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Abstract
Background: Conventional nystagmus classification methods often rely on subjective observation by specialists, which is
time-consuming and variable among clinicians. Recently, deep learning techniques have been used to automate nystagmus
classification using convolutional and recurrent neural networks. These networks can accurately classify nystagmus patterns
using video data. However, associated challenges including the need for large datasets when creating models, limited applica-
bility to address specific image conditions, and the complexity associated with using these models.
Objective: This study aimed to evaluate a novel approach for nystagmus classification that used the Generative Pre-trained
Transformer 4 Vision (GPT-4V) model, which is a state-of-the-art large-scale language model with powerful image recogni-
tion capabilities.
Methods: We developed a pupil-tracking process using a nystagmus-recording video and verified the optimization model’s
accuracy using GPT-4V classification and nystagmus recording. We tested whether the created optimization model could be
evaluated in six categories of nystagmus: right horizontal, left horizontal, upward, downward, right torsional, and left torsional.
The traced trajectory was input as two-dimensional coordinate data or an image, and multiple in-context learning methods were
evaluated.
Results: The developed model showed an overall classification accuracy of 37% when using pupil-traced images and a
maximum accuracy of 24.6% when pupil coordinates were used as input. Regarding orientation, we achieved a maximum
accuracy of 69% for the classification of horizontal nystagmus patterns but a lower accuracy for the vertical and torsional
components.
Conclusions: We demonstrated the potential of versatile vertigo management in a generative artificial intelligence model that
improves the accuracy and efficiency of nystagmus classification. We also highlighted areas for further improvement, such as
expanding the dataset size and enhancing input modalities, to improve classification performance across all nystagmus types.
The GPT-4V model validated only for recognizing still images can be linked to video classification and proposed as a novel
method.
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Introduction
Equilibrium function in vertigo practice can be evaluated
through nystagmus assessment. Nystagmus is characterized
by rhythmically repeated rapid and slow eye movements
and serves as a valuable clinical indicator for diagnosing
various neurological and vestibular disorders. Nystagmus can
influence the normal function of the cerebellum, semicir-
cular canals, and integrated eye movements, and thus is
of great diagnostic and therapeutic importance [1-3]. The
direction of nystagmus can be horizontal, vertical, or torsional
(rotational), depending on the axis of the eye movement. The
evaluation of nystagmus patterns provides essential insight
into the function of the visual and vestibular systems by
identifying underlying foci and guiding treatment strategies.
Traditionally, nystagmus classification has relied heavily
on subjective observation by trained specialists, which is
time-consuming, prone to variability among clinicians, and
can be difficult to perform in the emergency department
[4]. Furthermore, advancement of diagnosis can contribute to
improper treatment, increasing the risk of falls or decreasing
daily physical activity levels [5,6].

In recent years, advances in artificial intelligence (AI)
and machine learning technologies have provided promis-
ing means to capture eye movements [7,8] and automate
nystagmus classification, thereby improving the accuracy and
efficiency of diagnosis [9,10]. In particular, deep learning
methods such as convolutional and recurrent neural networks
are increasingly being used to analyze medical imaging
data, including videos that capture eye movements [11,12].
Although these techniques have shown success in tasks
such as image classification, object detection, and segmen-
tation, applying deep learning to nystagmus classification
remains challenging given the temporal changes inherent in
eye movement patterns. Interestingly, recent studies have
demonstrated promising outcomes by using deep learning
techniques to annotate scenes or detect spatiotemporal

features. This suggests that the potential of deep learning
algorithms to classify nystagmus patterns based on their
capture, and interpretation of these temporal characteristics
requires sophisticated modeling methods that can effectively
process ordinal data. Notably, several reports have used deep
learning to enable a unified evaluation of other perceptions;
however, creating models requires large amounts of data, and
it is unclear how such models can be used.

A large-scale language processing model, known as a large
language model (LLM) is a highly versatile system trained
on extensive text data using a transformer architecture. It
has demonstrated high accuracy in medical classification and
text recognition [13]. In one such model, the Generative
Pre-Trained Transformer (GPT), the advent of GPT-4Vision
(GPT-4V) made it possible to combine image recognition by
devising prompts and classification without requiring image
training data [14,15]. Unlike convolutional neural networks
or recurring neural networks, GPT-4V leverages in-context
learning, allowing it to classify visual and multimodal data
without extensive training datasets [16]. In this study, we
developed a novel nystagmus classification approach that
leverages the capabilities of the GPT-4V model. We aimed to
develop a classification system that can accurately iden-
tify different nystagmus patterns and validate its accuracy
by integrating GPT-4V with an eye movement tracking
algorithm from eye movement video data. This study is one
of the first to evaluate the feasibility of GPT-4V for nys-
tagmus classification, particularly in scenarios where dataset
limitations exist.

Methods
In this study, we developed a pupil-tracking process using
nystagmus recording videos and verified the accuracy of
the optimization model using GPT-4V classification and
nystagmus recording (Figure 1).
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Figure 1. Study overview. GPT-4V: Generative Pre-trained Transformer 4 Vision.

Developing the Pupil Tracking Process
First, the eyeballs were recognized from the video data,
and pupil movement co-ordinate data were created using an
eye movement tracking algorithm that showed the eyeball
trajectory. Video data were recorded using a charge-cou-
pled device-based camera eyeball rotation imaging device,
ET-60LW2 (Newopto), with a focal length of 6 mm, and a
horizontal resolution >500 television lines. The sensor size
is 1/3 inch and intermittent synchronous lighting occurred
every 1/30 second. A single video contained at least three
nystagmus in the same direction and was 3 to 5 seconds in
duration.

Based on these data, 190 trace images were created
for each video from patients whose main complaint was
dizziness. Videos were created using the same algorithm
used to generate trace images of the same individual, with
no more than two nystagmus events. After applying the
exclusion criteria, trace data were successfully generated for
139 patients. The exclusion criteria included cases in which
the edges of the eyes extended beyond the screen, images that
were too unclear to be evaluated, and the presence of foreign
objects or masses on the eyelid or conjunctiva.
Pupil Movement Tracking Algorithm
An eye movement tracking algorithm based on video data
was developed using the Haar cascade classifier and OpenCV
[17]. Although deep learning–based approaches may offer
higher accuracy for detecting facial features, they often
require extensive data or a pretrained model, as well as
comparatively intensive inference processes. The outline of
the pupil and its center within the screen were detected,
enabling the tracking of the center’s coordinates. In contrast,
the Haar cascade classifier, as part of the OpenCV suite,
offers a more streamlined and efficient alternative, enabling
the tracking of the eye’s trajectory at a rate of 40 frames per

second with significantly reduced complexity and setup time,
as reported previously [18-20]. The algorithm was designed
to superimpose trajectory data onto the first frames of eye
movement videos, marking the starting and ending points of
the pupil center’s paths. If the algorithm failed to detect the
eye due to occlusions or rapid movements, the trajectories
were interpolated, and measurement points that could not be
captured were omitted from the trajectory path. Additionally,
the movement data comprising the x and y coordinates of
the pupil at each measurement time point were systematically
converted into CSV files for further analysis using LLMs.

This approach proved strategic for our study’s require-
ments, allowing for rapid development and ease of modifica-
tion. This was particularly beneficial in our context, in which
real-time processing was prioritized over the incremental
gains in accuracy afforded by more computationally intensive
models.
GPT-4V Classification With Nystagmus
Recording
We developed GPT-4V models to classify eye movement
trajectories by generating still images tracked by the
algorithm and then inputting these images or CSV data into
the GPT-4V model to obtain answers for the classification.
When only traced images or coordinates were input, no
significant or advantageous responses were obtained. For
CSV data inputs containing the pupils’ coordinates (X and Y
axes) and their respective measurements, we embedded these
data directly into the prompts for the GPT-4 model. We tested
three combinations of inputs: only CSV, which used GPT-4
(GPT-4 Turbo); only still images; and a combination of CSV
and still images, with the latter two using GPT-4V (GPT-4
Turbo with vision).

A feature of LLMs is in-context learning through
prompting. The model was developed using prompts based
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on previous studies [15,21,22] and the chain-of-thoughts
(CoT) prompting technique, which allows LLMs to make
complex inferences by entering thought processes into the
prompts to facilitate the inference process and reasoning
[23,24] (Multimedia Appendix 1). We also used methods,
such as metarecognition (MR) and the Rule of 26, which
complicates the thought process by making the user aware of
the content in reaction to their responses [25,26]. We tested
whether the created optimization model could be evaluated
in six nystagmus categories: right horizontal, left horizontal,
upward, downward, right torsional, and left torsional. Of the
trace images obtained from the pupil-tracking process, those
with trace points other than the pupil, traces beyond the
eyeline, or some areas that could not be traced were excluded
by visual inspection by experts. The correctness rate was
evaluated for 139 data points (78, 26, and 35 in the horizontal,
vertical, and torsional directions, respectively).

An application programming interface was set up for
model validation, and the temperature parameter was set to 0
to account for variations in responses. Experts with >20 years
of vertigo practice experience judged whether the answers
and the explanatory content were appropriate. Even if the
final answer was correct, the details that led to the answer
were checked, and if they were incorrect, the answer was
considered incorrect. Data collected from the video record-
ings of eye movements exhibiting various nystagmus patterns
were used. Each video clip was independently reviewed and
annotated by two skilled vertigo specialists to identify the
presence and type of nystagmus pattern.
Ethical Considerations
This study was approved by the Medical Research Ethics
Committee of Mejiro University (approval number: Medical

20‐007). Informed consent was obtained from all subjects
involved in the study. Written informed consent has been
obtained from the patients to publish this paper, as appli-
cable. In accordance with ethical guidelines, an opt-out
approach was adopted. Detailed information regarding the
study—including its purpose, data handling procedures, and
measures for protecting personal information—was made
publicly available, and participants were given the opportu-
nity to decline participation if they wished. All data collected
in this study were anonymized, ensuring that no person-
ally identifiable information was included in the analysis
or publication. No financial or material compensation was
provided to the participant.
Study/Clinical Setting of Recruitment
Participants were recruited in this study from the otolaryngol-
ogy outpatient clinic at Mejiro University, a tertiary center
specializing in the diagnosis and treatment of vestibular
disorders. The patient included in this study was referred to
the clinic after experiencing episodes of vertigo. During the
clinical examination, ocular movements were recorded and
the resulting video data were used for this study.

Results
In this study, we developed a system to classify nystagmus
using GPT-4V and obtained the following results.
Pupil Tracking Process
The eye movement tracking program accurately recognized
the eyeballs in the video and depicted their trajectories
(Figure 2). The program successfully tracked eye movements
and generated datasets for each nystagmus category.

Figure 2. Representative tracing images of six nystagmus types (ie, right horizontal, left horizontal, upward, downward, right torsional, and
left torsional) obtained from video-based pupil tracking. Data were collected from patients with vestibular disorders. The images illustrate pupil
movement trajectories detected using an AI-based classification model.

GPT-4V Prompting
A nystagmus classification model was constructed by setting
and training appropriate prompts on the GPT-4V model.
Optimizing the prompts improved the classification accuracy
and adapted the model’s response to specific nystagmus

patterns. We used both basic and additional prompts for CoT
and MR (Multimedia Appendix 1).
Validation of Nystagmus With GPT-4V
For the “image only” input category, the “basic” prompt
method yielded a correct response in 43 (30.9%) instances,
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whereas no response was recorded in 24 (17.3%) instances
(Table 1). The “CSV only” input category under the “basic”
prompt approach resulted in 27 (19.4%) correct responses,
with 14 (10.1%) instances of no response. When both images

and CSV input were used, the “basic” prompt method
delivered 37 (26.6%) correct responses, with no response in
12 (8.6%) instances.

Table 1. Performance of GPT-4V in classifying nystagmus patterns based on video-recorded eye movements. The table presents the classification
accuracy for six nystagmus types across different input modalities (image only, CSV only, and image+CSV). Data were collected from 139 patients
diagnosed with vestibular disorders.
Prompting
techniques Input modalities and classification accuracy (N=139)

Image only CSV only Image+CSV
Correct,
n (%)

No response,
n (%)

Correct
response
(%)

Correct,
n (%)

No response,
n (%)

Correct
response
(%)

Correct,
n (%)

No response,
n (%)

Correct
response
(%)

Basic 43 (30.9) 24 (17.3)   37.4 27 (19.4) 14 (10.1)   21.6 37 (26.6) 12 (8.6)   29.1
CoT 47 (33.8) 13 (9.4)   37.3 20 (14.4) 26 (18.7)   17.7 33 (23.7) 32 (23.0)   30.8
MR 50 (36.0) 5 (3.6)   37.3 28 (20.1) 25 (18.0)   24.6 30 (21.6) 33 (23.7)   28.3
CoT+ MR 48 (34.5) 12 (8.6)   37.8 15 (10.8) 69 (49.6)   21.4 35 (25.2) 32 (23.0)   32.7

The other methods showed similar trends, with the CoT
prompt approach slightly improving in the “image only”
input category with 47 (33.8%) correct responses. Con-
versely, the MR prompt method outperformed the others in
the “image only” input domain, with 50 (36.0%) correct
classifications. When combining the CoT and MR prompts,
the “image only” input domain showed 48 (34.5%) correct
classifications. However, there was a modest improvement in
the “image+CSV” input category, with 35 (25.2%) correct
responses.

Table 2 shows the outcome of the GPT-4V classifica-
tion accuracy in the presence of nystagmus-recording data
segregated according to each nystagmus direction. Four types
of prompting classification strategies were assessed: basic,
CoT, MR, and a composite of CoT and MR. The evaluation
was further stratified into three data inputs: image only, CSV
only, and Image+CSV.

For downward and upward nystagmus, the highest correct
classification rates were 37.5% and 27.8%, with a total data
count of 8 and 18 instances, respectively.

Table 2. GPT-4V classification with nystagmus recording for each direction.
Nystagmus
direction Classification strategies and data input categories

Image only (correct classification rates), n
(%)

CSV only (correct classification rates), n
(%)

Image+CSV (correct classification
rates), n (%)

Basic CoT MR CoT+M
R

Basic CoT MR CoT+M
R

Basic CoT MR CoT+M
R

Downward
(n=8)a, n (%)

0 (0) 1 (12.5) 0 (0) 2 (25) 2 (25) 0 (0) 2 (25) 0 (0) 1 (12.5) 0 (0) 0 (0) 3 (37.5)

Left
horizontal
(n=36)a, n
(%)

14 (38.9) 14
(38.9)

20 (55.6) 14 (38.9) 3 (8.3) 2 (5.6) 3 (8.3) 0 (0) 9 (25) 7 (19.4) 9 (25) 7 (19.4)

Left torsional
(n=16)a, n
(%)

0 (0) 0 (0) 1 (6.3) 0 (0) 0 (0) 3 (18.8) 1 (6.3) 3 (18.8) 0 (0) 1 (6.3) 0 (0) 0 (0)

Right
horizontal
(n=42)a, n
(%)

27 (64.3) 27
(64.3)

25 (59.5) 29 (69.0) 20 (47.6) 15
(35.7)

17
(40.5)

10 (23.8) 23 (54.8) 23
(54.8)

17
(40.5)

22
(52.4)

Right
torsional
(n=19)a, n
(%)

1 (5.3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (5.3) 0 (0) 0 (0) 0 (0) 0 (0)

Upward
(n=18)a, n
(%)

1 (5.6) 5 (27.8) 4 (22.2) 3 (16.7) 2 (11.1) 0 (0) 5 (27.8) 1 (5.6) 4 (22.2) 2 (11.1) 4 (22.2) 3 (16.7)

aTotal number of nystagmus cases examined.
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For left and right torsional nystagmus, the highest correct
classification rates were 6.3% and 5.3% with the “image
only” inputs, 18.8% and 5.3% with “CSV only” inputs, and
6.3% and 0% with “image+CSV” inputs, respectively.

For the left horizontal nystagmus with 36 data instan-
ces, the “image only” input showed superior performance
with 38.9% correct classifications using the basic prompt,
improving incrementally with the MR prompt at 55.6%. In
the right horizontal category with 42 instances, the “image
only” input showed a higher correct rate compared to the
other input types, with the basic and CoT prompts demon-
strating an accuracy rate of 64.3%, while the combined CoT+
MR prompt exhibited the highest accuracy rate at 69%.

The “CSV only” mode indicated a generally lower correct
classification rate across all directions and methodologies.
Notably, the right torsional and left torsional classifications
demonstrated zero correct classifications with basic prompts.

Overall, Table 2 highlights the varying degrees of
classification accuracy depending on the direction of
nystagmus, data presentation format, and classification
method. Inputs containing image data generally showed
improved classification performance compared to using CSV
only” input.

The response trend for each type of data input was
analyzed in terms of each direction (Figure 3). The

classification performance of the GPT model was evaluated
using three different input modalities: image only, CSV only,
and image+ CSV. When using the “image only” input, the
model achieved an accuracy of 0.289, with a precision of
0.211, a recall of 0.264, and an F1-score of 0.169. For the
“CSV only” input, the accuracy was 0.247, with a precision
of 0.218, a recall of 0.210, and an F1-score of 0.178. The
combination of image and CSV inputs (image+ CSV) resulted
in the highest performance among the three input types, with
an accuracy of 0.356, a precision of 0.186, a recall of 0.222,
and an F1-score of 0.191. The confusion matrix showed a
high frequency of horizontal responses, and this tendency
was greater for “image only” and “image+ CSV” inputs.
For inputs containing images, horizontal nystagmus tended
to be misclassified more often, as horizontal nystagmus in
the opposite direction occurred more frequently than in the
other components. Results for the “CSV Only” input showed
a broader distribution of misclassifications across multiple
categories, with no specific tendency toward a particular
type of nystagmus. Additionally, a notably high number of
responses were categorized as “others,” indicating a difficulty
in making definitive classifications using CSV data alone. In
comparison, the “Image” input demonstrated a reduction in
“Others” responses, highlighting improved performance and
specificity when combining data modalities.

Figure 3. Confusion matrix of GPT-4V classification with nystagmus recording for each direction.

Discussion
Principal Findings
In this study, we created and verified the accuracy of
a nystagmus classification model using the GPT-4V. The
results revealed several interesting insights. First, it became
clear that nystagmus classification is possible using AI
generated from a LLM model. Furthermore, the mod-
el’s accuracy varied with different prompting adjustments,
indicating that the accuracy varied with each nystagmus
pattern, suggesting room for improvement in the mod-
el’s performance without retraining the model or parame-
ter tuning. Second, it was revealed that inputting images
rather than tracking the pupil coordinates resulted in higher

accuracy. Thus, the GPT-4V–based nystagmus classification
model achieved a certain level of success, and this study
serves as the first step toward validating its potential for video
analysis.

The GPT-4V-based nystagmus classification model
derived from LLM demonstrated the ability to distinguish
and classify different nystagmus patterns from video data.
Overall, an accuracy rate of 17‐38% was achieved, with
the classification of horizontal nystagmus patterns showing
a 70% accuracy rate. This indicates that the GPT-4V model
can effectively capture subtle differences in horizontal eye
movements and suggests specific neurological or vestibular
states. The fact that nystagmus classification is possible with
an LLM model implies the potential for further develop-
ment of nystagmus classification models previously tackled
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using deep learning models. The classification accuracy of
deep learning models has been reported to be between
60‐90%, averaging approximately 80%, whereas the GPT-4V
similar to LLM, has achieved a certain level of accuracy for
horizontal nystagmus [27-29]. As LLMs do not require image
training data and can be used in conversations, they can
be readily used alongside other information during clinical
assessments to confirm answers and diagnostics. At present,
LLMs including GPT have improved learning accuracy and
can generate still images and audio; however, video recogni-
tion has not yet been reported. In the future, our methodology
can be applied to videos using the LLM.

Notably, accuracy varies with prompts and conditions
[30,31]. We also report that the accuracy of medical
licensing and otolaryngology expertise examinations can be
improved by presenting choices in English and confirming
the examiner’s status [15,18,19]. For the classification of
nystagmus, we tested CoT, MR, and their combination, but
found no significant improvement in accuracy. GPT is a
pretrained general-purpose LLM, and its accuracy is believed
to depend on factors such as the number of model param-
eters, amount of training data, and scale of computational
resources [32]. When provided with appropriate prompts,
the model may use a greater portion of its parameters more
efficiently, generating optimal outputs. Designing appropri-
ate prompts for specific nystagmus patterns is necessary
to further increase the model’s discrimination accuracy.
Regarding the input methods, the “CSV Only” input showed a
notable tendency toward instances where the model fre-
quently failed to classify any type of nystagmus. In con-
trast, inputs that included image data consistently resulted in
producing a specific classification. This indicates that inputs
containing images are more effective in enabling the model
to provide responses and perform accurate classifications.
Moreover, providing multimodal information, such as still
images, patient information, and head position is expected to
increase the accuracy of balance function tests.

For specific nystagmus patterns, classification was
possible for horizontal movements; however, the accuracy
of classifying vertical and torsional components was low,
regardless of the image or coordinate input. This can be
attributed to the evaluation of two dimensional movements,
which makes torsional assessment challenging, similar to
the limitations of deep learning using two dimensional
video capture [27,28]. Additionally, the amplitude of vertical
movements was smaller than that of horizontal movements,
which could be another reason for lower accuracy. Improving
the accuracy and pupil tracking methods with the develop-
ment of prompts specialized for vertical domains may also
be effective for higher precision. Responses showed higher
accuracy for identifying horizontal nystagmus compared to
other types. These results suggest that the accuracy can be
further improved by increasing the input images frame speed,
performing more detailed preprocessing, such as changing the
settings for each direction, or taking coordinates in three-
dimensional directions. This study shows that GPT-4V, a
LLM trained on extensive data, can achieve a certain level

of accuracy through in-context learning methods such as CoT
and MR highlights the broad applicability of this model.

Clinically, nystagmus findings are crucial indicators
for evaluating vestibular function and are indispensable
in clinical settings for neurological and otologic diseases
[5]. However, variability in physician assessments and
the occurrence of findings only during vertigo attacks
necessitate a stable evaluation model. Electronystagmog-
raphy, a common method for recording nystagmus clini-
cally, records eye movements as corneoretinal potentials
but cannot measure torsional eye movements and has the
disadvantage of difficulty in capturing three-dimensional
movements. Additionally, the need for specialized equipment
makes real-time recording during vertigo attacks challeng-
ing, limiting its frequent use in clinical practice. In con-
trast, methods for recording eye movements using video
are becoming widespread [33,34], and with recent advance-
ments in deep learning technology, consistent assessments
may become possible. The use of highly versatile LLMs can
further expand their application. For example, LLM can be
used in written exchanges to confirm repetitions, reasons for
thinking so, and corresponding details. The GPT-4V model,
with its real-time clinical setting applications, demonstrated
faster inference time and lower computational complexity
than conventional deep learning techniques. Since some
hallucinations may yield incorrect answers as if they were
correct, a human must make the decision considering the
AI responses [35]. The model’s accuracy, especially in this
case, should be limited to cases where a human confirms
the answer. Further improvement of the model’s accuracy is
required in the future.

As a limitation, this verification was specialized for
classifying six types of nystagmus in videos and did not
evaluate abnormal detections during regular examinations
or nystagmus containing multiple components. Additionally,
one limitation is that images being evaluated depend on the
nystagmus in videos obtained during the examination, leading
to variability in the amount of data depending on the type of
nystagmus. Therefore, future studies should include improve-
ments in the classification accuracy of nystagmus patterns
and verification of the model’s adaptability to mixed types
of clinical data, such as horizontal- and vertical-torsional
nystagmus. Moreover, the issue of hallucinations in LLMs
is crucial, and how they are used is essential. At a minimum,
educational purposes such as training medical professionals
and pre-evaluation before doctors can judge the videos, could
be effective. Devices capable of recording nystagmus using
smartphones exist, and considerations must be made to record
and assess patients without medical intervention [36].

The GPT-4V based nystagmus classification model
represents significant advancements in medical imaging and
diagnostic techniques. Its high accuracy, efficiency, and
potential for real-time application make it a valuable tool
for improving the diagnosis and management of nystag-
mus. Continuous research and development in this area are
essential for improving the model and maximizing its clinical
utility.
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Conclusions
In this study, we developed a nystagmus classification
model using GPT-4V and evaluated its performance. Unlike
previous deep learning models, GPT-4V, centered on a LLM,
presents a promising method for classifying nystagmus in
video data and is expected to contribute to improved accuracy

and efficiency in medical diagnoses. This represents a
significant advance in medical AI and it is crucial to continue
refining the model and consider its clinical applications to
fully realize the potential benefits that AI technology brings
to the medical field.
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