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Abstract

Background: Wrong-site surgery (WSS) is a critical but preventable medical error, often resulting in severe patient harm and
substantial financial costs. While protocols exist to reduce wrong-site surgery, underreporting and inconsistent documentation
continue to contribute to its persistence. Machine learning (ML) models, which have shown success in detecting medication
errors, may offer a solution by identifying unusual procedure-diagnosis combinations. This study investigated whether an ML
approach can effectively adapt to detect surgical errors.

Objective: This study aimed to evaluate the transferability and effectiveness of an ML-based model for detecting inconsistencies
within surgical documentation, particularly focusing on laterality discrepancies.

Methods: We used claims data from the Centers for Medicare and Medicaid Services Limited Data Set (CMS-LDS) from 2017
to 2020, focusing on surgical procedures with documented laterality. We developed an adapted Association Outlier Pattern (AOP)
ML model to identify uncommon procedure-diagnosis combinations, specifically targeting discrepancies in laterality. The model
was trained on data from 2017 to 2019 and tested on 2020 orthopedic procedures, using ICD-10-PCS (International Classification
of Diseases, Tenth Revision, Procedure Coding System) codes to distinguish body part and laterality. Test cases were classified
based on alignment between procedural and diagnostic laterality, with 2 key subgroups (right-left and left-right mismatches)
identified for evaluation. Model performance was assessed by comparing precision-recall curves and accuracy against rule-based
methods.

Results: The findings here included 346,382 claims, of which 2170 claims demonstrated with significant laterality discrepancies
between procedures and diagnoses. Among patients with left-side procedures and right-side diagnoses (603/1106), 54.5% were
confirmed as errors after clinical review. For right-side procedures with left-side diagnoses (541/1064), 50.8% were classified
as errors. The AOP model identified 697 and 655 potentially unusual combinations in the left-right and right-left subgroups,
respectively, with over 80% of these cases confirmed as errors following clinical review. Most confirmed errors involved
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discrepancies in laterality for the same body part, while nonerror cases typically involved general diagnoses without specified
laterality.

Conclusions: This investigation showed that the AOP model effectively detects inconsistencies between surgical procedures
and diagnoses using CMS-LDS data. The AOP model outperformed traditional rule-based methods, offering higher accuracy in
identifying errors. Moreover, the model’s transferability from medication-disease associations to procedure-diagnosis verification
highlights its broad applicability. By improving the precision of identifying laterality discrepancies, the AOP model can reduce
surgical errors, particularly in orthopedic care. These findings suggest that the model enhances patient safety and has the potential
to improve clinical decision-making and outcomes.

(JMIR Form Res 2025;9:e68436) doi: 10.2196/68436
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Introduction

Wrong-site surgery (WSS) is recognized as the fifth most severe
medical error in the United States [1]. A recent study revealed
that one-third of inpatient WSS incidents resulted in
high-severity injuries, with 7.4% of these cases leading to death
[2]. This preventable mistake not only causes a big impact on
patients but also imposes considerable financial burdens on the
health care system [3]. According to a review in the United
States National Practitioner Data Bank, a total of US $1.3 billion
was recorded in payouts for surgical never events for 2 decades
(1990-2010) [4]. Despite efforts aimed at reducing surgical
errors through preprocedure verification, site marking, and a
preoperative timeout, WSS events continue to occur.
Specifically, the services most frequently responsible for those
cases were orthopedic, including spine and intervertebral disc
surgery, arthroscopy, and surgery on muscles or tendons [2,5].

The underreporting of WSS further complicates efforts to
address this issue. In the United States, only 2% of sentinel
events are reported to The Joint Commission, contributing to
the persistence of WSS [1]. Moreover, the World Health
Organization’s 2024 Global Patient Safety Report highlights
that only 38% of countries have implemented systems to report
preventable and catastrophic medical errors, leading to the
widespread underestimation of their true frequency [6]. Among
the factors to WSS, inconsistent documentation and
inappropriate history and examination information contribute
significantly to the occurrence of WSS [2,3]. For example, a
patient may have a radiology report indicating a right renal mass
from an outside hospital, while a referral document refers to a
recent ultrasound report of a left renal mass, leading to a left
nephrectomy [2]. Due to the inescapable nature of human error,
the ability to automatically identify such discrepancies with the
emerging technology could substantially reduce the incidence
of WSS.

To address issues of inconsistent documentation and
inappropriate history and examination information, a machine
learning (ML) model that can automatically detect uncommon
associations between diagnosis and surgical procedures may
offer a viable solution for identifying and preventing WSS.
Recent studies have shown promising results using ML
algorithms to detect medication errors, using unsupervised
association rule learning to identify unreasonable
medication-disease combinations [7,8]. We hypothesized that

the similar characteristics between procedure-diagnosis and
medication-disease associations could be used to train a model
capable of detecting surgical errors. Therefore, this study aims
to assess the transferability of an adapted ML model and validate
its performance in detecting inconsistencies in surgical
procedure documentation.

Methods

Data Source
The Centers for Medicare and Medicaid Services Limited Data
Set (CMS-LDS) files provide detailed information on health
care services given to beneficiaries. This database includes
claims data that record the medical services provided, along
with related diagnosis and procedure codes [9]. This dataset is
crucial for health care research and quality assessments, helping
to measure health care outcomes in various settings [10-12].
We included claims with complete records of both medical and
surgical procedures.

Model Construction
In this study, we constructed the adapted version of the
Association Outlier Pattern (AOP) model using the ML
algorithms, with methods described in a previous paper [13].
We used CMS-LDS data from 2017 to 2019 as a training set to
develop the model. This AOP model is designed to automatically
detect uncommon or rare associations between specific diseases
and surgical procedures, with a particular focus on discrepancies
between the diagnosed side (left or right) and the side operated
on. The model determined a procedure to be substantiated if
the index procedure could be explained by a relevant diagnosis.
However, if there was a procedure that could not be explained
by any of the diagnoses, then the procedure-diagnosis
combination would be viewed as unsubstantiated. All data
collection and analysis procedures in this study fully comply
with the principles outlined in the “Guidelines for Developing
and Reporting Machine Learning Predictive Models in
Biomedical Research” [14].

Test Set Development
The study used inpatient CMS-LDS data from 2020 as a test
set. We limited our testing data to orthopedic procedures,
identified by the Attending Physician Specialty Code for
Orthopedic Surgery. The study population was selected only if
the ICD-10-PCS (International Classification of Diseases, Tenth
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Revision, Procedure Coding System) and ICD-10-CM
(International Classification of Diseases, Tenth Revision,
Clinical Modification) codes included identifiable body parts
and laterality information. The fourth character of the
ICD-10-PCS code was used to differentiate body parts and
laterality. Cases in which the only procedure performed was
the insertion of an infusion device were excluded, as the
rationale for the insertion site is typically clinician-determined
and often lacks a documented record.

Procedures and diagnoses were categorized by laterality: right,
left, or both. “Right-side procedures” indicated that all
procedures performed on the patient were on the right side, and
“both-side procedures” indicated that the patient received both
right- and left-side procedures. The same definitions applied to
the laterality of diagnoses. Patients with complete laterality
information for both procedures and diagnoses were classified
into 9 subgroups based on the combination of procedural and
diagnostic laterality, such as right-right, right-left, right-both,
left-right, left-left, left-both, both-right, both-left, and both-both.
The analysis focused on 2 subgroups with significant
discrepancies between procedure and diagnosis laterality:
right-side surgery with left-side diagnosis (right-left) and
left-side surgery with right-side diagnosis (left-right).

Test Set Evaluation
The accuracy of these 2 subgroups was evaluated through a
rigorous review process that examined the alignment between
documented procedures and diagnoses. Two authors (YHC and
CHL) independently reviewed the consistency between
procedures and diagnoses. In cases of disagreement, both authors
conducted a thorough secondary review of all available medical
records and reached a consensus through discussion. A
confirmed error case was defined as a scenario in which no
direct association existed between the surgery performed and
any recorded diagnosis. Clinical criteria for defining an error
case included: (1) all diagnoses did not sufficiently justify the
need for the surgery; (2) the anatomical areas mentioned in the
diagnoses and procedures were either not the same, not in
proximity (eg, shoulder joint and humerus are in proximity), or
not appropriately related (eg, upper leg relates to femur bone);
and (3) the anatomical areas were similar, but the laterality was
opposite. These criteria ensured that discrepancies in laterality
between diagnoses and surgical procedures were systematically
identified.

Confirmed error cases were further categorized based on whether
the procedure and diagnosis involved the same or different body
parts. Confirmed nonerror cases were classified into five
categories based on potential rationale: (1) same body part
between procedure and diagnosis, but with the unspecified side
in the diagnosis; (2) same body part between procedure and

diagnosis, but with no laterality specified; (3) diagnosis without
a specific body part that can explain the index procedure; (4)
anatomical areas in the diagnoses and procedures were in
proximity; and (5) the index procedure could be explained by
a combination of diagnoses and concurrent procedures.

Model Performance Metrics
To assess the generalization and extrapolation performance of
the model, we applied the trained AOP model to identify
potentially unusual combinations of procedures and diagnoses
among the 2 subgroups with significant discrepancies (right-left
and left-right) in the test set. We plotted the precision-recall
curves to obtain the optimal probability threshold to maximize
the predictive capability of the AOP model. Precision-recall
curves have been considered an effective metric for accessing
the model, especially the data is an unbalanced dataset [15,16].
The optimal probability threshold is where a point can achieve
high precision score while only sacrificing minimal recall
(Figure S1 in Multimedia Appendix 1). By calculating the
accurate prediction rate of the AOP model and the rule-based
method (right-left and left-right), we can compare the
performance between these 2 methods.

Ethical Considerations
This study used the CMS-LDS files, which provide
beneficiary-level information for research aimed at improving
the US health care system. Access to the data was granted
through the standard Centers for Medicare and Medicaid
Services (CMS) approval process, including entering into a
Data Use Agreement with CMS. The study was exempt from
human subject research ethics review, as the data used were
deidentified in accordance with the Health Insurance Portability
and Accountability Act (HIPAA) Privacy Rule. Since the study
involved secondary analyses of deidentified data, informed
consent was not required, and no direct interaction with human
participants occurred.

To ensure privacy and confidentiality, all analyses strictly
adhered to CMS policies, including the cell suppression rule,
which prohibits the publication of results with cell sizes of 10
or fewer (eg, patients or services). Furthermore, no attempts
were made to reidentify individuals from the data, maintaining
compliance with ethical and privacy standards.

Results

Baseline Study Population
Data from a total of 346,382 claims were included in the study.
Among them, the data indicated that 1106 patients had a left-side
procedure with right-side diagnoses, and 1064 patients had a
right-side procedure with left-side diagnoses (Figure 1).
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Figure 1. Selection of test set study population from Centers for Medicare and Medicaid Services Limited Data Set (CMS-LDS).

The study used inpatient CMS-LDS data from 2020 as the test
set. Testing data was restricted to orthopedic procedures, and
identified using the Attending Physician Specialty Code for
Orthopedic Surgery. The study population included only cases
where the ICD-10 (International Statistical Classification of
Diseases, Tenth Revision) procedure and diagnosis codes
provided clear information about the body part and laterality.

Test Set Population Characteristics
Among the 1106 patients with left-side procedures with
right-side diagnoses, 603/1106 (54.5%) cases were confirmed

as errors, while 503/1106 (45.5%) were deemed reasonable
combinations after applying the clinical review criteria.
Similarly, among the 1064 patients with right-side procedures
with left-side diagnoses, 541/1064 (50.8%) cases were
confirmed as errors, while 523/1064 (49.2%) were deemed
reasonable combinations (Table 1). Most confirmed errors
involved the same body part in both procedure and diagnosis
but with opposite laterality. Most nonerror cases were considered
reasonable due to the presence of a relatively general diagnosis
code with an unspecified body part, or a diagnosis with a
specified body part but no laterality.
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Table 1. Performance of rule-based method and association outlier pattern (AOP) model by laterality.

AOPb,c modelRule-based methoda

Left-side procedure with right-side diagnoses

n=576 (82.6%)n=603 (54.5%)Confirmed error

n=404n=421Same body part

n=172n=182Not same body part

n=121 (17.4%)n=503 (45.5%)Confirmed nonerror

n=17n=39Unspecified side of diagnosisd

n=34n=131No laterality for diagnosise

n=58n=251No specific body part nor lateralityf

n=2n=4Proximity areag

n=10n=78Othersh

Right-side procedure with left-side diagnoses

n=524 (80.0%)n=541 (50.8%)Confirmed error

n=376n=390Same body part

n=148n=151Not same body part

n=131 (20.0%)n=523 (49.2%)Confirmed nonerror

n=17n=50Unspecified side of diagnosis

n=75n=271No laterality for diagnosis

n=25n=129No specific body part nor laterality

n=4n=4Proximity area

n=10n=69Others

aLeft-side procedure with right-side diagnoses: n=1106; right-side procedure with left-side diagnoses: n=1064.
bLeft-side procedure with right-side diagnoses: n=697; right-side procedure with left-side diagnoses: n=655.
cAOP: association outlier pattern.
dSame body part between procedure and diagnosis, but with the unspecified side in the diagnosis.
eSame body part between procedure and diagnosis, but with no laterality specified.
fDiagnosis without a specific body part that can explain the index procedure.
gAnatomical areas in the diagnoses and procedures were in proximity.
hThe index procedure could be explained by a combination of diagnoses and concurrent procedures.

This table summarizes the performance of the rule-based method
and the AOP machine learning model in identifying surgical
procedure-diagnosis inconsistencies in the CMS-LDS from
2020. The study focused on patients undergoing orthopedic
procedures with discrepancies in laterality between procedures
and diagnoses. Results are presented for 2 subgroups: left-side
procedures with right-side diagnoses (n=1106) and right-side
procedures with left-side diagnoses (n=1064). Clinical review
outcomes are categorized into confirmed errors and nonerrors,
with further classification based on the nature of the diagnosis
and its alignment with the index procedure.

We focused on 2 subgroups with significant discrepancies
regarding laterality between procedure and diagnosis, where
combinations could be reasonable or unreasonable. For instance,
a patient who underwent right knee joint arthroplasty but was
diagnosed only with left knee osteoarthritis was deemed to have
an error, as no diagnoses could justify the need for right knee
joint replacement. Conversely, a nonerror case might involve
a patient who underwent right lower leg detachment surgery
with a diagnosis of diabetes-related gangrene (Table 2).
Although the diagnosis did not specify the body part or laterality,
it could explain the reason for the surgery and did not conflict
with other diagnoses.
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Table 2. Test set evaluation examples for clinical review of procedure-diagnosis discrepancies.

DiagnosesIndex procedures

Confirmed error

Same body part •• M1712-Unilateral primary osteoarthritis, left kneeRight knee joint
• F17210-Nicotine dependence, cigarettes, uncomplicated

• 0SRC0J9-Replacement of right knee joint
with synthetic substitute, cemented, open
approach

Not same body part •• M19021-Primary osteoarthritis and right elbowLeft upper arm tendon, left shoulder joint
• E785-Hyperlipidemia, unspecified

• 0LS40ZZ-Reposition left upper arm tendon,
open approach

• I10-Essential (primary) hypertension
• E7800-Pure hypercholesterolemia, unspecified

• 0RRK0JZ-Replacement of left shoulder joint
with synthetic substitute, open approach

Confirmed non-error

Unspecified body part and
unspecified laterality

•• T8484XA-Pain due to internal orthopedic prosthetic devices,
implants and grafts, initial encounter

Left hip joint

• 0SPB0JZ-Removal of synthetic substitute
from left hip joint, open approach

• Y792-Prosthetic and other implants, materials and accessory
orthopedic devices associated with adverse incidents

• 0SRB049-Replacement of left hip joint with
ceramic on polyethylene synthetic substitute,
cemented, open approach

• S0501XA-Injury of conjunctiva and corneal abrasion without
foreign body, right eye, initial encounter

• H10501-Unspecified blepharoconjunctivitis and right eye

Unspecified body part and
unspecified laterality

•• E1152-Type 2 diabetes mellitus with diabetic peripheral
angiopathy with gangrene

Right lower leg

• 0Y6H0Z2-Detachment at right lower leg,
mid, open approach

• I96-Gangrene, not elsewhere classified
• N186-End stage renal disease
• I69354-Hemiplegia and hemiparesis following cerebral in-

farction affecting left nondominant side
• E1122-Type 2 diabetes mellitus with diabetic chronic kidney

disease
• E785-Hyperlipidemia, unspecified
• I252-Old myocardial infarction
• Z85528-Personal history of other malignant neoplasm of

kidney

Unspecified body part and
unspecified laterality

•• C7951-Secondary malignant neoplasm of boneRight femoral shaft and right upper femur
• C3402-Malignant neoplasm of left main bronchus

• 0QB80ZX-Excision of right femoral shaft,
open approach, and diagnostic

• R200-Anesthesia of skin
• R591-Generalized enlarged lymph nodes

• 0QH606Z-Insertion of intramedullary inter-
nal fixation device into right upper femur,
open approach

No laterality for diagnosis •• Z4733-Aftercare following explanation of knee joint pros-
thesis

Left knee

• 0SPD08Z-Removal of spacer from left knee
joint, open approach

• E785-Hyperlipidemia, unspecified
• I4510-Unspecified right bundle-branch block

• 0SRD0J9-Replacement of left knee joint with
synthetic substitute, cemented, open ap-
proach

• I10-Essential (primary) hypertension

This table provides representative examples of confirmed errors
and nonerrors from the test set of orthopedic procedures in the
CMS-LDS data from 2020. Confirmed errors include cases
where procedural laterality (eg, left or right) did not align with
the diagnosis, while nonerrors involve reasonable justifications
for the procedure based on provided diagnoses. Each example
lists the index procedures, associated diagnoses, and rationale
for classification based on clinical review.

AOP Model Performance Evaluation
Among the 1106 patients with left-side procedures with
right-side diagnoses, the AOP model identified 697 potentially
unusual combinations. After applying the clinical review criteria,
576 out of 697 (82.6%) cases were confirmed as errors, while
121 out of 697 (17.4%) were deemed reasonable. Similarly,
among the 1064 patients with right-side procedures with left-side
diagnoses, the AOP model identified 655 potentially unusual
combinations. Of these, 524 out of 655 (80%) cases were
confirmed as errors, and 131 out of 655 (20%) were reasonable
combinations (Table 1). Most confirmed errors involved the
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same body part in both procedure and diagnosis but with
opposite laterality. Most nonerror cases were considered
reasonable due to a general diagnosis with an unspecified body
part or a diagnosis with a specified body part but no laterality.

An example of a confirmed error among AOP model-identified
cases was a patient who received right shoulder joint
arthroplasty, while the diagnoses only included a left humerus

fracture. Since a left arm fracture could not justify right shoulder
joint replacement, this case was deemed an error. Conversely,
an example of a nonerror case was a patient who underwent left
glenoid cavity replacement, with a diagnosis of unspecified side
rotator cuff tear or rupture (Table 3). As an unspecified side
shoulder injury could justify left shoulder surgery, this case was
deemed a nonerror.

Table 3. Association outlier pattern (AOP) model evaluation examples for identifying unusual procedure-diagnosis combinations.

DiagnosesIndex procedures

Confirmed error

Same body part •• M1611 - Unilateral primary osteoarthritis, right hipLeft hip
• I10-Essential (primary) hypertension

• 0SRB02A-Replacement of Left Hip Joint
with Metal on Polyethylene Synthetic Substi-
tute, Uncemented, Open Approach

• F329-Major depressive disorder, single episode, unspecified

Not same body part •• S42242A-4-part fracture of surgical neck of left humerus,
initial encounter for closed fracture

Right shoulder joint

• 0RRJ0J6-Replacement of right shoulder joint
with synthetic substitute, humeral surface,
open approach

• Z880-Allergy status to penicillin
• Z79899-Other long term (current) drug therapy

Confirmed non-error

Unspecified body part and
unspecified laterality

•• T8131XA-Disruption of external operation (surgical) wound,
not elsewhere classified, initial encounter

Right hip bursa

• 0MBL0ZZ-Excision of right hip bursa and
ligament, open approach

• G40909-Epilepsy, unspecified, not intractable, and without
status epilepticus

• I110-Hypertensive heart disease with heart failure
• E669-Obesity, unspecified
• G2581-Restless legs syndrome
• Z96642-Presence of left artificial hip joint
• B964-Proteus (mirabilis) (morganii) as the cause of diseases

classified elsewhere
• T8141XA-Infection following a procedure, superficial inci-

sional surgical site, initial encounter
• I428-Other cardiomyopathies
• Y838-Other surgical procedures as the cause of abnormal

reaction of the patient, or of later complication, without
mention of misadventure at the time of the procedure

No laterality for diagnosis •• M75120-Complete rotator cuff tear or rupture of unspecified
shoulder, not specified as traumatic

Left glenoid cavity

• 0PR80JZ-Replacement of left glenoid cavity
with synthetic substitute, open approach

• G8918-Other acute postprocedural pain
• M109-Gout and unspecified
• Z89511-Acquired absence of right leg below the knee

This table illustrates specific examples of confirmed errors and
nonerrors identified by the AOP machine learning model in the
CMS-LDS 2020 test set. Confirmed errors are characterized by
laterality discrepancies between the procedure and diagnosis,
while nonerrors reflect plausible procedure-diagnosis
relationships despite general or unspecified diagnoses. Each
case includes the index procedures, associated diagnoses, and
the rationale for classification.

Discussion

Principal Findings
In this study, we evaluated the effectiveness of the AOP model
in detecting whether surgical procedures are substantiated with
diagnoses records using CMS-LDS data. We found the AOP

model is more accurate in identifying inconsistencies in surgical
procedure documentation when compared with the traditional
rule-based method. Meanwhile, the adapted AOP model also
showed the transferability from detecting the medication-disease
association and expanding to verifying the procedure-diagnosis
association.

Our study adds to the existing literature that ML has penetrated
the medical field with great success. ML allows for more detail
to be mined from the data, allowing for the development of
better diagnostic and prognostic tools than traditional approaches
[17,18]. Similarly, the AOP model can detect associations
between specific diseases and surgical procedures by learning
patterns from a large database, while the rule-based method
depends on the laterality of procedures and diagnoses. For
example, among the 2 subgroups with significant discrepancies
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regarding laterality between procedure and diagnosis (left-right
and right-left), a rule-based method classified all 2170 cases as
inappropriate combinations due to the conflict in laterality. In
contrast, the AOP model classified only 1352 of these cases as
inappropriate. In terms of identifying inappropriate
procedure-diagnosis combinations, the AOP model identified
most errors similarly to the rule-based method (1100 for AOP
vs 1144 for rule-based). In addition, the AOP performed with
much higher accuracy (1100/1352, 81.4%) compared with the
rule-based method (1144/2170, 52.7%).

The AOP model outperformed the traditional rule-based model,
demonstrating a lower rate of false signals. Comparing the
confirmed nonerror percentage between the rule-based method
and the AOP model, there was a significantly lower rate of
confirmed nonerror cases identified by the AOP model. In these
cases, most confirmed nonerrors identified by the rule-based
method could be explained by other diagnoses without
mentioning body part or laterality. For example, cancer
metastasis to bone may explain the reason for pelvic surgery,
even without a specific pelvic metastasis diagnosis. This is
because some diagnoses may not provide detailed information
about the patient’s condition. Similarly, a patient who underwent
lower leg detachment surgery with a diagnosis of
diabetes-related gangrene could have the surgery justified, even
if the gangrene diagnosis did not specify the body part. The
rule-based method focuses solely on the laterality of the
diagnosis, whereas the AOP model uses ML methods to explain
the association between procedures and diagnoses. Therefore,
when the association is deemed normal, the AOP model does
not label them as inappropriate.

This study also showed several noteworthy findings. First, cases
with fewer diagnoses were more likely to be labeled as
inappropriate procedure-diagnosis combinations. For example,
a patient who underwent surgeries for the left upper arm and
left shoulder had only 4 diagnoses, including a right elbow
problem and other chronic diseases. This may indicate
incomplete diagnosis coding or an error in the surgical site.
Second, the AOP model effectively identified unusual
procedure-diagnosis combinations within subgroups where
traditional rule-based methods failed to do so. Specifically,
procedures that aligned with their corresponding diagnoses were
deemed appropriate by conventional methods, such as left-side
procedures with left-side diagnoses (left-left) and right-side
procedures with right-side diagnoses (right-right). However,
the AOP model continued to uncover atypical combinations
within these groups. For instance, the model identified a patient
who underwent left hip arthroplasty despite having a diagnosis
of left knee osteoarthritis only.

The strengths of our study include its being the first to explore
whether a ML model could play a surveillance role in detecting
wrong site surgery. The effectiveness and fast pace to review
the inconsistencies of surgical documentation help increase
reporting mistakes in a timely manner without putting too much
workforce on this issue. The findings from our study raise
important questions regarding whether these errors stem from
documentation mistakes or represent actual incidents involving
patients. Therefore, in addition to retrospective reviews, it is
essential to leverage modern technology to facilitate real-time

error prevention. The potential of our model could add value
on the current technology to encompass proactive prediction
and analysis of diagnoses and clinical evidence to inform
accurate surgical decisions and improve documentation practices
[19]. In addition, the potential adaptability of the AOP model
extends beyond orthopedic surgery to other specialties where
procedural and diagnostic codes require logical alignment. For
example, in ophthalmic surgery, the model could identify
mismatches such as a diagnosis of left-sided cataract paired
with a procedure for right-eye cataract surgery. Similarly,
otolaryngology and other surgical fields with specific laterality
could benefit. However, certain specialties may pose unique
challenges due to differences in coding systems or the absence
of laterality indicators, requiring further validation and
specialty-specific refinements.

The AOP model has limitations. There were still nonerror cases
identified by the AOP model. For instance, a patient who
underwent left glenoid cavity replacement surgery with a
diagnosis of unspecified rotator cuff tear was marked as
inappropriate by the AOP model. However, the diagnosis could
explain the necessity of the surgery. The reason the AOP model
labeled this as an inappropriate combination may be due to the
low frequency of this procedure-diagnosis combination in the
CMS dataset. If the training dataset has a limited number of
surgeries or diagnoses, then the association may be viewed as
low and therefore marked as an inappropriate combination.

Another limitation is that the AOP model failed to identify some
error cases labeled by the rule-based method. For example, a
patient received an internal fixation surgery of the right upper
femur with diagnoses of secondary malignant neoplasm of bone
and left femur osteonecrosis. While the diagnosis of secondary
malignant neoplasm could justify the surgical necessity, the
diagnosis of left femur osteonecrosis conflicted with the right
femur surgery. In such cases, the AOP model uses the maximum
association within all procedure-diagnosis combinations,
meaning that if the association between the surgery and a
diagnosis is high, the model will view the combination as
appropriate, even if the other diagnosis is in conflict. Therefore,
in cases where one diagnosis can justify surgery, but another is
conflicting, the AOP model may not accurately identify the
combination. However, this aspect of the AOP model presents
an opportunity for optimization, and future adjustments
incorporating more detailed information through advanced ML
techniques could yield a more accurate model, especially in
cases where diagnoses are vague, incomplete, or lack clear
specifications of body parts or sides.

Building on these strengths and limitations, future steps for
implementing the AOP model in electronic health record
systems could proceed along 2 directions. First, the model could
support retrospective reviews by efficiently identifying WSS
events, reducing review times and workforce burden, and
enabling more timely reporting. Second, it could facilitate
real-time consistency checks when clinicians input procedure
codes. For example, if a surgeon enters a right-sided knee
arthroplasty for a patient diagnosed with left knee osteoarthritis,
the AOP model could flag the discrepancy and issue an alert.
Such real-time notifications may prevent WSS before it occurs.
However, to achieve successful implementation, the model must
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be optimized to address the limitations, and its performance
must be validated across diverse electronic health record systems
and datasets across different facilities.

Conclusion
Overall, the AOP model enhances patient safety by
systematically analyzing the cooccurrence frequency of diseases
and surgical procedures on opposite sides, thereby identifying
potentially unusual procedure-diagnosis combinations. Our
analysis demonstrated a significant improvement in accuracy

rates when the AOP model was used, compared with scenarios
where it was not applied. By improving precision in identifying
and validating cases with discrepancies between the diagnosed
and operated sides, the AOP model has the potential to reduce
the risk of errors in orthopedic treatment planning. This
enhanced accuracy enables health care providers to make more
informed decisions, reducing the risk of WSS and ultimately
contributing to improved patient outcomes in orthopedic health
care settings.
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