquivel; comments to author 02.05.25; revised version
received 05.05.25; accepted 25.05.25; published 24.07.25

Please cite as:
Maekawa H, Kume Y
Predicting Social Frailty in Older Adults Using Fitbit-Derived Circadian and Heart Rate Biomarkers: Cross-Sectional Study
JMIR Form Res 2025;9:e71393
URL: https://formative.jmir.org/2025/1/e71393
doi: 10.2196/71393
PMID:

©Hiroki Maekawa, Yu Kume. Originally published in JMIR Formative Research (https://formative.jmir.org), 24.07.2025. This
is an open-access article distributed under the terms of the Creative Commons Attribution License

JMIR Form Res 2025 | vol. 9 | e71393 | p. 21https://formative.jmir.org/2025/1/e71393
(page number not for citation purposes)

Maekawa & KumeJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S2352-7218(23)00062-1
http://dx.doi.org/10.1016/j.sleh.2023.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37246064&dopt=Abstract
https://europepmc.org/abstract/MED/22162057
http://dx.doi.org/10.1002/ana.22468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22162057&dopt=Abstract
https://europepmc.org/abstract/MED/30136716
http://dx.doi.org/10.1111/jgs.15555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30136716&dopt=Abstract
https://europepmc.org/abstract/MED/36527292
https://europepmc.org/abstract/MED/36527292
http://dx.doi.org/10.1111/pcn.13521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36527292&dopt=Abstract
https://alzres.biomedcentral.com/articles/10.1186/s13195-024-01411-0
http://dx.doi.org/10.1186/s13195-024-01411-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38355598&dopt=Abstract
https://europepmc.org/abstract/MED/34558603
http://dx.doi.org/10.1093/gerona/glab275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34558603&dopt=Abstract
http://dx.doi.org/10.1016/j.archger.2024.105419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38522381&dopt=Abstract
https://openai.com/index/gpt-4-research/
https://formative.jmir.org/2025/1/e71393
http://dx.doi.org/10.2196/71393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2025 | vol. 9 | e71393 | p. 22https://formative.jmir.org/2025/1/e71393
(page number not for citation purposes)

Maekawa & KumeJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

