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Abstract

Background: Hepatitis B virus (HBV) can be transmitted from mother to child either through transplacental infection or via
blood-to-blood contact during or immediately after delivery. Early and accurate risk assessments are essential for guiding clinical
decisions and implementing effective preventive measures. Data mining techniques are powerful tools for identifying key predictors
in medical diagnostics.

Objective: This study aims to develop a robust predictive model for mother-to-child transmission (MTCT) of HBV using
decision tree algorithms, specifically Iterative Dichotomiser 3 (ID3) and classification and regression trees (CART). The study
identifies clinically and paraclinically relevant predictors, particularly hepatitis B e antigen (HBeAg) status and peripheral blood
mononuclear cell (PBMC) concentration, for effective risk stratification and prevention. Additionally, we will assess the model’s
reliability and generalizability through cross-validation with various training-test split ratios, aiming to enhance its applicability
in clinical settings and inform improved preventive strategies against HBV MTCT.

Methods: This study used decision tree algorithms—ID3 and CART—on a data set of 60 hepatitis B surface antigen
(HBsAg)–positive pregnant women. Samples were collected either before or at the time of delivery, enabling the inclusion of
patients who were undiagnosed or had limited access to treatment. We analyzed both clinical and paraclinical parameters, with
a particular focus on HBeAg status and PBMC concentration. Additional biochemical markers were evaluated for their potential
contributory or inhibitory effects on MTCT risk. The predictive models were validated using multiple training-test split ratios to
ensure robustness and generalizability.

Results: Our analysis showed that 20 out of 48 (based on a split ratio of 0.8 from a total of 60 cases, 42%) to 27 out of 57 (based
on a split ratio of 0.95 from a total of 60 cases, 47%) training cases with HBeAg-positive status were associated with a significant

risk of MTCT of HBV (χ2
8=21.16, P=.007, df=8). Among HBeAg-negative women, those with PBMC concentrations ≥8 × 106

cells/mL exhibited a low risk of MTCT, whereas individuals with PBMC concentrations <8 × 106 cells/mL demonstrated a
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negligible risk. Across all training-test split ratios, the decision tree models consistently identified HBeAg status and PBMC
concentration as the most influential predictors, underscoring their robustness and critical role in MTCT risk stratification.

Conclusions: This study demonstrates that decision tree models are effective tools for stratifying the risk of MTCT of HBV by
integrating key clinical and paraclinical markers. Among these, HBeAg status and PBMC concentration emerged as the most
critical predictors. While the analysis focused on untreated patients, it provides a strong foundation for future investigations
involving treated populations. These findings offer actionable insights to support the development of more targeted and effective
HBV MTCT prevention strategies.

(JMIR Form Res 2025;9:e69838) doi: 10.2196/69838
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Introduction

Hepatitis B virus (HBV) mother-to-child transmission (MTCT)
can occur through transplacental infection or blood-to-blood
contact during or after delivery and accounts for a significant
proportion of chronic HBV infections worldwide [1]. In
high-prevalence countries such as Vietnam, MTCT remains the
most common mode of transmission. Children who acquire
chronic infection have a 40% lifetime risk of dying from
HBV-related complications. Antiviral treatment to reduce high
viral loads, along with immunoprophylaxis using anti-HBV
immunoglobulin shortly after delivery and active HBV
immunization of neonates, can significantly reduce the incidence
of MTCT. However, these measures are rarely implemented in
most countries [2]. Studies examining high-risk factors
associated with MTCT in patients with HBV lack depth, and
the relationship between HBV DNA in maternal serum and cord
blood remains unclear. We conducted a clustering study to
explore the potential link between HBV infection in pregnant
women and cord blood, aiming to identify a clinical reference
marker for prenatal surveillance and postnatal management,
and to strengthen the prevention of HBV MTCT.

Data mining techniques play a crucial role in clinical
decision-making by providing physicians with accurate, reliable,
and timely predictions through various models. Machine
learning is broadly categorized into 3 types: supervised learning,
unsupervised learning, and reinforcement learning. The decision
tree is a supervised learning algorithm capable of handling both
regression and classification tasks. A typical machine learning
algorithm involves 2 main steps: training (where the algorithm
learns a model from data) and prediction (where the learned
model is used to predict new values). The training step in the
decision tree algorithm constructs a decision tree. A decision
tree is an effective support tool for engineers’ decision-making
[3], using a tree model that illustrates decisions and their
possible outcomes, including random outcomes, resource costs,
and benefits. Based on published premise cluster analysis
research, we set up a machine learning experiment. This research
may help identify potential risk factors for MTCT.

This study was conducted at a single center in Thai Nguyen,
Vietnam. It is valuable to explore how variations in HBV
circulation rates, genotypes, and health care practices across
different regions of the country might influence both the
detection and relevance of the study. Thai Nguyen, where the

research took place, serves as the economic, political, and social
hub of the northeastern region, the Central Highlands, and the
northern mountainous areas of Vietnam. As a result, although
the patients come from various hometowns, they share
characteristics typical of the northern mountainous region, where
many ethnic minorities reside. Viral hepatitis—particularly
HBV, hepatitis D virus, and hepatitis E virus—remains a
significant public health concern in Vietnam, especially among
ethnic minority communities. Higher infection rates in these
groups are often linked to limited access to health care, low
socioeconomic status, high-risk living conditions, and a lack of
awareness about the disease.

In this study, we enrolled 60 pregnant women who tested
positive for hepatitis B surface antigen (HBsAg) from a clinical
setting, applying strict inclusion criteria to ensure that only those
with chronic HBV infection—defined as being HBsAg-positive
for more than 6 months—and who had not received any HBV
treatment were included.

In our study, we focused exclusively on HBsAg-positive
pregnant women who were not receiving antiviral treatment.
This approach was intentionally chosen to better understand the
natural history and intrinsic risk factors for MTCT in untreated
patients. According to World Health Organization (WHO)
guidelines and current Vietnamese recommendations, pregnant
women identified as being at high risk of MTCT are typically
advised to begin treatment early. However, because sampling
in our study took place either before delivery or immediately
at the time of delivery, some participants had not yet been
diagnosed or had not had the opportunity to access treatment.

After delivery, we strongly recommended that all patients initiate
antiviral therapy promptly, emphasizing that postnatal treatment
does not negatively impact milk production or the quality of
breast milk for the infant. Although excluding women who were
already receiving treatment may limit the generalizability of
our findings, our study offers valuable baseline data on MTCT
risk in untreated patients. This baseline can serve as a crucial
reference for future studies evaluating the effectiveness of early
treatment interventions.

After obtaining informed consent, we collected maternal and
cord blood samples to measure various biomarkers, including
viral markers (HBsAg, hepatitis B e antigen [HBeAg], HBV
DNA) and biochemical parameters (eg, alanine aminotransferase
[ALT], aspartate aminotransferase [AST], and peripheral blood
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mononuclear cells [PBMCs]). The raw data were preprocessed
using R (R Foundation), which involved cleaning and organizing
the data for further analysis. We conducted descriptive and
univariate analyses to summarize the characteristics of the study
population, followed by correlation and clustering analyses to
explore relationships among the measured variables. Based on
logistic regression models and initial analyses, we identified
specific cutoff values (eg, PBMCs/mL and HBV DNA
copies/mL). Feature selection was performed using information
gain techniques based on Iterative Dichotomiser 3 (ID3) theory,
identifying key predictors such as HBeAg status and PBMC
levels. The selected features were then used to construct decision
tree models with both the ID3 and classification and regression
trees (CART) algorithms to classify participants into distinct
MTCT risk categories.

We validated the models through 1000 simulation runs using
various training-test split ratios, calculating performance
metrics—including accuracy, sensitivity, specificity, and
AUC—to assess model performance. The validated models
enabled risk stratification based on Cohen effect size
classifications (trivial, small, medium, and large), and the results
were interpreted to provide actionable clinical insights,
highlighting the critical roles of HBeAg and PBMCs in
predicting the risk of HBV MTCT (Figure 1).

The goal of this study is to develop and validate a machine
learning–based decision tree model to effectively predict the
risk of HBV transmission from mother to child. This will be
accomplished by incorporating key clinical and paraclinical
markers—particularly HBeAg status and PBMC
concentration—to inform targeted prevention strategies.

Figure 1. Study flowchart. CART: classification and regression trees; HBsAg: hepatitis B surface antigen; ID3: Iterative Dichotomiser 3.
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Methods

Study Population
Between 2020 and 2021, we conducted a pilot study at Thai
Nguyen National Hospital in Vietnam, focusing on pregnant
women who received regular check-ups and delivered at the
facility. A total of 60 pregnant women who tested positive for
HBsAg were enrolled.

Participants were provided with detailed information about the
risks of hepatitis B transmission and were counseled on available
treatment options. They could choose to begin treatment
immediately or defer it until after delivery. Following birth,
both mothers and their newborns were monitored for 3-6
months. Newborns received routine prophylactic care, and
mothers with HBV DNA levels exceeding 200,000 IU/mL were
offered treatment in accordance with WHO guidelines (2021)
[4].

Only pregnant women with chronic hepatitis B (CHB) infection
(HBsAg positive for more than 6 months) who opted to delay
antiviral treatment were included in the study. We collected
various biological samples and conducted clinical surveillance
to establish a comprehensive hepatitis B patient cohort, aimed
at exploring the multifactorial risk factors associated with HBV
MTCT.

Ethical Considerations
This study was approved by the Institutional Review Board for
Ethics in Biomedical Research of Hanoi Medical University
(approval number NCS22/HMU-IRD), ensuring the protection
of participants’ rights. Informed consent for future data use was
obtained during the original data collection, and this secondary
analysis was conducted in accordance with that provision. All
data used in this study were deidentified and securely stored.
No personally identifiable information was collected or retained,
and no identifiable images of individuals are included in the
manuscript or multimedia appendices.

Diagnostic Criteria
We collected clinical data from pregnant women who tested
positive for HBsAg and were not receiving HBV treatment. The
information gathered included general demographic and
obstetric details such as age at delivery, gestational age, and
pregnancy history (including the number of pregnancies and
births, cesarean sections, and any preexisting conditions).
Laboratory test results—such as ALT, AST, HBV DNA levels,
and records of any antiviral therapy—were also included.
Additionally, we assessed various maternal conditions, including
preeclampsia, chronic hypertension, history of abortion,
placental abruption, hyperthyroidism, gestational diabetes
mellitus, pregnancy-induced hypertension, intrahepatic
cholestasis of pregnancy, and other related complications. A
retrospective analysis was conducted to examine the association
between HBV infection status and preclinical factors.

Isolation of Peripheral Blood Mononuclear Cells
We col lected maternal  blood in  EDTA
(ethylenediaminetetraacetic acid) tubes and also collected
umbilical cord blood. The cord blood was obtained from the

umbilical vein of the umbilical cord and placed in a 20-mL
cylinder with anticoagulant immediately after birth. The process
of collecting cord blood takes only 2-3 minutes and involves
the following steps: (1) Immediately after the mother gives
birth, the medical staff clamps a section of the umbilical cord
that is at least 10 cm long. (2) This section can be cut
immediately to obtain a blood sample or left intact until after
the placenta is delivered. (3) The surface of the umbilical cord
is disinfected with povidone-iodine solution. (4) The needle of
the collection cylinder is then inserted into the umbilical vein
to draw the blood. (5) The collection cylinder is clamped, and
the needle is withdrawn. (6) Finally, the collection cylinder is
gently shaken to mix the blood with the anticoagulant.

Serum and plasma samples were analyzed for viral markers
(HBsAg, HBeAg, and HBV DNA copies/mL) and other

preclinical factors, including platelet count (×103 cells/mL),
prothrombin time (seconds), prothrombin ratio (%), hemoglobin

(g/L), red blood cell count (×106 cells/mL), creatinine (µmol/L),
AST (U/L), and ALT (U/L) [5].

Statistical and Decision Tree Analysis
Data collection, storage, and analysis in this study were
conducted using the R 4.1.0 package tools. The correlation R
value measures the strength of the linear relationship between
2 quantitative variables. The Pearson R formula is as follows:

where R is the Pearson correlation coefficient; and x and y are
2 vectors of length i and j, respectively [6]. The value of R
ranges from –1 to 1, with R>0 indicating a positive association
and R<0 indicating a negative association [6].

We conducted the clustering analysis again using the 5 most
significant factors identified in our earlier study [7-9]. To
determine the effect size for each factor, we transformed the
natural logarithm of the odds ratio, that is, ln(odds ratio), by
dividing it by 1.81, based on their respective odds ratios [10].

Additionally, we utilized the ID3 algorithm to generate general
rules and predictions for new cases. This algorithm requires
specifying the order in which attributes are evaluated at each
step. As finding the optimal solution can be challenging when
dealing with numerous attributes (such as varied patient test
results), we opted for a simpler approach: at each step, we
selected the attribute that best satisfied a chosen criterion. After
selecting an attribute, the data are divided into child nodes based
on their values, and this process continues recursively for each
child node. Although this greedy selection method may not
always yield the optimal solution, it is intuitively close to the
best outcome and significantly simplifies the problem [11].

A crucial element of this approach is assessing the quality of
each partition. Ideally, a good partition is one in which each
child node predominantly contains data from a single class,
allowing it to be treated as a leaf with no further division.
Conversely, a partition that produces child nodes with mixed
classes is less desirable. To evaluate this, we require a function
that measures the purity or impurity of a partition. This function
should yield the lowest value when each node contains data
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from only 1 class (indicating high purity), and a higher value
when nodes include a diverse mix of classes. The entropy
function, commonly used in information theory, serves this
purpose (see equation 2).

In the ID3 algorithm, the loss function for a decision tree is
defined as the weighted sum of the entropies at its leaf nodes,
with the weights corresponding to the number of data points in
each node. The goal of ID3 is to determine the order of attribute
splits in a way that minimizes this total loss. This is achieved
by selecting the attribute that leads to the greatest reduction in
entropy at each step. Essentially, constructing the decision tree
using ID3 can be viewed as a series of smaller tasks, where at
each nonleaf node, we choose the attribute that most effectively
improves the split. We then develop a calculation method for
each of these nodes (see equation 3). Thus, the entropy at this
node is given by:

Next, suppose the selected attribute is x. We define it as the
weighted sum of the entropy of each child node, computed
similarly to equation 3. This weighting is important because
nodes often contain different numbers of points (see equation
4).

Let the selected attribute be x. Based on x, the data points in S
are divided into Kchildnode S1, S2, ..., SK, with the number of
points in each child node being m1, m2, ..., mK, respectively.

Next, we define the information gain based on the attribute x,
as given by equation 5.

G(x, S) = H(S) – H(x,S) (5)

Let the selected attribute be x. Based on x, the data points in S
are divided into Kchildnode S1, S2, ..., SK, with the number of
points in each child node being m1, m2, ..., mK, respectively. In
equation 5, H(s) is the root node entropy. In ID3, at each node,
the selected attribute is determined based on equation 6, which
identifies the property that maximizes the information gain.

Identifying important variables helps eliminate less important
ones, simplifying the model and reducing noise. Thus, the final
step determines the importance of each variable using a different
splitting ratio. These variables can be quantified by the reduction
in impurity (such as the Gini index) achieved when they are
used for splitting. This imputation follows the CART formula
(see equations 7 and 8).

Let us suppose an object is selected at random from one of the
C classes according to the probabilities (p1, p2, ..., pC) and is
randomly assigned to a class using the same distribution. In this
scenario, we get the following:

In equation 8, let L(i, j) be the loss of assigning class j to an
object which actually belongs to class i. The expected cost of

misclassification is 

In our study, we simulate 1000 runs for each splitting ratio. The
best variable is the one that shows the highest Gini index score.
The Gini index has been adapted to assess health inequality
across populations by providing estimates that capture the
distribution of risk, or lack of risk, among the entire population
or within specific groups [12].

Results

Power Estimation in a Multivariate Regression
We generate a power estimation curve for a multivariate

regression (using f2 as the effect size measure) with a total
sample size of 60 and 5 predictors. This plot helps illustrate
how adequate—or inadequate—the sample size is for detecting
effects in a multivariate context. In multiple regression, Cohen

[13] suggested the following guidelines for f2 effect sizes: small

(f2=0.002), medium (f2=0.15), and large (f2=0.35). We calculate

the statistical power for a range of f2 values given the following:
total sample size N=60, number of predictors p=5, degrees of
freedom for the error v=N–p–1=54, and significance level α=.05.
Figure 2 illustrates how statistical power changes in a multiple
regression model (with 5 predictors and a total sample size of

60) as the effect size (f2) ranges from small (0.02) to large (0.35).
The vertical axis shows the probability (power) of detecting an
actual effect at the 5% significance level, while the horizontal
axis shows the size of that effect. The red dashed line at 0.80
marks the conventional threshold for sufficient power (80%).

When (f2) is small (0.02), the power is around 0.2, indicating
only a 20% chance of detecting such a minor effect with the

given sample size and number of predictors. As (f2) approaches
medium (0.15), the power increases but remains below the 0.80
line, suggesting that moderate effects are not reliably detected.

Only when (f2) nears the large range (around 0.35) does the
power surpass or approach the 80% mark, implying that the
study can reliably detect larger effects but may struggle to
identify smaller or moderate ones (Figure 2).
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Figure 2. Power estimation in a multivariate regression with 60 participants and 5 predictors. We set n=60 (sample size) and p=5 (number of predictors).

The error degrees of freedom are calculated as v=60 − 5 − 1 = 54. A sequence of f2 values ranging from 0.02 (small) to 0.35 (large) is generated. For

each f2 value, we use pwr.f2.test() to estimate the power of the overall F-test in a multiple regression. The y-axis shows statistical power, and the x-axis

shows the effect size (f2). A horizontal red dashed line marks the 80% power threshold. Conventional effect sizes (small, medium, and large) are
highlighted with dark green points and labeled accordingly.

The Five Most Important Factors of MTCT Risk:
HBeAg, ALT, AST, HBV DNA, and PBMCs
The mean age is 27.6 (SD 4.2) years. Pregnancy for the second
time or more accounted for 43 out of 60 (72%) cases. Clinical
symptoms were edema, fatigue, and loss of appetite, similar to
those experienced during pregnancy; 40 (67%) women had
cesarean section. Of the 60 women, 27 (45%) were HBeAg

positive, and HBV DNA ≥ 107 copies/mL was reported in 20
(33%). The mean gestational age is 38.9 (SD 1.2) weeks. Among
the babies, 32 (53%) were HBsAg positive, and 23 (38%) were
HBeAg positive (Tables 1-4).

In 60 Vietnamese CHB pregnant women, 32 (53%) cord-blood
samples were HBsAg positive, and 28 (47%) were HBsAg
negative. We fit a logistic regression model to predict the
subclinical values (cutoff value), which correspond to 50:50
probabilities that HBsAg in cord blood is positive. Two variables
have a positive association when above-average values of one
tend to accompany above-average values of the other, and
below-average values tend to occur together as well. Two
variables have a negative association when above-average values
of one tend to accompany below-average values of the other
[14] (see Table 5 and Figure S1 in Multimedia Appendix 1).

Table 1. General characteristics of 60 Vietnamese pregnant women with chronic hepatitis Ba.

Values, n (%)General characteristics of the study participants

Mother’s age (years)

58 (97)18-35

2 (3)>35

27.6 (4.2)Mean (SD)

Number of pregnancies

17 (28)First time

43 (72)From the second time

Time of detection of hepatitis B virus infection

25 (42)Before getting pregnant

35 (58)This time

a32 (53%) cord blood samples were hepatitis B surface antigen positive, and 28 (47%) hepatitis B surface antigen negative.
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Table 2. Clinical and preclinical characteristics of the 60 Vietnamese pregnant women with chronic hepatitis B.

Values, n (%)Characteristics

Clinical characteristics

7 (12)Edema

8 (13)Tired

1 (2)Anorexia

4 (7)Nausea/vomiting

4 (7)Insomnia

3 (5)Joint pain

2 (3)Right lower quadrant pain

Birth method

4 (7)Birth without episiotomy

16 (27)Birth with episiotomy

40 (67)Caesarean section

Preclinical characteristics

14 (23)An increase of aspartate aminotransferase

11 (18)An increase of alanine aminotransferase

27 (45)Hepatitis B e antigen positive

33 (55)Hepatitis B e antigen negative

20 (33)Hepatitis B virus DNA≥107

40 (67)Hepatitis B virus DNA<107

Table 3. Clinical and preclinical characteristics of babies (N=60).

ValuesCharacteristics

Clinical

58 (97)Apgar score≥8, n (%)

2 (3)Apgar score<7, n (%)

38.9 (1.2)Gestational age, mean (SD)

Weight (g)

47 (78)<3500, n (%)

13 (22)≥3500, n (%)

3198.3 (362.9)Mean (SD)

Preclinical (cord blood), n (%)

32 (53)Hepatitis B surface antigen positive

28 (47)Hepatitis B surface antigen negative

23 (38)Hepatitis B e antigen positive

37 (62)Hepatitis B e antigen negative
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Table 4. Preclinical measures.

Mean (SD)Median (95% CI)RangeDetails of preclinical measures results

12.9 (4.76)12.1 (11.6-12.8)10.5-47.8Maternal prothrombin time (seconds) (N=60)

106 (21.6)108.0 (99.6-117.0)10.0-133.0Maternal prothrombin ratio (%) (N=60)

4.38 (0.539)4.33 (4.06-4.69)3.25-6.25Maternal red blood cells (×106 cells/mL) (N=60)

219 (59.6)214.0 (180.0-260.0)109.0-344.0Maternal platelet count (×103 cells/mL) (N=60)

62.1 (11.1)59.6 (54.4-68.8)41.0-99.0Maternal creatinine (µmol/L) (N=60)

33.2 (41.3)22.1 (18.6-29.2)13.0-285.0Maternal aspartate transaminase (U/L) (N=60)

27.7 (38.0)15.8 (12.8-24.3)6.40-217.0Maternal alanine transaminase (U/L) (N=60)

66.7 (9.82)67.9 (65.8-71.1)12.3-80.2Maternal protein in blood (g/L)

34.4 (3.54)34.5 (33.0-35.7)25.6-44.9Maternal albumin in blood (g/L)

152,000,000 (310,000,000)49,600 (771.0-129,000,000)35.0-1,350,000,000Maternal hepatitis B virus DNA (copies/mL) (N=60)

5,620,000 (3,050,000)5,500,000 (3,000,000-7,510,000)1,300,000-12,300,000Maternal peripheral blood mononuclear cells (cells/mL)
(N=60)

12,600,000 (7,630,000)12,200,000 (6,500,000-15,000,000)3,640,000-51,000,000Cord blood mononuclear cell concentration (cells/mL)
(N=60)

Table 5. Cutoff values.

Cross-referenceThe direction of
the relationship
between the 2
variables

Cutoff50
a for hepatitis B

surface antigen–positive
probability in cord blood

Variables

Figure S1A in Multimedia Appendix 1Negative8.03 × 106 cells/mLMaternal peripheral blood mononuclear cell concentration

Figure S1B in Multimedia Appendix 1Positive5.40 × 107 copies/mLMaternal hepatitis B virus DNA

Figure S1C in Multimedia Appendix 1Negative317.89 × 103 cells/mLMaternal platelet count

Figure S1D in Multimedia Appendix 1Positive11.00 secondsMaternal prothrombin time

Figure S1E in Multimedia Appendix 1Positive6.64 × 106 cells/mLCord blood mononuclear cell concentration

Figure S1F in Multimedia Appendix 1Negative128.53 g/LMaternal hemoglobulin

Figure S1G in Multimedia Appendix 1Negative5 × 106 cells/mLMaternal red blood cells

Figure S1H in Multimedia Appendix 1Positive37.46 µmol/LMaternal creatinine

Figure S1I in Multimedia Appendix 1Positive14.15 U/LMaternal aspartate aminotransferase

Figure S1K in Multimedia Appendix 1Negative43.34 U/LMaternal alanine aminotransferase

Figure S1L in Multimedia Appendix 1Positive76.34%Maternal prothrombin ratio

aPredicted values linked with a 50:50 probability that hepatitis B surface antigen is detectable in cord blood.

We study the Pearson correlation between each factor in the
matrix model. The R score with a significant P value will be
considered for further steps (see Figure 3 and Multimedia

Appendices 2-5). When maternal viral load exceeds 5 × 107

copies/mL, the risk of being HBsAg positive in cord blood
increases by 123% (risk ratio 2.23, 95% CI 1.48-3.36); when
the viral load is lower than this baseline, the risk decreases by

55% (risk ratio 0.45, 95% CI 0.30-0.67; P<.001; see Table 6
and Multimedia Appendices 6 and 7). We calculate the risk
ratio and odds ratio based on the new value indications (see
Table 6) for 2 groups: HBsAg cord blood positive and negative,
using the results of the HCA analysis. A dendrogram and
principal component analysis plot were constructed based on
the correlation between each factor (see Multimedia Appendices
8-10).
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Figure 3. Correlation matrix between biomarkers depicted as a heat map. The heat map compares 2 groups: HBV DNA ≥ 5 × 10  copies/mL (left panel)
and HBV DNA < 5 × 10  copies/mL (right panel). It illustrates the color-coded Pearson correlation coefficients between subclinical indices, including
prothrombin time, AST, ALT, RBC, and haemoglobin in maternal blood; the concentration and density of PBMCs; and the status of HBeAg and anti-HBs
in both cord and maternal blood. Cell colors represent the strength and direction of correlations, ranging from red (negative correlation) to blue (positive
correlation). The intensity of the color reflects the magnitude of the correlation, as indicated by the color scale shown to the right of the panel. Pairwise
Pearson correlation coefficients are detailed in Multimedia Appendices 2-5. ALT: alanine aminotransferase; AST: aspartate aminotransferase; CB: cord
blood; CBMC: cord blood mononuclear cell; Hb: hemoglobin; HBeAg: hepatitis B e antigen; HBsAg: hepatitis B surface antigen; RBC: red blood cell.
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Table 6. Risk ratios for hepatitis B surface antigen–positive cord blood by factor, with corresponding threshold values.

P val-
ue>chisq

Chi-square (df)OR (95% CI)Risk ratio (95%
CI)

Cord blood hepatitis B sur-
face antigen negative
(n=28), n

Cord blood
hepatitis B
surface anti-
gen positive
(n=32), n

Variables

.560.34 (1)Maternal peripheral blood mononuclear cell concentration (cells/mL)

0.69 (0.20-2.38)0.83 (0.44-1.58)76≥8.03 × 106

1.44 (0.42-4.96)1.2 (0.63-2.28)2126<8.06 × 106

<.00111.61 (1)Maternal hepatitis B virus DNA (copies/mL)

11.47 (2.32-
56.65)

2.23 (1.48-3.36)215≥5 × 107

0.09 (0.02-0.43)0.45 (0.30-0.67)2617<5 × 107

>.990 (1)Maternal platelets (×103cells/mL)

0.87 (0.11-6.59)0.93 (0.34-2.56)22≥317.89

1.15 (0.15-8.78)1.07 (0.39-2.94)2630<317.89

>.990 (1)Maternal prothrombin (seconds)

1.15 (0.21-6.27)1.07 (0.46-2.48)2529≥11

0.86 (0.16-4.66)0.93 (0.40-2.15)33<11

.390.73 (1)Cord blood mononuclear cell concentration (cells/mL)

0.6 (0.19-1.94)0.8 (0.49-1.29)2222≥6.64 × 106

1.67 (0.52-5.38)1.25 (0.77-2.02)610<6.64 × 106

.520.46 (1)Maternal hemoglobin (g/L)

0.7 (0.25-1.99)0.84 (0.51-1.40)1211≥128.53

1.43 (0.50-4.07)1.19 (0.71-1.98)1621<128.53

.880.024 (1)Maternal red blood cells (cells/mL)

0.56 (0.09-3.59)0.73 (0.24-2.20)32≥5 × 106

1.8 (0.28-11.64)1.36 (0.45-4.10)2530<5 × 106

.830.047 (1)Maternal creatinine (µmol/L)

1.52 (0.37-6.33)1.24 (0.57-2.67)2328≥37.46

0.66 (0.16-2.73)0.81 (0.37-1.75)54<37.46

.560.34 (1)Maternal aspartate transaminase (U/L)

2.1 (0.45-9.73)1.49 (0.59-3.76)2329≥14.15

0.48 (0.10-2.20)0.67 (0.27-1.70)53<14.15

.440.61 (1)Maternal alanine transaminase (U/L)

3.86 (0.40-36.75)1.57 (0.94-2.62)14≥43.34

0.26 (0.03-2.47)0.64 (0.38-1.06)2728<43.34

>.990 (1)Maternal prothrombin ratio (%)

1.15 (0.07-19.25)1.07 (0.26-4.36)2731≥76.34

0.87 (0.05-14.60)0.94 (0.23-3.82)11<76.34

PBMCs Gain the Most Information Following ID3
Theory Calculation
We next calculated the information gain for each factor in our
actual data based on the correlation and clustering study results,

following the ID3 theory. There are 5 attributes of pregnant
women that may increase the risk of infection in infants. Each
factor has 2 types of variants: HBeAg (positive and negative);
ALT (<43.34 U/L and ≥43.34 U/L); AST (≥14.15 U/L and
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<14.15 U/L); HBV DNA (≥5 × 107 and <5 × 107 copies/mL);

and PBMCs (≥8 × 106 and <8 × 106 cells/mL).

The analysis of Cohen h across the groups reveals varying
degrees of effect size between the proportions of cord blood
HBsAg-positive and -negative cases. Group 14 demonstrates a
very large effect (h=1.46), characterized by a notably low
proportion of positive cases (3/18, 17%) and a high proportion
of negative cases (15/18, 83%). Group 12 shows a medium
effect (h=0.51), indicating a moderate difference between the
2 proportions. Groups 10 (h=1.70) and 7 (h=1.85) both reflect
very large effects, with high positive rates of 7 out of 8 (88%)
and 9 out of 10 (90%), respectively, contrasted with much lower
negative rates. Group 13 exhibits the maximum possible
difference (h=3.14), with a proportion of 3 out of 3 (100%)
positives and 0 out of 3 (0%) negatives, corresponding to the
theoretical limit of Cohen h, π. By contrast, other_group shows
a small effect (h=0.15), with nearly equal positive and negative
proportions, suggesting minimal difference between the 2 groups
(Multimedia Appendix 11). Using the pooled SD method, we
calculated Cohen d to measure the standardized difference
between groups 10 and 7 (Multimedia Appendix 11). For
instance, if our calculated Cohen d is approximately 0.8 or
higher, it suggests a large effect size, indicating that the
difference in risk or related measures between these 2 groups
is not only statistically significant but also clinically meaningful
(P=.01 for group 10 and P=.001 for group 7).

In the 17 output values in Tables 1-4 (N=17 scores), there are
12 values showing effect increases: 1 value is small, 2 values
are large (P=.01 for group 10 and P=.001 for group 7; also see
Multimedia Appendix 11), and 2 are trivial. The probability
that each data point falls into class c=medium is determined by
Nc/N=12/17. The probability that each data point falls into class
c=small is determined by Nc/N=1/17. The probability that each
data point falls into class c=large is determined by Nc/N=2/17,
and the probability that each data point falls into class c=trivial
is determined by Nc/N=2/17. Therefore, the entropy at the root
node is calculated according to equations 1 and 2 of this formula,
with 2 classes “no” and “yes” (C=4), which is given as follows:

If one of the attributes—HBeAg, ALT, AST, HBV DNA, or
PBMCs—is selected to divide the data, we calculate the
weighted sum of the entropy of the child nodes. The result is
shown in Table 5. PBMC concentrations were chosen because
they have the highest information gain of 0.247. We could
construct a decision tree by selecting PBMCs as the root node,
as they provide the greatest information gain. From the root

node (PBMCs), we branch out to other nodes, each named after
the corresponding attribute (Multimedia Appendix 12).

The Five Most Important Factors of MTCT Risk:
HBeAg, ALT, AST, Serum HBV DNA, and PBMCs
We verified our calculation in R with 1000 runs (observations)
for 5 split ratios: 0.50, 0.75, 0.80, 0.85, 0.90, and 0.95. The
value in each node represents the number of observations in the
data set that fall into that particular node. In Figure 4, we
observed that the strongest information gain scores are found
in HBeAg and PBMC concentration. From this dot plot, we can
observe multiple runs of the ID3-based decision tree analysis
at various training-test split ratios (shown in each column). In
each run, the algorithm identifies the factor (AST, HBeAg, HBV
DNA, or PBMCs) that provides the highest information gain
for classification. The y-axis represents the extent of predictive
“value” that each factor contributes. The results indicate that
HBeAg (green dots) and PBMCs (purple dots) frequently exhibit
high information gain, suggesting that these 2 factors play a
prominent role in most runs, regardless of the split ratio.
Meanwhile, AST (red dots) occasionally shows considerable
information gain but appears less frequently, and HBV DNA
(blue dot) rarely emerges as the most important factor. Overall,
these findings highlight that HBeAg and PBMCs are the
dominant factors in the model, maintaining stability across
different training-test splits (see Figure 4).

Comparing the medians of the score values for HBeAg and
PBMCs, we see that they are higher than those of the other
factors. These dot plots show the information gain values for 4
factors (AST, HBeAg, HBV DNA, and PBMCs) across various
runs of the model at different data split ratios (0.5, 0.75, 0.8,
0.85, 0.9, and 0.95). Each panel represents a specific split ratio,
with the y-axis displaying the distribution of information gain
scores for the factor deemed most important in that particular
run. In general, HBeAg (green box) and PBMCs (purple box)
consistently show higher median values or broader ranges of
information gain, indicating that these 2 factors are crucial in
the classification model, regardless of the training-test split
used. In some panels (for instance, at split ratios of 0.5 or 0.75),
AST (red box) occasionally records a high information gain
score, but it does not match the stability or frequency of HBeAg
or PBMCs. By contrast, HBV DNA (blue) seldom ranks with
the highest information gain score (and hence not visible),
suggesting it plays a lesser role in the classification decisions
during these ID3 runs. Therefore, HBeAg and PBMCs are the
primary contributors to the model’s predictive performance,
while AST shows occasional dominance, and HBV DNA rarely
serves as the top predictor (see Figure 5).
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Figure 4. The dot plot of the most important factor in each run following different split ratios. AST: aspartate aminotransferase; HBeAg: hepatitis B
e antigen; HBV: hepatitis B virus; PBMC: peripheral blood mononuclear cell.

Figure 5. The bar plot of the most important factor in each run following different split ratios. AST: aspartate aminotransferase; HBeAg: hepatitis B
e antigen; HBV: hepatitis B virus; PBMC: peripheral blood mononuclear cell.

In the decision tree representation, each node’s split is based
on the predictor variables. The result provides several pieces of
information that help us interpret the tree. Figure 5 illustrates
how the decision trees (ID3/CART) divide the data based on
various training-test split ratios (0.95, 0.90, 0.85, 0.80, 0.75,
and 0.50), along with the associated MTCT risk classifications
(trivial, small, medium, and large) and gain score results. In all
splits, HBeAg consistently emerges as the primary splitting
factor. The HBeAg-positive branch generally leads to the large

risk category when PBMCs are ≥8 × 106 cells/mL, and to
medium or small risk when PBMCs are lower. By contrast,
HBeAg-negative cases typically split into small risk (when

PBMCs are high) or trivial risk (when PBMCs are low). The
gain score tables further validate that HBeAg and PBMCs are
dominant. Although the precise distributions of risk categories
(trivial, small, medium, and large) vary slightly with different
splits, the model consistently highlights HBeAg and PBMCs
as key factors, reinforcing earlier findings that these 2 variables
are essential predictors of mother-to-child HBV transmission
risk (Figure 5). According to Figure 6, the risk of MTCT of
HBV is stratified based on HBeAg status and PBMC
concentration as follows: among HBeAg-positive women, 20
out of 48 training cases with a split ratio of 0.80 (42%) to 27
out of 57 training cases with a split ratio of 0.95 (47%), or 16
out of 30 training cases with a split ratio of 0.50 (53%), were
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classified as having a high risk of MTCT. Among
HBeAg-negative individuals with PBMC concentrations ≥8 ×

106 cells/mL, 7 out of 51 training cases with a split ratio of 0.85
(14%) to 8 out of 45 training cases with a split ratio of 0.75
(18%) were categorized as having a small risk. The remaining
21 out of 57 training cases with a split ratio of 0.95 (37%), or
20 out of 53 training cases with a split ratio of 0.90 (38%) to
16 out of 30 training cases with a split ratio of 0.50 (53%) of

HBeAg-negative cases with PBMC concentrations <8 × 106

cells/mL were classified as having negligible risk (see Figure
6).

From the dot plot (Figure 4), we can observe several runs of
the ID3-based decision tree analysis at different training-test
split ratios, indicated in each column. In each run, the algorithm
identifies the factor (AST, HBeAg, HBV DNA, or PBMCs)

that provides the highest information gain for classification.
The y-axis shows the predictive “value” contributed by each
factor. The results reveal that HBeAg (green) and PBMCs
(purple) frequently demonstrate high information gain,
indicating that these 2 factors are dominant in most runs,
regardless of the split ratio. By contrast, AST (red) occasionally
shows a notable information gain but is less frequent, while
HBV DNA (blue) rarely appears as the most critical factor.
Overall, these results emphasize that HBeAg and PBMCs are
the key factors in the model, remaining consistent across various
training-test splits.

In summary, these plots show that HBeAg and PBMCs are
typically the most influential factors across different training-test
splits, while AST plays a more inconsistent role, and HBV DNA
contributes less frequently to classification decisions in these
ID3 runs.

Figure 6. Decision tree diagram based on different split ratios: (A) 0.95, (B) 0.90, (C) 0.85, (D) 0.80, (E) 0.75, and (F) 0.50. Cohen classified effect
sizes on MTCT risk as trivial (d<0.2), small (0.2≤d<0.5), medium (0.5≤d<0.8), and large (d≥0.8). ALT: alanine aminotransferase; AST: aspartate
aminotransferase; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus; MTCT: mother-to-child transmission; PBMC: peripheral blood mononuclear
cell.

Boosting the Assembly of the Five Factors Shows the
Important Groups to Predict the Risk of MTCT
We have 14 cases in which we could enhance the assembly
simulation (Multimedia Appendix 11). The split ratio and
number of runs influence our predictions for all cases in the
group. Figure 6 shows the raw distribution, reflecting the
accuracy of each observation in relation to the split ratio. The
results of the Pearson chi-square test for the contingency table
show that the distribution of risk groups (large, small, and

trivial) across different training data split ratios (ranging from

0.75 to 0.95) differs significantly (χ2
8=21.16, P=.007). When

testing each group individually using a 1-way chi-square test,
the large group has a P value of .002, indicating a clear change
in distribution across different training ratios. The small group
has a P value of .07, which is close to the significance threshold,
suggesting a potential trend in distribution change, while the
trivial group has a P value of .84, indicating a stable distribution
that is not significantly affected by the data split ratio. Thus,
changes in the train/test ratio may influence how decision trees
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learn, particularly for groups with distinct characteristics, such
as the “large” group. An accuracy measure for classification
tasks, using the confusion matrix, provides a better evaluation
of classification performance. The general idea is to count how
often true instances (true positive and true negative) are
misclassified as false (false positive and false negative). We
compute the accuracy of the test from the confusion matrix
using the following formula: accuracy = (true positive + true
negative)/(true positive + true negative + false positive + false
negative). The accuracy score reflects the probability that the
test data produces the same result as the training data set. Figure
7 shows the results of the correlation test, confirming that the
number of observations and the split ratio strongly correlate
with accuracy. We repeat this random selection 1000 times for

each division ratio, aiming to achieve the highest accuracy.
Figure 8 provides an overview of the MTCT risk. Groups 7 and
10 have the highest MTCT risk, with a prevalence ranging from
13 out of 48 (a split ratio of 0.8 from a total of 60 cases, 27%)
to 18 out of 54 (a split ratio of 0.9 from a total of 60 cases, 33%).
Groups 13 and 14 have the lowest risk, with 9 out of 30 (a split
ratio of 0.5 from a total of 60 cases, 30%) to 18 out of 48 (a
split ratio of 0.8 from a total of 60 cases, 38%) cases falling
into the trivial group, indicating negligible MTCT risk. The
other groups show an accuracy ranging from 8 out of 57 (a split
ratio of 0.95 from a total of 60 cases, 14%) to 9 out of 30, a split
ratio of 0.5 from a total of 60 cases (30%), with cases
categorized into the medium- or small-risk groups.

Figure 7. Distribution of accuracy score. (A) Raw distribution. (B) Violin plot shows the median of accuracy.

From these plots, we can observe the classification accuracy
achieved by the ID3 model over 1000 runs at various
training-test split ratios (0.5, 0.75, 0.8, 0.85, 0.9, and 0.95). Each
panel corresponds to a specific split ratio, with the y-axis
displaying accuracy scores and the x-axis representing the
number of runs. Although there is considerable fluctuation
within each split ratio, some general patterns emerge. At lower
split ratios (eg, 0.5), the model’s accuracy tends to cluster in
the lower to mid range (approximately 0.25-0.50). As the split
ratio increases (eg, 0.8 or 0.85), accuracy occasionally reaches
higher peaks, with some runs exceeding 0.60 or 0.70, though
variability remains evident. With even larger training
proportions (0.9 and 0.95), the accuracy range broadens further,
with some runs achieving relatively high performance while
others drop close to 0. Overall, these results indicate that the
model’s accuracy is highly sensitive to the specific partitioning
of the data set, showing moderate gains and substantial variation
as the training-test split ratio changes (Figure 7A).

The violin plots illustrate the distribution of classification
accuracy across 1000 runs for each training-test split ratio. On
the left, with a split ratio of 0.5, the distribution is relatively
narrow, centering around the 0.25-0.40 range. This suggests

that using half of the data for training typically results in modest
accuracy. As the training proportion increases to 0.75 or 0.8,
the distribution shifts upward, revealing higher accuracy values.
At split ratios of 0.9 and 0.95, the distribution widens
considerably, with some runs achieving very high
accuracy—approaching or exceeding 0.75—while others fall
closer to 0.20. This suggests that while more training data can
improve the model’s performance in some cases, a smaller test
set may lead to greater variance, resulting in a wider range of
accuracy outcomes (Figure 7B).

Figure 8A shows a strong positive correlation (R=0.91, P<2.2

× 10–16) between the training-test split ratio (on the x-axis) and
classification accuracy (on the y-axis). As the amount of data
allocated for training increases, the model’s accuracy tends to
improve, resulting in a nearly linear upward trend. In Figure
8B, the correlation between the number of runs (indicated on
the x-axis) and accuracy is considerably weaker (R=0.17, P<2.2

× 10–16). This suggests that while accuracy shows a slight
upward trend over multiple runs, the majority of the variation
is better explained by other factors, particularly the split ratio,
rather than the order or total number of runs.
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Figure 8. Correlation line between accuracy and split ratio or running number (number of observations). (A) Correlation plot between accuracy and
split ratio. (B) Correlation plot between accuracy and running number.

In these CART diagrams (Figure 9 and Multimedia Appendix
13), we observe how the data set is consistently divided by key
factors such as PBMCs, AST, ALT, HBeAg, and HBV DNA
across various training-test split ratios, ranging from 0.50 to
0.95. Each final branch represents a category of MTCT
risk—classified as “large,” “medium,” “small,” or
“trivial”—according to the Cohen d index. Interestingly, some

groups—such as group 7 (with PBMCs < 8 × 106 cells/mL,
AST ≥ 14.15 U/L, ALT < 43.34 U/L, HBeAg positive, HBV

DNA ≥ 5×107 copies/mL) and group 10 (with PBMCs < 8 ×

106 cells/mL, AST ≥ 14.15 U/L, ALT < 43.34 U/L, HBeAg

positive, HBV DNA < 5 × 107 copies/mL)—are frequently
associated with “very large” effect sizes. By contrast,

others—such as group 13 (with PBMCs < 8 × 106 cells/mL,
AST ≥ 14.15 U/L, ALT ≥ 43.34 U/L, HBeAg positive, HBV

DNA ≥ 5 × 107 copies/mL) and group 14 (with PBMCs < 8 ×

106 cells/mL, AST ≥ 14.15 U/L, ALT < 43.34 U/L, HBeAg

negative, HBV DNA < 5 × 107 copies/mL)—are categorized
as “trivial” in terms of increasing the risk of MTCT. The

proportion and number of runs leading to each category are
displayed beneath each node. As the training ratio increases,
the model becomes more effective at assigning specific groups
to their corresponding risk categories, although the overall
distribution of runs across large, medium, and trivial categories
still fluctuates. This suggests that while certain subgroup
characteristics, such as PBMC levels or HBeAg status, influence
classification toward high or negligible MTCT risk, the model’s
consistency and accuracy are also impacted by how the data are
divided for training and testing.

In this study, a “large effect” is defined as a Cohen d value of
0.8 or higher. Our decision tree analysis (utilizing ID3 and
CART) reveals that the groups identified as 7 and 8 typically
show a large effect size, indicating a high risk of MTCT. In
these groups, factors such as positive HBeAg status, elevated

PBMC concentration (≥8 × 106 cells/mL), and other relevant
biochemical markers contribute to an effect size (Cohen d) that
meets or exceeds the 0.8 threshold. This indicates an increased
risk of transmission in these groups.
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Figure 9. Classification and regression trees with different split ratios. (A) Split ratio 0.95. (B) Split ratio 0.90. Group numbers correspond to those
listed in Table 3. The range of mother-to-child transmission (MTCT) risk is based on the Cohen d index. According to Cohen classification, effect sizes
on MTCT risk are defined as follows: trivial (d<0.2), small (0.2≤d<0.5), medium (0.5≤d<0.8), and large (d≥0.8). ALT: alanine aminotransferase; AST:
aspartate aminotransferase; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus; PBMC: peripheral blood mononuclear cell.

Discussion

Principal Findings
This study aimed to identify key predictors of MTCT of HBV,
with a particular focus on maternal HBeAg status and PBMC
concentration. We developed and applied an ID3-based decision
tree model to analyze clinical data from pregnant Vietnamese
women. Our primary finding is that HBeAg positivity, combined

with elevated PBMC levels (≥8 × 106 cells/mL), is strongly

associated with an increased risk of MTCT. The decision tree
model effectively stratified risk based on a combination of
virological and biochemical indicators, confirming our
hypothesis regarding the predictive value of both PBMCs and
HBeAg.

HBV is known to cross the placental barrier, and the presence
of maternal HBeAg in newborns at birth supports the occurrence
of vertical transmission. Our findings add to the growing body
of evidence suggesting that PBMCs may play a critical role in

JMIR Form Res 2025 | vol. 9 | e69838 | p. 16https://formative.jmir.org/2025/1/e69838
(page number not for citation purposes)

Nguyen Tien et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


facilitating intrauterine HBV infection [15]. Prior research has
shown a 9.5-fold increased risk of HBV infection among
neonates who are HBV DNA positive in PBMCs [16]. Similarly,
our earlier study involving a cohort of 60 Vietnamese mothers
and their infants found a correlation between PBMC
concentrations and maternal viral load, particularly in cases

with HBV DNA levels below 5 × 107 copies/mL. HBV can be
transmitted from mother to child due to its ability to cross the
placental barrier. Notably, HBeAg detected in newborns at birth
is of maternal origin [17]. In this study, we aim to utilize
real-world clinical data to develop a predictive model to
determine the risk of MTCT. Our approach uses a machine
learning model based on the ID3 decision tree algorithm. The
critical decision nodes are determined through a series of
calculations, starting from individual (single) entropy to total
entropy. Information gain, which quantifies the reduction in
entropy, is used to evaluate how effectively a given feature
separates or classifies the target outcomes. The feature with the
highest information gain is selected as the most informative.
This classical entropy-based measure plays a fundamental role
in various machine learning algorithms, including decision tree
models. In the ID3 algorithm, the attribute selected as the
splitting criterion is the one with the highest information gain.
This method has proven effective in various machine learning
and signal processing applications. Beyond facilitating feature
selection, entropy-based measures serve as reliable indicators
of data complexity and classification difficulty in real-world
scenarios, as demonstrated by Juszczuk et al [18]. Their research
underscores the critical importance of using entropy in model
construction, especially when dealing with complex biomedical
data sets where noise and variability can impact model
performance. This supports our application of information gain
in identifying PBMC concentration as the most informative
variable, aligning both with clinical relevance and theoretical
expectations in predicting the risk of MTCT [18]. In machine
learning theory, information gain is synonymous with
Kullback-Leibler divergence; this index quantifies the amount
of information obtained about a random variable by observing
another. In the first step, the ID3 algorithm was applied to our
data subset without splitting. PBMCs achieved the highest
information gain score, which was 0.247 (Multimedia Appendix
13). We could draw a decision tree by choosing PBMCs as the
root node, as it has the most significant information gain. From
the root node PBMCs, branches extend to other attribute nodes
listed in Multimedia Appendix 13. We found that groups 7 and
10 (Multimedia Appendix 11) are associated with a high risk
of MTCT, characterized by positive HBeAg status, PBMC

serum concentrations above 8 × 106 cells/mL, elevated AST
levels (≥14.15 U/L), and low ALT levels (<43.34 U/L). These
groups have Cohen d values of 1.855 and 1.696, respectively
(Multimedia Appendix 11), with associated probabilities ranging
from 13 out of 48 (a split ratio of 0.8 from a total of 60 cases,
27%) to 18 out of 54 (a split ratio of 0.9 from a total of 60 cases,
33%), respectively (Figure 9 and Multimedia Appendix 12).
The dual roles of HBeAg as both a tolerogen and an immunogen,
along with its ability to either suppress or activate the immune
response, highlight the complexity of its interactions with the
host. Numerous studies have demonstrated that HBeAg can
influence both innate and adaptive immune responses,

contributing to the persistence of HBV. HBeAg can bind to
PBMCs, neutrophils, and B lymphocytes, but not to T
lymphocytes. The interaction between HBeAg and monocytes
or neutrophils has been shown to be dose dependent, resulting
in the inhibition of both cell types. Monocytic myeloid-derived
suppressor cells (mMDSCs) are derived from myeloid progenitor
cells and account for approximately 0.5% of PBMCs in healthy
individuals. The mMDSC population expands during infection,
inflammation, and cancer. HBeAg plays a crucial role in the
expansion of the mMDSC population and the induction of
immune tolerance. Compared with HBeAg-negative patients,
HBeAg-positive patients were shown to have significantly
higher levels of mMDSCs. When PBMCs from healthy
individuals were exposed to HBeAg, there was an increase in
mMDSCs and the expression of IL-6 and IL-1β. Additionally,
mMDSCs from HBeAg-positive patients suppressed the
proliferation of CD4+ and CD8+ T cells. This may represent a
potential mechanism by which HBeAg modulates the host
immune response during CHB by physically depleting or
weakening virus-specific CD4+ and CD8+ T cells. As a result,
these cells are unable to proliferate in response to viral antigens
or produce essential antiviral and immunostimulatory cytokines,
which are crucial for controlling the virus in patients with CHB
[14]. Additionally, new research by Padarath et al [14] provided
further insights into the various functions of HBeAg and its
precursors in the development of chronic HBV infection.
According to their review, HBeAg may influence
hepatocarcinogenesis through long-term immune modulation
and chronic inflammation, in addition to promoting immune
evasion and tolerance. This demonstrates that HBeAg serves
various functions, including promoting vertical transmission,
inhibiting host defenses, and potentially contributing to chronic
conditions such as liver cancer. These findings confirm our
results, which indicate that HBeAg plays a major role in MTCT
risk, and emphasize the need for close monitoring of pregnancies
involving HBeAg-positive women. It is well known that both
HBeAg and AST are independent risk factors for predicting
nonminimal liver inflammation in untreated patients with CHB.
In HBeAg-positive untreated patients with CHB, the liver
inflammation associated with CHB is linked to the balance
between the immune system and HBV infection. Quantitative
changes in indicators such as HBsAg and HBeAg can signal
the breakdown of immune tolerance and the onset of immune
clearance in CHB infection. Including immune-related indicators
in the inflammatory prediction model for CHB infection is
essential. In general, ALT or AST is included in most models
for liver inflammation or fibrosis. It has been found that AST
is a better predictor than ALT. HBV DNA, HBsAg, and HBeAg
reflect the replication capacity of HBV in untreated patients
with CHB. Previous studies have shown that HBsAg and HBeAg
are negatively correlated with liver inflammation. In this study,
HBsAg, HBeAg, and HBV DNA were all included, with HBeAg
demonstrating the best predictive ability. Compared with other
models, the significance of this nonminimal liver inflammation
model lies in its confirmation of the importance of HBeAg in
identifying liver inflammation. On the one hand, HBeAg reflects
the replication level of HBV in HBeAg-positive patients with
CHB; on the other hand, a decline in HBeAg is often an early
sign of the breakdown of immune tolerance [19]. Based on the
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above calculations, it is evident that further experiments with
various random split ratios of the data file are necessary.
Different tests will improve prediction performance. The
positive correlation between accuracy, division rate, and the
number of runs supports this. A clear result is that, after 1000
random runs for each division type, HBeAg and PBMC
concentrations consistently show the highest information gain
scores. When testing all 5 factors simultaneously, fixed groups
emerged in each risk category, highlighting the additive or
inhibitory influence of other biochemical indicators on the
impact of HBeAg and PBMCs on the risk of MTCT.

Nonetheless, this study has several limitations that should be
noted. First, the sample size was relatively small and
geographically limited to a single region in Vietnam, which
may affect the generalizability of the findings to other
populations or ethnicities. Second, while the ID3 decision tree
provided valuable insights into variable importance and risk
classification, predictive performance could potentially be
improved with larger, more heterogeneous data sets, and by
comparing it with other, yet untested, machine learning
approaches (eg, random forest, XGBoost). Third, additional
maternal or fetal factors (eg, nutritional status, coinfections,
genetic predisposition) may have been overlooked and could
be important, given the constraints of the available data. Finally,
the cross-sectional design and retrospective data collection may
have introduced bias, limiting the ability to establish a definitive
causal relationship. Nevertheless, the findings of the study are
still valuable and provide a strong foundation for future research.
By identifying key predictors of risk, particularly HBeAg status
and PBMC concentration, it was possible to develop a simple
yet practical model for predicting risk. These findings represent
an essential first step toward developing more comprehensive
tools, which can later be refined and validated through larger
prospective studies aimed at enhancing clinical decision-making
in HBV-infected pregnancies.

Our findings underscore the predictive importance of maternal
HBeAg status and PBMC concentration in assessing the risk of
HBV MTCT. Incorporating these indicators into clinical
screening procedures could enable more targeted interventions
during pregnancy. Additionally, our results support the use of
machine learning tools in epidemiological risk assessment,
particularly in resource-limited settings. Future studies should
aim to validate these findings in larger, more diverse cohorts
and explore the potential pathways through which PBMCs
mediate HBV transmission. These insights may influence
decisions regarding the timing and choice of antiviral treatments
in high-risk pregnancies, as well as the design of other
preventive strategies.

Limitation
Decision trees are robust and flexible machine learning
algorithms. They are interpretable, capable of handling nonlinear
relationships, and efficient in computation. Additionally,
decision trees can accommodate mixed data types. However, if
a small sample is tested, there is a risk of overfitting or
overclassification. It is also important to note that only 1
attribute is tested at a time when making a decision.

Conclusions
This study demonstrated that by combining the ID3 and CART
algorithms, data can be interpreted as a decision tree to assist
clinicians in their understanding. Additionally, the proposed
system provides improved performance by category. The
resulting prediction rules, derived from the training data,
construct the fastest and most efficient tree. This approach only
requires testing enough attributes to classify all the data. By
identifying leaf nodes, the test data can be pruned, reducing the
number of tests required. The entire data set is explored to
construct the tree. This strategy provides clear, structured
choices with potential outcomes, making it especially useful in
complex diagnostics. It allows health care professionals to
review symptoms and test results systematically, supporting
more informed decision-making.
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Multimedia Appendix 1
Relative risk ratio plot. Probability: 1; CBHBsAg positif, 0; and CBHBsAg negatif: 0. CB: cord blood; HBsAg: hepatitis B surface
antigen.
[PDF File (Adobe PDF File), 422 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Pearson correlation coefficients (R) in the HBV-DNA ≥ 5×107 copies/mL group. The color-coded Pearson correlation coefficients
between subclinical indices, including levels of Prothrombin, AST, ALT, RBC, and hemoglobin in maternal blood; the concentration
and density of PBMCs; and the status of HBeAg and anti-HBs in both cord and maternal blood. The color of each cell reflects
the strength and direction of the correlation, ranging from red (negative correlation) to blue (positive correlation), with intensity
corresponding to the magnitude of the association. The correlation strength is indicated by the accompanying color scale. ALT:
alanine aminotransferase; AST: aspartate aminotransferase; HBV: hepatitis B virus; HBeAg: hepatitis B e antigen; RBC, red
blood cell; PBMC: peripheral blood mononuclear cell.
[PDF File (Adobe PDF File), 490 KB-Multimedia Appendix 2]

Multimedia Appendix 3

Pearson correlation coefficients (R values) in the HBV DNA < 5 × 107 copies/mL group are presented in this table. It displays
color-coded Pearson correlation coefficients between various subclinical indices, including prothrombin time, AST, ALT, RBC,
and hemoglobin levels in maternal blood; the concentration and density of PBMCs; and the status of HBeAg and anti-HBs in
both cord and maternal blood. Cell colors indicate the strength and direction of the correlations, ranging from red (negative
correlations) to blue (positive correlations), with the intensity corresponding to the magnitude, as shown by the color scale. ALT:
alanine aminotransferase; AST: aspartate aminotransferase; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus; RBC: red
blood cell; PBMC: peripheral blood mononuclear cell.
[PDF File (Adobe PDF File), 324 KB-Multimedia Appendix 3]

Multimedia Appendix 4

P values from the Pearson correlation tests in the HBV DNA ≥ 5 × 107 copies/mL group. HBV: hepatitis B virus.
[PDF File (Adobe PDF File), 486 KB-Multimedia Appendix 4]

Multimedia Appendix 5

P values from the Pearson correlation tests in the HBV DNA < 5 × 107 copies/mL group. HBV: hepatitis B virus.
[PDF File (Adobe PDF File), 315 KB-Multimedia Appendix 5]

Multimedia Appendix 6

P values from the Fisher exact test comparing the 2 groups: HBV DNA < 5 × 107 copies/mL and HBV DNA ≥ 5 × 107 copies/mL.
HBV: hepatitis B virus.
[PDF File (Adobe PDF File), 651 KB-Multimedia Appendix 6]

Multimedia Appendix 7
P values from the Fisher exact test and Pearson correlation test comparing the correlation coefficients (R) between the 2 groups:

HBV DNA < 5 × 10  copies/mL and HBV DNA ≥ 5 × 107 copies/mL. HBV: hepatitis B virus.
[PDF File (Adobe PDF File), 664 KB-Multimedia Appendix 7]
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Multimedia Appendix 8

Cluster dendrogram of the 2 groups. Left: group with higher maternal viral load (HBV DNA ≥ 5 × 107 copies/mL); right: group

with lower maternal viral load (HBV DNA < 5 × 107 copies/mL). The vertical axis represents the Euclidean distance between
observations or clusters. Horizontal bars indicate the linkage points at which clusters or individual observations are merged. HBV:
hepatitis B virus.
[PDF File (Adobe PDF File), 349 KB-Multimedia Appendix 8]

Multimedia Appendix 9

Top: Group with higher viral load (HBV DNA ≥ 5 × 107 copies/mL); bottom: group with lower viral load (HBV DNA < 5 × 107

copies/mL). K-means clustering was optimized using 3 methods: average silhouette, elbow, and gap statistic. The cluster analysis
was performed without any missing values. HBV: hepatitis B virus.
[PDF File (Adobe PDF File), 290 KB-Multimedia Appendix 9]

Multimedia Appendix 10

Cluster plot. Left: group with higher viral load (HBV DNA ≥ 5 × 107 copies/mL); right: group with lower viral load (HBV DNA

< 5 × 107 copies/mL). Clustering was performed with the number of clusters set to 5 and 8, respectively, to visualize the parameter
groupings within each viral load group. HBV: hepatitis B virus.
[PDF File (Adobe PDF File), 457 KB-Multimedia Appendix 10]

Multimedia Appendix 11
Cohen classified effect sizes on MTCT risk as follows: trivial (d<0.2), small (0.2≤d<0.5), medium (0.5≤d<0.8), and large (d≥0.8).
To determine the effect size for each factor, we transformed the natural logarithm of the odds ratio (ln[odds ratio]) by dividing
it by 1.81. Additionally, Cohen h was calculated using the formula h = 2 × |arcsin(√p1) − arcsin(√p2)|, where p1 represents the
proportion of CBHBsAg-positive cases and p2 the proportion of CBHBsAg-negative cases [9]. The analysis of Cohen h across
the groups revealed varying degrees of effect size between CBHBsAg-positive and CBHBsAg-negative proportions. Group 14
demonstrated a very large effect (h=1.46), with a low positive rate (17%) and high negative rate (83%). Group 12 showed a
medium effect (h=0.51), indicating a moderate difference. Groups 10 (h=1.70) and 7 (h=1.85) both exhibited very large effects,
with positive rates of 88% and 90%, respectively, contrasted with much lower negative rates. Group 13 showed the maximum
possible difference (h=3.14), with a 100% positive and 0% negative rate, corresponding to the theoretical upper limit of Cohen
h, Π. By contrast, the "other_group" displayed a small effect (h=0.15), with nearly equal proportions of positive and negative
cases, suggesting minimal difference between the 2. HBsAg: hepatitis B surface antigen; MTCT: mother-to-child transmission.
[DOCX File , 23 KB-Multimedia Appendix 11]

Multimedia Appendix 12
Classification and regression trees (CART) with varying split ratios. Panels show CART results with different split ratios: (A)
0.85, (B) 0.80, (C) 0.75, and (D) 0.50. Group numbers correspond to those listed in Table 3. The range of mother-to-child
transmission (MTCT) risk is based on Cohen d index. According to the Cohen classification, effect sizes for MTCT risk are
defined as follows: trivial (d<0.2), small (0.2≤d<0.5), medium (0.5≤d<0.8), and large (d≥0.8).
[PDF File (Adobe PDF File), 492 KB-Multimedia Appendix 12]

Multimedia Appendix 13
The weighted sum of the entropy of the child nodes and the corresponding information gain reaches its maximum value. Cohen
classified effect sizes related to mother-to-child transmission risk as follows: trivial (d<0.2), small (0.2≤d<0.5), medium (0.5≤d
<0.8), and large (d≥0.8).
[DOCX File , 33 KB-Multimedia Appendix 13]
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