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Abstract
Background: Digital phenotyping—the use of digital data to measure and understand behavior and internal states—shows
promise for advancing predictive analytics in mental health, particularly when combined with other data sources. However,
linking digital phenotyping data with sources of highly sensitive clinical or genetic data remains rare, primarily due to
technical, ethical, and procedural challenges. Understanding the feasibility of collecting and linking these data types is a
critical first step toward developing novel multimodal datasets.
Objective: The Mobigene Pilot Study examines the feasibility of collecting smartphone-based digital phenotyping and mental
health data and linking it to genetic data from an existing cohort of adults with a history of depression (ie, the Australian
Genetics of Depression Study). This paper aims to describe (1) rates of study uptake and adherence; (2) levels of adherence and
engagement with daily mood assessments; (3) willingness to take part in similar research; and (4) whether feasibility indicators
varied according to mental health symptoms.
Methods: Participants aged 18‐30 years with genetic data from the Australian Genetics of Depression Study were invited to
participate in a two-week digital phenotyping study. They completed a baseline mental health survey and then downloaded
the MindGRID digital phenotyping app. Active data from cognitive, voice, and typing tasks were collected once per day
on days 1 and 11. Daily momentary assessments of self-reported mood were collected on days 2‐10 (once per day for 9
days). Passive data (eg, from GPS, accelerometers) were collected throughout the two-week period. A second mental health
survey was then completed after two weeks. To measure feasibility, we examined metrics of study uptake (eg, consent) and
adherence (eg, proportion of completed momentary assessments), and willingness to participate in similar future research.
Pearson correlations and t tests explored the relationship between feasibility indicators and mental health symptoms.
Results: Of 174 consenting and eligible participants, 153 (87.9%) completed the baseline mental health survey and 126
(72.4%) provided data enabling linkage of genetic, self-report, and digital data. After removal of duplicates, we found that
100 (57.5%) of these identified as unique participants and 69 (39.7%) provided complete post-study data. A small proportion
of participants dropped out prior to completing the baseline survey (21/174, 12.1%) or during app-based data collection
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(31/174, 17.8%). Participants completed an average of 5.30 (SD 2.76) daily mood assessments. All 69 (100%) participants who
completed the post-study surveys expressed willingness to participate in similar studies in the future. There was no significant
association between feasibility indicators and current mental health symptoms.
Conclusions: It is feasible to collect and link multimodal datasets involving digital phenotyping, clinical, and genetic data,
although there are some methodological and technical challenges. We provide recommendations for future research related to
data collection platforms and compliance.
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Introduction
There has been increasing investment in the collection and
integration of multimodal datasets to facilitate the develop-
ment of more precise methods for detecting and predict-
ing complex symptom dynamics in mental health [1,2].
One promising area of inquiry is the integration of smart-
phone–collected digital phenotyping data with genetic data
[3,4].

Digital phenotyping is the process of using digital data to
measure and understand behavior and internal states [5,6].
Digital data can be collected passively, for example via
accelerometers, or actively, such as through cognitive tasks
and the Experience Sampling Method (ESM) [7]. The ESM
uses repeated self-report surveys to assess experiences in
daily life and has minimal recall biases and high ecological
validity [8,9]. Daily diaries are a special form of ESM in
which assessments only occur once per day, typically within
a prespecified time window [8]. There is evidence that digital
phenotyping data can correlate with, classify, and predict
mental health problems including depression and anxiety
[10-17].

To our knowledge, no previous studies have linked newly
collected smartphone-based digital phenotyping data with
existing genetic data in mental health research. Creating such
a dataset could enhance our understanding of how genetic,
behavioural, cognitive, and psychological factors interact in
mental health [3,4], offering the potential for better prediction
and clinical decision-making [18,19].
The Mobigene Pilot Study
The purpose of the Mobigene pilot study is to explore the
feasibility of collecting digital phenotyping data (ie, from
cognitive, voice, and typing tasks; daily diaries; and passive
sensors) and self-reported clinical data, from participants in
the Australian Genetics of Depression Study (AGDS). The
AGDS is an ongoing study examining the contribution of
genetic variation to risk of depression in a large cohort of
Australian adults [20]. The aims of this paper are to (1)
describe rates of study uptake and adherence to the Mobigene
study protocol; (2) describe levels of adherence and engage-
ment with daily diary assessments; (3) identify openness to
participate in similar research in the future (ie, sustainabil-
ity); and (4) determine whether feasibility indicators differ
according to participants’ current mental health symptoms.

Transparency and Openness
The postregistered analysis plan [21], deviations, and code are
available on the Open Science Framework project page for
this study [22].

Methods
Design and Procedures
The Mobigene study is an observational pilot study that
combines primary and secondary data. Primary data include
self-reported current mental health symptoms, active and
passive digital phenotyping, and app or phone metadata.
Secondary data include existing genetic and historical clinical
data collected through the AGDS.

In total, 1282 participants aged 18‐30 years who had
provided genetic data in the AGDS were invited by the
AGDS team to participate. Interested participants comple-
ted informed consent and eligibility screening. Eligibility
criteria included being an Australian resident, owning an
iOS smartphone, willingness to participate, and proficiency
in English. Eligible participants completed baseline demo-
graphic and mental health surveys via Qualtrics and were then
invited to download a purpose-built iOS smartphone app for
digital phenotyping (MindGRID) on their own smartphones.
On days 1 and 11, participants accessed cognitive, voice,
and typing tasks in the app. Participants were given 3-days
to complete the tasks and each task could only be comple-
ted once. From days 2‐10, participants completed a 9-day
daily diary period which combined interval- and event-based
sampling. In line with best practices [8], for the interval-
contingent scheme, participants received one assessment
notification from the app per day, sent in the evening at a
random time between 7 PM-9 PM. On days 12‐15, depending
on the timeliness of task completion, postsurveys assessing
mental health and perceptions about the study were readmi-
nistered via the app. See Figure 1 for study procedures.

Data were collected over two participant cohorts with
differing incentive schemes. Participants from cohort 1 could
re-enroll in cohort 2 for the opportunity to receive the
increased incentive. Duplicate records from cohort 2 were
identified and excluded from analyses. The recruitment target
was 300 participants and accounted for potential dropout. See
Multimedia Appendix 1 for details on eligibility, recruitment,
informed consent, and the study protocol (including app-
based tasks).
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Figure 1. Overview of study procedures including online consent, screening, the baseline survey, and digital phenotyping. ESM: Experience
Sampling Methodology.

Ethical Considerations
Ethical approval was obtained from the University of New
South Wales, Sydney Human Research Ethics Committee
(HC220228) and QIMR Berghofer Human Research Ethics
Committee (P3476). Participants provided online informed
consent and all study data were deidentified. For compensa-
tion, participants were either entered into a draw for 10 Aus
$100 (US $65) e-gift cards (cohort 1) or received an Aus $50
(US $33) e-gift card (cohort 2).
Data Linkage
Three unique identifiers were randomly assigned to each
participant: one upon receipt of the study invitation; one
during screening; and one upon confirmation of eligibility.
These identifiers enabled linkage between baseline and digital
phenotyping data for participants from AGDS. See Multime-
dia Appendix 1 for further details about linkage and privacy.
Study Uptake and Adherence
Study uptake was defined as the number of eligible par-
ticipants who consented to participate, the number (%) of
participants whose data could be successfully linked, and the

number (%) of duplicates. Study adherence was defined as the
number (%) of participants that completed baseline and post
self-report surveys, as well as the number (%) of participants
that dropped out during the study.

Sample Characteristics
Baseline self-report data included age, education, relation-
ship status, number of children, and current mental health
symptoms and treatment. Standardized scales included
the Suicide Ideation Attributes Scale [23], Patient Health
Questionnaire 9-item [24], Generalized Anxiety Disorder
7-item Questionnaire [25], Snaith-Hamilton Pleasure Scale
[26], and Short Health Anxiety Inventory [27]. Total scores
and cut-off points for clinical severity were computed (See
Table S1 in Multimedia Appendix 1 for internal consistency)
[23-31].
Daily Diary Adherence and Engagement
MindGRID metadata were used to compute adherence to
the daily diary protocol. We computed three indices of
adherence: the average number (%) of completed evening
assessments, the number (%) of participants that did not
complete any diaries, and the number (%) of dropouts during
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the diary period. Engagement was defined as the average
number of completed evening and event-based assessments.
Sustainability
Self-reported openness to take part in a similar future study
was assessed postsurvey.

Results
Study Uptake and Adherence
A total of 1,292 participants from the AGDS study were
invited to participate. Of the invited participants, 174 eligible
participants consented to participate; 21 (12.1%) participants
dropped out, leaving 153 (87.9%) who completed the baseline

survey. Of these, 126 (72.4%) participants had successfully
linked data. Linkage failures were attributed to technical
errors: (1) an identifier was not appropriately generated
during eligibility; or (2) the eligibility identifier was not
recorded due to a bug in the cognitive tasks (ie, if tasks
were not completed or timed out by the end of day 3, the
identifier was not recorded). After removing 26 duplicates (all
from cohort 2), 100 (57.5%) unique participants remained.
Thirty-one (17.8%) participants dropped out during the app
data collection phase; there were no significant differences in
dropout rates between the recruitment cohorts (see Table S2
in the Multimedia Appendix 1). Overall, 69 (39.7%) unique
participants with linked data completed postsurveys. The flow
diagram is depicted in Figure 2.

Figure 2. Participant flow diagram illustrating the number of participants at each stage, from initial contact through to study completion. ESM:
Experience Sampling Methodology; Generalized Anxiety Disorder 7-item Questionnaire; Patient Health Questionnaire 9-item; Short Health Anxiety
Inventory; SIDAS: Suicide Ideation Attributes Scale.

Sample Characteristics
Baseline sample characteristics are reported in Table 1.

Table 1. Baseline demographic and mental health characteristics of the total unique sample (n=100) and final postsurvey sample (n=69).
Total unique samplea (n=100) Final unique sample (n=69)

Age, mean (SD; range) 27.09 (2.05; 20‐30) 27.13 (2.15; 20‐30)
Education, n (%)
  High school 34 (34.0) 24 (34.8)
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Total unique samplea (n=100) Final unique sample (n=69)

  Undergraduate 40 (40.0) 27 (39.1)
  Postgraduate 26 (26.0) 18 (26.1)
Relationship status, n (%)
  Single 39 (39.0) 26 (37.7)
  In a relationship 26 (26.0) 19 (27.5)
  De facto 18 (18.0) 14 (20.3)
  Married 17 (17.0) 10 (14.5)
Number of children, mean (SD; range)b 0.21 (0.99; 0‐9) 0.13 (0.42; 0‐2)
Mental health symptoms (continuous), mean (SD; range)
  Suicidal ideation 5.42 (6.26); 0‐20 4.96 (5.99); 0‐20
  Depression 10.99 (5.34); 0‐22 11.07 (5.23); 2‐22
  Generalised anxiety 8.95 (5.09); 0‐21 9.32 (5.21); 1‐21
  Anhedonia 2.93 (3.15); 0‐13 2.84 (3.24); 0‐13
  Health anxietyc 20.18 (8.31); 3‐43 20.15 (8.37); 3‐39
Mental health symptoms (≥ clinical cut-off), n (%)d

  Suicidal ideation (≥1) 66 (66.0) 45 (65.2)
  Depression (≥10) 61 (61.0) 42 (60.9)
  Generalised anxiety (≥8) 52 (52.0) 36 (52.2)
  Anhedonia (≥3) 45 (45.0) 29 (42.0)
Currently taking prescribed medications for mental health, n (%)
  Yes 68 (68.0) 47 (68.1)
  No 32 (32.0) 22 (31.9)
Currently receiving psychological therapy for mental health, n (%)
  Yes 50 (50.0) 35 (50.7)
  No 50 (50.0) 34 (49.3)

aTotal unique sample refers to the total sample after removal of duplicate records.
bn=2 missing.
cn=1 missing.
dThere is no established cut-off score for the Short Health Anxiety Inventory [32,33].

Daily Diary Adherence and Engagement
The average number of evening assessments completed (out
of 9) was 5.30 (SD 2.76; range 0‐9; equivalent to 58.9%).
The average number of completed evening and event-based
assessments was 7.21 (SD 3.79, range 0‐19). Most app-phase
dropouts occurred during the diary period (21/31, 67.7%);
9 (29.0%) participants did not complete any diaries. The
average diary adherence and engagement was comparable
across recruitment cohorts (see Tables S3 and S4 in Multime-
dia Appendix 1).
Sustainability
All participants who completed the postsurvey (69/69,
100.0%) reported that they would participate in a similar
study in the future.
Current Mental Health Symptoms and
Feasibility Indicators
There were no significant associations between symptoms
and dropout (all t<1.12; all P>.05) or diary adherence and

engagement (all r<0.19; all P>.05) (see Tables S5 and S6 in
Multimedia Appendix 1 for statistics).

Discussion
Principal Findings
The Mobigene pilot study demonstrated that it was feasible
to collect and link new data from an existing cohort that had
already participated in extensive data collection procedures.
Uptake and adherence to the study protocol were promising;
most participants completed at least some daily diaries and
there was evidence supporting sustainability. No associations
were observed between current mental health symptoms and
dropout, daily diary adherence, or engagement.

However, there were methodological and technical
challenges during different study phases. Most (n=83) of
the ineligible participants did not have an iOS smartphone
to support the MindGRID app. Further, technical errors
prevented linkage of app data to baseline data for some
participants (n=27), and dropout was most common during
the digital phenotyping phase (n=31). It is unclear whether
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dropout was due to issues with daily diaries (eg, timing of
assessments), cognitive tasks, or other design-related factors,
although it likely reflects the intensive nature of the multi-
modal data collection protocol. Gathering follow-up data on
participants’ subjective experiences of the study, and reasons
for noncompletion or dropout is crucial for fully assessing
feasibility. Uptake and adherence rates were broadly aligned
with findings from other studies using remote monitoring
technologies in individuals with a history of depression
[34-36]. However, comparisons are challenging given the
lack of uptake and adherence standards in intensive digital
phenotyping protocols and differences in study design.
Limitations
First, small sample size limits generalizability of the findings.
Second, our estimate of sustainability is likely to be
inflated due to self-selection bias, as the 69 participants

who completed the postsurvey may represent a particularly
motivated subgroup. Third, a large participant pool was
required to recruit the final sample.
Conclusions
Using multimodal data, including integration of existing
datasets, is a novel approach to advance mental health
prediction and minimize research waste. Our findings indicate
that future studies should use a cross-platform data collection
apps (eg, both iOS and Android), consolidate data collec-
tion via a single mobile platform, and implement adaptive
incentives such as gamification to increase compliance [37].
This approach would improve data quality and quantity by
broadening eligibility, minimizing technical linkage errors,
and increasing participant engagement with data collection
procedures.
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