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Abstract

Background: Recent advancements in rehabilitation sciences have progressively used computational techniques to improve
diagnostic and treatment approaches. However, the analysis of high-dimensional, time-dependent data continues to pose a
significant problem. Prior research has used clustering techniques on rehabilitation data to identify movement patterns and forecast
recovery outcomes. Nonetheless, these initiatives have not yet used force or motion datasets obtained outside a clinical setting,
thereby limiting the capacity for therapeutic decisions. Biomechanical data analysis has demonstrated considerable potential in
bridging these gaps and improving clinical decision-making in rehabilitation settings.

Objective: This study presents a comprehensive clustering analysis of multidimensional movement datasets captured using a
novel home exercise device, the “Slider”. The aim is to identify clinically relevant movement patterns and provide answers to
open research questions for the first time to inform personalized rehabilitation protocols, predict individual recovery trajectories,
and assess the risks of potential postoperative complications.

Methods: High-dimensional, time-dependent, bilateral knee kinetic datasets were independently analyzed from 32 participants
using four unsupervised clustering techniques: k-means, hierarchical clustering, partition around medoids, and CLARA (Clustering
Large Applications). The data comprised force, laser-measured distance, and optical tracker coordinates from lower limb activities.
The optimal clusters identified through the unsupervised clustering methods were further evaluated and compared using silhouette
analysis to quantify their performance. Key determinants of cluster membership were assessed, including demographic factors
(eg, gender, BMI, and age) and pain levels, by using a logistic regression model with analysis of covariance adjustment.

Results: Three distinct, time-varying movement patterns or clusters were identified for each knee. Hierarchical clustering
performed best for the right knee datasets (with an average silhouette score of 0.637), while CLARA was the most effective for
the left knee datasets (with an average silhouette score of 0.598). Key predictors of the movement cluster membership were
discovered for both knees. BMI was the most influential determinant of cluster membership for the right knee, where higher BMI
decreased the odds of cluster-2 membership (odds ratio [OR] 0.95, 95% CI 0.94-0.96; P<.001) but increased the odds for cluster-3
assignment relative to cluster 1 (OR 1.05, 95% CI 1.03-1.06; P<.001). For the left knee, all predictors of cluster-2 membership
were significant (.001≤P≤.008), whereas only BMI (P=.81) could not predict the likelihood of an individual belonging to cluster
3 compared to cluster 1. Gender was the strongest determinant for the left knee, with male participants significantly likely to
belong to cluster 3 (OR 3.52, 95% CI 2.91-4.27; P<.001).
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Conclusions: These kinetic patterns offer significant insights for creating personalized rehabilitation procedures, potentially
improving patient outcomes. These findings underscore the efficacy of unsupervised clustering techniques in the analysis of
biomechanical data for clinical rehabilitation applications.

(JMIR Form Res 2025;9:e69150) doi: 10.2196/69150
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Introduction

Background of the Study
The challenge of optimizing knee rehabilitation exercises
following arthroplasty or injury is critical, given the high
prevalence of knee surgeries and the need for effective recovery
strategies. According to the American Joint Replacement
Registry 2022 Annual Report, over 2.5 million knee and hip
arthroplasty cases were documented, constituting a significant
proportion of knee replacements. The quality and effectiveness
of the ensuing rehabilitation, which has historically relied on
patient self-reporting, subjective assessments, and poor
compliance, is crucial to the success of these procedures. Such
methods can lead to suboptimal outcomes, as they fail to capture
biomechanical data that could inform treatment planning and
postoperative complications [1,2].

Recent developments in sensor technology have made it possible
to collect detailed kinetic data during physical therapy exercises.
This presents a chance to transition from subjective assessments
to more objective, data-driven methods. This change is
especially significant in home-based rehabilitation, where it is
crucial to collect valuable data consistently. The newly
developed Slider device [3] exemplifies this technological
advancement by capturing multidimensional movement data,
including force and spatial coordinates, directly from patients’
lower limbs during exercise. The Slider device is the first
rehabilitation device capable of remotely collecting force and
motion data in a patient’s home. This capability enhances the
ability to monitor patients in real time and to produce more
informative datasets that capture the dynamic interaction of
force and movement in a real-world, home-based setting [4].

A recent study has extensively examined the efficacy of the
Slider device for prehabilitation prior to total knee replacement
surgery [3]. The study revealed that the device can assist patients
in performing autonomous physiotherapy prior to surgery in
nonclinical environments. The research involved 17 patients
awaiting knee replacement surgery at a UK National Health
Service hospital. Their findings confirmed the device’s
practicality and user-friendliness for patient-initiated exercises,
with no recorded safety issues or adverse occurrences [3].
Principal findings revealed improvements in user involvement
and physical preparedness. The study advised that subsequent
research should involve a bigger and more diverse participant
cohort to comprehensively validate its findings regarding the
device. In order to enhance our understanding of this new
device, additional studies may be required to investigate the
multidimensional kinetic and kinematic data from the Slider
using unsupervised clustering methods for the first time across

a comparatively larger and diverse population. This exploration
is necessary to identify potential movement patterns that could
offer further insights into workout performance and recovery.
The insights gained from these computational methods may
improve comprehension of patient heterogeneity, enabling
customized rehabilitation programs that more effectively address
individual needs and improve outcomes for diverse groups.

The user datasets from this new data-collection device represent
a significant contribution to the field, as they provide a new
level of detail in understanding how kinetic patterns evolve
during rehabilitation outside of a clinical environment. Despite
these advancements, analyzing such high-dimensional,
time-dependent data remains a complex challenge. Previous
studies have applied clustering methods to other rehabilitation
data to identify movement patterns and predict recovery
outcomes. However, these efforts have yet to use force or motion
data captured outside of a clinical environment, limiting their
ability to inform clinical decisions [5,6].

Data were collected from healthy volunteers performing lying
flexions and extensions of their knees, including relevant
demographic characteristics and pain levels. K-means,
hierarchical clustering, partition around medoids (PAM), and
CLARA (Clustering Large Applications) were applied to
identify distinct movement patterns (based on force and
displacement measurements as primary outcomes). Performance
evaluations were conducted using the classical silhouette
analysis to determine the most appropriate clustering method.
Then, post hoc analyses were performed with multinomial
logistic regression to explore potential demographic predictors
of cluster membership based on the best models for the right
and left knee datasets, respectively. This study contributes to
the understanding of rehabilitation dynamics beyond the clinical
setting. The insights gained from the uniquely identified data
clusters may therefore enable clinicians to make more informed,
data-driven decisions, ultimately enhancing the precision and
effectiveness of rehabilitation programs. The primary aim of
this study is to advance the understanding of kinetic patterns
during knee rehabilitation by applying and comparing four
unsupervised clustering algorithms to new datasets collected
for the first time using the Slider device.

Paper Structure and Research Questions
This study is structured into five main sections. The Introduction
section provides an overview of the study’s background, outlines
the paper’s organization, and highlights its primary
contributions. The Methods section outlines the empirical kinetic
data used in the study, participant recruitment, study design,
and ethical considerations, followed by a concise summary of
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the clustering methodologies and additional modeling
considerations. The Results section presents the findings derived
from the statistical analysis of the experimental data. Finally,
the final section (Discussion) offers a discussion of the key
findings, draws conclusions, and suggests directions for future
research. With the help of experimental bilateral knee kinetic
datasets obtained from the newly developed home-based
rehabilitation device (Slider), this study seeks to address the
following open research questions:

• What distinct movement patterns can be identified from
multidimensional kinetic data during home physiotherapy?

• Can real-time clustering of movement data provide
meaningful feedback for personalized physiotherapy?

• How effective is cluster analysis in distinguishing between
varying levels of movement efficiency and recovery states?

• How do kinetic movement patterns evolve over the course
of physiotherapy, as detected through the new Slider device?

• Can the multidimensional movement data collected
remotely provide reliable insights for monitoring
physiotherapy outcomes?

Methods

Data Collection, Recruitment, and Study Design
Continuously observed, time-dependent, and high-dimensional
datasets were collected from both knees of 32 participants
(totaling 64 time-varying datasets with large data points) using
Slider during lying flexion and extension exercises. Participants
were not required to have undergone any prior treatment.
Demographic characteristics such as gender (21 male and 11
female participants), ethnicity (30 White participants and 2
mixed White and Asian participants), laterality (29 right and 3

left), age (mean 47.3, SD 2.11; range 21-77 years), height (cm),
and weight (kg) were recorded. Each participant’s BMI was
calculated from their height and weight measurements (mean

26.2, SD 4.99; range 18.3-40.6 kg/m2). Pain levels or scores
were quantified using a standard analog pain scale, ranging from
a score of 0=no pain to 10=worst imaginable pain.

Participants were not excluded from the study due to deformities
or complications from prior surgeries or therapy treatments.
The study was conducted without supervision, as it was intended
to be performed remotely in the participants’ homes due to the
inherently mobile nature of the Slider device. Consequently,
the study was deemed low risk and noninvasive. Each participant
completed 20 cycles, at a self-selected speed with the device
recording force (in Newtons) and X-Y displacement (in meters)
measured with an optical tracker. The data output was time
stamped (in seconds). Figure 1 is a time-series visualization of
observed data of the main unadjusted outcome variables for
clustering of a study participant. All statistical tests, with a
significance level set at P<.05, and cluster analyses were
performed in R statistical software (version 4.3.1; R Core Team)
[7].

The participants comprised the entire existing pool of volunteers
registered with the Slider device manufacturer. These individuals
were invited to participate based on their prior engagement with
the device, ensuring familiarity with its use. Recruitment
procedures followed ethical guidelines, with all participants
providing informed consent before data collection. This study
follows a machine learning (ML) predictive modeling design
in biomedical research, using unsupervised clustering techniques
to analyze high-dimensional kinetic data and identify distinct
movement patterns in home-based knee rehabilitation.
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Figure 1. Time-series plots illustrating the unadjusted observed kinetic data, including force and X-Y displacements, recorded at the (A-C) right and
(D-F) left knees of a study participant (ID: 1 MA). These plots provide an overview of the raw movement patterns captured by the Slider device,
highlighting temporal variations in force exertion and spatial displacement during rehabilitation exercises.

Ethical Considerations
This low-risk and noninvasive study was classified as a service
evaluation in accordance with the guidelines from the UK Health
Research Authority. Consultation with the UK Research and
Innovation Medical Research Council using Integrated Research
Application System (348336) confirmed that the study adhered
to all relevant ethical standards, and therefore, formal ethical
committee approval was not required. All participants provided
informed consent before participating, with explicit consent
obtained for both data collection and subsequent analysis. To
protect privacy and confidentiality, all study data were fully
anonymized before analysis, ensuring no personally identifiable
information was included. No financial compensation or other
incentives were provided for participation, as the study was
conducted on a voluntary basis. Finally, no identifiable images

or personal data from participants are included in the study
dataset or any supplementary materials.

Data Preprocessing
Data preprocessing is a crucial step in medical data analysis,
especially for high-dimensional datasets with missing or
incomplete information. It ensures data integrity, accuracy, and
usability by handling missing values (where applicable),
normalizing distributions, and reducing dimensionality,
ultimately improving predictive models and clustering
techniques performance [8]. Consequently, a two-stage data
preprocessing method was used on the time-dependent datasets
before conducting cluster analysis. In the first stage, potential
outliers in the time-series data for each participant were
automatically detected and corrected using the tsoutliers R
package [9], based on the force and X-Y displacement data. In
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the second stage, the cleaned time-series data underwent
decomposition using locally estimated scatterplot smoothing
(decomposition). This process aided in detrending the series for
each participant, making them more stationary, and removing
cyclical patterns to mitigate cyclical effects, thereby enhancing
the accuracy of the clustering analysis results. Because outlier
correction and locally estimated scatterplot smoothing
decomposition effectively standardize the time-series data,
decreasing noise and maintaining comparability between
participants by addressing both extreme values and nonstationary
trends, this two-stage approach is sufficient without additional
data normalization. Reliable clustering outcomes are therefore
possible since any residual variation in the data represents
significant variations in participant movement patterns rather
than artifacts from data scale or trend discrepancies.

Unsupervised Clustering Methods

Overview
In this study, the conventional hierarchical clustering and three
widely used partitional clustering algorithms, namely: k-means
[10,11], PAM [10,12], and CLARA [10], were used and
compared to respectively divide the preprocessed bilateral knee
datasets into an optimal number of clusters (represented by k>1).
This partitioning ensures that data points representing kinetic
features within the same cluster exhibit greater similarity to
each other than to those in other clusters. These clustering
methods have their respective algorithmic processes for
distinctly grouping data, each with advantages and disadvantages
regarding its robustness, scalability, and applicability related
to the data structure, dataset size, and noise sensitivity. These
justify the choice of models for this study and highlight the need
to identify the best clustering algorithms for the right and left
knee kinetic datasets, which were continuously observed over
time for each volunteer. A summary of the underlying clustering
methods used in this study is presented below.

K-Means Clustering
K-means is a centroid-based clustering algorithm that partitions

a set of n data points {x1, x2, ..., xn} ∈ Rd into k clusters {C1,
C2, ..., Ck} by minimizing the within-cluster sum of squares
objective function [10]:

where μi is the mean of the points in cluster Ci. The algorithm
starts with k initial centroids, assigns each point to the nearest
centroid or cluster center, and updates centroids by computing
the mean of assigned points. This process repeats until
convergence, typically when cluster assignments no longer
change. K-means is computationally efficient, with a time
complexity of O(n ⋅ k ⋅ d ⋅ t), where t is the number of iterations;
but is sensitive to the initial choice of centroids.

Hierarchical Clustering
Hierarchical clustering constructs a nested tree of clusters by
either agglomerative (bottom-up) or divisive (top-down)
methods. The agglomerative approach starts with each data
point as a single cluster and iteratively merges the two closest

clusters based on a chosen linkage criterion. For example, in
single linkage, the distance between clusters A and B is defined
as [13]:

The agglomerative algorithm first computes the distance matrix
for all pairs of points, then merges the closest clusters based on
the chosen linkage criterion, and finally, updates the distance
matrix, repeating this process until all points form a single
cluster. The divisive algorithm starts with all data points in a
single cluster and recursively splits them into smaller clusters
until each data point forms its own cluster. At each step, it
maximizes a splitting criterion such as the between-cluster
variance denoted by:

where A and B are the resulting clusters from the split, and their
respective centroids are denoted by μA and μB. Hierarchical
clustering is effective for detecting nested structures, but it has

a time complexity of either O(n2logn) for the agglomerative
method (making it effective for small to medium-sized datasets)

or O(2n) for the divisive approach (making it less effective for
large datasets).

PAM
PAM is a medoid-based clustering algorithm that extends
k-means by selecting actual data points (medoids) as cluster
centers, minimizing the sum of dissimilarities between points
and their nearest medoid. The objective is to find a set of k
medoids {m1, m2, ..., mk} that minimizes [10]:

where d(x, mi) is the dissimilarity (eg, Euclidean distance)
between a data point x and the medoid mi of cluster Ci. PAM is
robust to noise and outliers but has a higher computational cost

of O(k[n – k]2), which can limit its scalability for large datasets.
Different variants and extensions of PAM also exist [10].

CLARA
CLARA is an extension of PAM designed for large datasets. It
draws multiple samples of the data and applies PAM to each
sample, selecting the set of medoids that minimizes the
clustering cost over the entire dataset [12]. CLARA reduces the
computational burden of PAM by using random sampling,

maintaining a complexity of O(k|S|2 + k[n – |S|]), where |S| is
the sample size. CLARA scales better to large datasets, but its
performance depends on the quality and representativeness of
the random samples [10].

Other Statistical Modeling Considerations and
Performance Evaluation
To respectively determine the optimal number of unique clusters
in the data for both knees, the NbClust R Package [14] was used.
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This package evaluates over 30 different cluster identification
schemes or indices, with the optimal cluster size determined
automatically using a majority rule. After clustering, the
performance of the four ML approaches for the right and left
knee datasets was evaluated and compared using silhouette
analyses, which validate clustering methods [15]. Silhouette
coefficients or scores, which range from –1 (indicating incorrect
clustering) to +1 (indicating highly dense or correct clustering),
were calculated for each cluster identified across the four data
partitioning methods. Based on their distributions, appropriate
pooled estimates of these scores were used to compare the
models’ performance for the right and left knee data clustering,
respectively. Principal component analysis (PCA) was adopted
to visualize the clustered high-dimensional data {x1, x2, ..., xn}

∈ Rd in a reduced dimensional space.

While the primary cluster analysis using force and displacement
outcome data can potentially categorize movement patterns into
distinct groups in the right and left knees, it remains essential
to identify additional demographic factors that may influence
these patterns and their clinical relevance [16]. Thus, a
multinomial logistic regression model with analysis of
covariance adjustment was used to investigate whether
demographic variables such as age, gender, BMI, and pain
scores could serve as significant predictors of cluster
membership. This approach allows for a more comprehensive
understanding of the determinants of cluster assignment by
examining how these demographic factors, when adjusted for
kinetic measurements, contribute to the likelihood of a
participant belonging to a specific cluster at a particular time
(since cluster membership is time-varying given the
time-dependent kinetic data structure). Incorporating these
variables enhances the ability to tailor personalized rehabilitation
protocols by considering both biomechanical and individual
patient characteristics, ultimately supporting more precise and
effective clinical decision-making.

Using an analysis of covariance–based logistic model with
adjustment for the actual observed force and X-Y displacement
measurements, as well as temporal effects, the model is
mathematically defined as follows:

for each cluster category 1<k≤K relative to a baseline category
(cluster 1), where K denotes the total number of uniquely

identified clusters. P(Ci=k) represents the probability of the ith
individual being in cluster k at time T≥0, and the regression
coefficients: β1k, β2k, β3k, and β4k represent the respective effects
of the main demographic predictors (age, gender, BMI, and pain
score) on the log-odds of being in cluster k≥2 versus the baseline
cluster 1, adjusted for force (F), X-Y displacements (denoted
by X and Y) and time of measurement (T).

The coefficients γ1k, γ2k, γ3k, and γ4k control for the influence of
force, X-Y displacements, and time of measurement,
respectively. The model was fitted with the help of the nnet R
package [17]. Finally, the odds ratios (ORs) were estimated,
which quantify the magnitude of the discriminatory effect of
each of the main demographic predictors by exponentiating the
estimated log-odds regression coefficients from exp(βgk) for
1≤g≤4 and 1<k≤K. The right and left knee datasets were
respectively split into 80% training sets (for model fitting) and
20% testing sets for cross-validation to estimate the prediction
accuracy from the resulting confusion matrix and the area under
the receiver operating characteristic curve statistic.

Results

Cluster Analysis at Both Knees

Summary of Key Findings
Three clusters were optimally identified for both knees, each
representing a unique kinetic pattern. K-means, hierarchical,
PAM, and CLARA clustering were subsequently performed
based on these predetermined clusters. Figures 2 and 3 show a
PCA visualization of the clustered datasets in a
lower-dimensional space for both knees. The silhouette analysis
(Figure 4) revealed that hierarchical clustering was relatively
found to be the most effective for the right knee kinetic datasets
(with an average silhouette score of 0.637) followed by k-means
(with an average silhouette score of 0.612), while CLARA
proved to be the best-performing method for the left knee
datasets (with an average silhouette score of 0.598) followed
by k-means (with an average silhouette score of 0.588). It can
be inferred from these results that the right knee datasets resulted
in a better clustering result than the left knee datasets. Figure 5
presents a scatterplot of the adjusted kinetic features (which
have been detrended and cycle-adjusted) in a 3D space for the
right and left knees, stratified by the identified clusters, based
on the best-performing, knee-specific clustering algorithms.
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Figure 2. Principal component analysis visualizations comparing the three identified movement clusters at the right knee across the four clustering
methods: (A) k-means, (B) hierarchical, (C) PAM, and (D) CLARA. These visualizations are based on adjusted kinetic features (force and X-Y
displacements) and illustrate how different clustering techniques distinguish movement patterns in the multidimensional dataset. CLARA: Clustering
Large Applications; PAM: partition around medoids.
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Figure 3. Principal component analysis visualizations comparing the three identified movement clusters at the left knee across the four clustering
methods: (A) k-means, (B) hierarchical, (C) PAM, and (D) CLARA. These plots provide insights into the separability of kinetic movement patterns
based on adjusted force and spatial displacement data. CLARA: Clustering Large Applications; PAM: partition around medoids.
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Figure 4. Distributional plot comparing estimated silhouette coefficients across the four clustering methods (k-means, hierarchical, PAM, and CLARA)
at the (A) right and (B) left knees. The plot presents both cluster-specific and pooled estimates, highlighting the relative performance of each clustering
method in distinguishing movement patterns from kinetic data at both knees. CLARA: Clustering Large Applications; PAM: partition around medoids.
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Figure 5. 3D scatterplot depicting the clustering of adjusted force measurements (in Newtons) against adjusted X-Y displacements (in meters) for the
(A) right and (B) left knees. The clustering is based on the most optimal knee-specific methods identified through silhouette analysis—hierarchical
clustering for the right knee and CLARA for the left knee—demonstrating the spatial distribution of movement patterns within the dataset. CLARA:
Clustering Large Applications.

To assess whether significant differences existed in the
distribution of multivariate kinetic features (force and X-Y
displacements) across the three clusters for both knees, a
multivariate Kruskal-Wallis (MKW) test [18] was used. This
test was chosen due to the multivariate nonnormality of the
bilateral knee datasets (Henze-Zirkler multivariate normality
test: E=246.25, P<.001 for the right-knee datasets; E=219.34,
P<.001 for left-knee datasets). The results indicated that at least
one of the clusters significantly differed in distribution for both
the right (MKW: W6=9204.35; P<.001) and left knees (MKW:
W6=9973.54; P<.001). Subsequent univariate Kruskal-Wallis

tests were performed for each kinetic feature at both knees,
coupled with Dunn multiple comparison tests (Figure 6). There
were significant differences in the distribution of the kinetic
features between the three clusters at both knees, suggesting
the identified knee-specific clusters were uniquely distinct.
Figure 7 shows the frequency of times cluster membership
varied temporally across the 32 study participants. The
proportion of times participants were assigned to cluster 1,
cluster 2, and cluster 3 at the right knee was 72.7%, 12.3%, and
15%, respectively. For the left knee, the proportion of times
participants were assigned to cluster 1, cluster 2, and cluster 3
were 65.1%, 25.4%, and 9.5%, respectively.
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Figure 6. Comparative distribution plots of adjusted kinetic features (force and X-Y displacements) across the three k-means–identified clusters at the
(A-C) right and (D-F) left knees. Statistical differences between clusters were assessed using Kruskal-Wallis tests followed by Dunn multiple comparison
tests, with significance levels indicated (***P<.001; **P<.01; *P<.05). These results highlight variations in movement characteristics among identified
rehabilitation patterns.
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Figure 7. Slope graph visualizing temporal changes in cluster membership across the 32 study participants at the (A) right and (B) left knees. This plot
captures how individuals transitioned between movement clusters over time due to the time-dependent structure of kinetic data collected from both
knees, reflecting the dynamic nature of rehabilitation progress.

There was a reverse observation of the relative positions of
clusters 2 and 3 in the right and left knees of the study
participants (Figure 5). Possible practical kinetic interpretations
of the clustered data with respect to force measurements across
X-Y displacements, given this reverse kinetic pattern in right
and left knees, could be understood as follows.

Cluster 1 (Middle Position)
This cluster suggests intermediate force levels and
displacements. In both knees, movements in this cluster might
involve moderate force exertion and a moderate range of motion
in the X-Y plane. These could correspond to exercises aimed
at strengthening muscles and improving joint mobility without
excessive stress.

Cluster 2 (Bottom Position—Left Knee; Top
Position—Right Knee)
This cluster likely represents movements with lower force
exertion and smaller displacements in both X and Y directions.
In the left knee, these movements may represent exercises
performed with less force and a limited range of motion. It could
represent muscle weakening or joint pathology. In the right
knee, however, these movements may involve higher force
exertion but still within a constrained range of motion. The
lower range of motion could represent joint stiffness due to
arthritis. This cluster may represent the least physically fit group
of individuals. In the right knee, it could represent
moderate-intensity exercises, while in the left knee, it might
involve active movements with moderate intensity.

JMIR Form Res 2025 | vol. 9 | e69150 | p. 12https://formative.jmir.org/2025/1/e69150
(page number not for citation purposes)

Twumasi et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Cluster 3 (Top Position—Left Knee; Bottom
Position—Right Knee)
This cluster indicates higher force levels and larger
displacements. In the left knee, movements in this cluster likely
involve high-force exertion combined with extensive movements
in the X-Y plane. These could correspond to activities requiring
significant strength and flexibility, such as high-intensity
exercises. The right knee, however, shows lower force exertion
but still with extensive movements, suggesting exercises focused
more on flexibility, agility, and possibly lower muscle activities.
This cluster may represent the most physically fit group of
individuals.

Determinants of the Identified Clusters at Both Knees
The multinomial logistic regression analysis identified several
significant demographic predictors of cluster membership for

both right and left knee datasets (Table 1). For the right knee,
being male was associated with significantly lower odds of
belonging to cluster 2 compared to cluster 1 (OR 0.30, 95% CI
0.26-0.33) and to cluster 3 (OR 0.55, 95% CI 0.47-0.63). BMI
also emerged as a significant predictor, with higher BMI
decreasing the odds of being in cluster 2 (OR 0.95, 95% CI
0.94-0.96) but increasing the odds for cluster-3 membership
(OR 1.05, 95% CI 1.03-1.06). Age was a significant predictor
for cluster 3 (OR 1.02, 95% CI 1.01-1.03) but not for cluster 2
(P=.95). For the left knee, we found that all the demographic
determinants of belonging to cluster 2 relative to cluster 1 were
significant (.001≤P≤.008), whereas only BMI (P=.81) could
not predict the likelihood of an individual belonging to cluster
3 compared to cluster 1. Gender emerged as the strongest
determinant for the left knee data, with male participants being
significantly more likely to belong to cluster 3 (OR 3.52, 95%
CI 2.91-4.27; P<.001).

JMIR Form Res 2025 | vol. 9 | e69150 | p. 13https://formative.jmir.org/2025/1/e69150
(page number not for citation purposes)

Twumasi et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Estimated ORa and their 95% CIs for the demographic determinants of cluster membership, derived from a fitted multinomial regression

model (N=32 participants)b,c.

P valueSEOR (95% CI)Clusters and variables

Right kneed

Cluster 2 (reference: cluster 1)

<.0010.0610.30 (0.26-0.33)Male (reference: female)

<.0010.0060.95 (0.94-0.96)BMI (kg/m2)

.950.0020.99 (0.98-1.01)Age

.050.0151.03 (0.99-1.06)Pain score

Cluster 3 (reference: cluster 1)

<.0010.0770.55 (0.47-0.63)Male (reference: female)

<.0010.0071.05 (1.03-1.06)BMI (kg/m2)

<.0010.0021.02 (1.01-1.03)Age

.110.0161.03 (0.99-1.06)Pain score

Left kneee

Cluster 2 (reference: cluster 1)

<.0010.0690.63 (0.55-0.72)Male (reference: female)

<.0010.0071.10 (1.09-1.12)BMI (kg/m2)

<.0010.0021.04 (1.03-1.05)Age

.0080.0200.95 (0.91-0.99)Pain score

Cluster 3 (reference: cluster 1)

<.0010.1003.52 (2.91-4.27)Male (reference: female)

.810.0091.01 (0.98-1.02)BMI (kg/m2)

<.0010.0020.98 (0.97-0.99)Age

.010.0201.05 (1.01-1.09)Pain score

aOR: odds ratio.
bThese results quantify the influence of demographic factors such as BMI, age, gender, and pain levels on the likelihood of belonging to specific
movement clusters.
cEach of the multinomial logistic regression models for both knees’ data was adjusted for the primary kinetic features (force and X-Y displacements)
and temporal effect.
dFor right knee measurement data: percentage accuracy=77.82% (95% CI 76.29%-79.3%); area under the receiver operating characteristic curve=0.778.
eFor the left knee measurement data: percentage accuracy=76.24% (95% CI 74.62%-77.81%); area under the receiver operating characteristic curve=0.762.

Discussion

Results Key Insights Enabled by the Slider Device for
Home-Based Rehabilitation Monitoring
This study explored further an innovative method for knee
rehabilitation using the Slider device, a novel tool that enables
the remote acquisition of multidimensional kinetic data,
including force and spatial coordinates, within a home setting.
By facilitating objective real-time monitoring of rehabilitation
progress, Slider represents a significant advancement in
personalized physiotherapy. A previous study has already
validated its feasibility and safety for empowering patients to
perform presurgery physiotherapy exercises independently,
eliminating the need for a clinical environment [3]. However,
no study has yet examined and analyzed the multidimensional

bilateral kinetic and kinematic datasets generated by users of
this new device. This analysis aimed to uncover potential
patterns that could transform raw data into actionable insights,
enabling therapists to deliver data-driven, patient-specific
interventions that may optimize rehabilitation outcomes. This
study used and compared four unsupervised clustering methods
to find three unique time-varying movement patterns or clusters
based on the observed time-dependent, multidimensional
datasets from the right and left knees of the study participants.

The application of multiple clustering methods provides a
comparative perspective on clustering performance, reinforcing
the robustness of the findings. We have identified these
movement patterns outside of a clinical setting for the first time.
Significant differences in the distributions of force and
displacement between clusters show how differently participants
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move. Demographic factors like gender, BMI, age, and pain
score also predicted membership in a cluster. These findings
provide significant potential for individualized rehabilitation
programs that enhance therapist accuracy and results. By
leveraging ML and kinetic data collection, this study further
demonstrates how at-home rehabilitation can be made more
autonomous, reducing patient dependency on in-clinic
physiotherapy sessions. The ability to remotely track movement
progress offers a scalable solution for long-term rehabilitation,
minimizing the need for frequent clinical visits.

Consequently, this study has effectively addressed the five open
research questions by examining multidimensional kinetic data
obtained during home-based physiotherapy. Using four
clustering algorithms, the study found three different,
time-varying, kinetic movement patterns for both knees. These
patterns may represent different levels of fitness and recovery,
answering the first question about how to find movement
patterns in multidimensional kinetic data. The study answered
the second question by showing that real-time clustering of
movement data could help physiotherapists better understand
how to meet the needs of each patient by showing how the
clusters changed in response to force and displacement data.
To answer the third question, the study confirmed that clustering
methods, especially hierarchical clustering for the right knee
and CLARA for the left knee, could tell the difference between
different levels of movement efficiency and recovery states.

The mathematical modeling revealed that over time, participants
progressed from erratic to more coordinated movement patterns,
reflecting the evolution of the natural rhythm of motion during
exercise, thus answering the fourth question on how movement
patterns evolve. The insights gained from movement clustering
suggest potential future advancements in physiotherapy
technology, particularly in enhancing real-time feedback
mechanisms of rehabilitation devices. These findings could
contribute to the development of more adaptive and intelligent
physiotherapy tools, improving their application in both research
and clinical settings. Finally, the Slider device provided reliable,
multidimensional kinetic data, enabling accurate cluster
identification and analysis, thereby confirming its potential for
remotely monitoring physiotherapy outcomes and answering
the fifth question.

Practical Implications of the Study

Identification of Movement Patterns
Clusters that differentiate based on movement patterns (such
as the range and direction of motion) can help clinicians identify
abnormal movement behaviors in participants. This is
particularly useful in postoperative rehabilitation or in
monitoring the progress of participants with musculoskeletal
disorders. For a theoretical application in a clinical setting,
cluster characterized by limited range and lower force output
might indicate participants who are either in the early stages of
recovery from injury or surgery or who are experiencing
complications or poor recovery. Hitherto, such kinetic
evaluations have only been possible if participants attended
sessions in a gait laboratory or clinic [5]. Slider allows these
evaluations to be done in a participant’s home using data from
exercises done by the participants over the entire duration of

their rehabilitation program. A possible weakness of this study
would be that it is intended to account for movement of the knee
but does not account for limitations in movement due to the
flexibility of the ankle or hip. Such variables could have
impacted the data collected and changed which cluster the
participant fell into, however, no participants that participated
reported having such issues before conducting the exercises, so
such variables should not have been considered significant
during data collection.

Tailored Rehabilitation Programs
Understanding which cluster a participant’s movement data fall
into allows clinicians to tailor rehabilitation programs more
effectively. By customizing programs based on the typical
movement characteristics of each cluster, clinicians can optimize
recovery times and outcomes. By understanding which cluster
a participant’s movement data fall into, therapists can customize
exercises that target specific movement deficiencies [6]. For a
practical application, participants in a cluster showing high force
and extreme movement ranges might benefit from a different
set of exercises compared to those in a cluster with conservative
movement patterns, possibly due to differences in pain tolerance,
injury severity, or recovery stage. Remote data collection can
enable clinicians to monitor progress in real time, offering
greater flexibility in treatment planning and providing objective
data for faster, more efficient feedback. This benefits both
participants and care providers.

Prediction of Recovery Trajectories
The data clusters could help predict different recovery
trajectories by identifying which participants will likely recover
faster based on similarities in movement patterns. Participants
showing gradual movement range and force improvements over
time by progressing through clusters may indicate a positive
recovery trajectory. Clusters may serve as predictive markers
for rehabilitation outcomes, allowing for proactive adjustments
in treatment plans [19].

Customization of Assistive Devices
Insights from clustering can inform the customization of
assistive devices to better support individual participant needs
based on the commonalities in movement patterns, unique
movement limitations, or capabilities observed within each
cluster. Participants in a cluster that shows significantly altered
gait patterns might benefit from specific types of orthotic
supports designed to compensate for those specific deviations
[20].

Enhanced Understanding of Pathophysiology
Exploring cluster formation further can improve understanding
of the pathophysiology of conditions, aiding diagnosis and
treatment. Differentiating clusters by movement patterns can
help identify causes of pain or dysfunction, such as muscular
versus joint issues, and analyzing force and movement data can
reveal significant correlations. This is significant as it allows
therapists to obtain data regarding multiple variables at once
during one exercise instead of having to test the functionality
of the knee with the participant in the same room using multiple
tests to achieve a similar outcome [21].
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Limitations of the Study
This study has some limitations that must be acknowledged
from both statistical and clinical viewpoints. From a statistical
perspective, the sample size of 32 participants, although
adequate for preliminary temporal exploratory analysis, is
not sufficient for generalizing the findings to larger and more
diverse groups. A larger cohort would provide a more robust
assessment of the observed kinetic patterns and enhance the
reliability of the used clustering techniques. Furthermore,
whereas unsupervised clustering effectively identified distinct
movement patterns, the study design was deficient in
longitudinal follow-up to assess the direct correlation between
these patterns and long-term rehabilitation outcomes. Clinically,
while the Slider device offers an option for home-based
rehabilitation, the absence of real-time clinician supervision
may lead to variability in movement execution and data quality,
thereby impacting cluster accuracy. The predictive efficiency
of the identified clusters in guiding treatment strategies remains
uncertain without rigorous validation through randomized
controlled trials or extended clinical monitoring.

Conclusions
Three distinct, kinetic, time-varying clusters were identified for
both the right and left knees, representing unique movement
patterns, based on measurement data from the Slider exercise
device. Data clustering performance was found to be knee
specific, with hierarchical and CLARA clustering methods
producing better results at the right and left knees, respectively.
The kinetic patterns at the right and left knees were significantly
different. Gender, BMI, age, and pain score were identified as
significant demographic predictors of cluster membership, with

varying impacts on cluster assignment for the right and left
knees. Future research should also explore other clustering
algorithms, such as density-based clustering (DBSCAN) and
Gaussian mixture models. Additionally, the impact of various
preprocessing techniques should be investigated, especially for
time-dependent and cyclical data. Techniques such as Fourier
transforms, wavelet transforms, and PCA for dimensionality
reduction may also enhance the analysis of movement patterns.

Furthermore, future studies should develop additional kinetic
features, such as velocity, acceleration, and jerk, to provide a
more comprehensive understanding of movement patterns and
improve clustering accuracy. Expanding this study to include
a more diverse participant population would help assess the
generalizability of the findings, refine personalized rehabilitation
protocols, and address the limitations of this study. Finally,
further longitudinal and trial studies could be conducted to
correlate identified clusters with clinical outcomes, such as
recovery trajectories and therapy efficacy, to validate the
practical significance of the clustering results. Further case
studies are currently being planned, which will expand the scope
of data collected and study participants. It is expected that with
further data collection, it will be easier to identify more
accurately what subgroup knee replacement participants fall
into, as well as what range of movement and force recorded can
be considered optimal based on certain demographics. This
method appears to be effective at remotely measuring movement
and force for knee joint movement. Future projections for Slider
device development will include artificial intelligence–assisted
projections and therapy progress analysis to streamline the
process for physicians.
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OR: odds ratio
PAM: partition around medoids
PCA: principal component analysis
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