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Abstract
Background: High-quality sleep is essential for both physical and mental well-being. Insufficient or poor-quality sleep
is linked to numerous health issues, including cardiometabolic diseases, mental health disorders, and increased mortality.
Snoring—a prevalent condition—can disrupt sleep and is associated with disease states, including coronary artery disease and
obstructive sleep apnea.
Objective: The SleepWatch smartphone app (Bodymatter, Inc) aims to monitor and improve sleep quality and has snore
detection capabilities that were built through a machine-learning process trained on over 60,000 acoustic events. This study
evaluated the accuracy of the SleepWatch snore detection algorithm in a simulated real-world setting.
Methods: The snore detection algorithm was tested by using 36 simulated snoring audio files derived from 18 participants.
Each file simulated a snoring index between 30 and 600 snores per hour. Additionally, 9 files with nonsnoring sounds were
tested to evaluate the algorithm’s capacity to avoid false positives. Sensitivity, specificity, and accuracy were calculated for
each test, and results were compared by using Bland-Altman plots and Spearman correlation to assess the statistical association
between detected and actual snores.
Results: The SleepWatch algorithm showed an average sensitivity of 86.3% (SD 16.6%), an average specificity of 99.5%
(SD 10.8%), and an average accuracy of 95.2% (SD 5.6%) across the snoring tests. The positive predictive value and negative
predictive value were 98.9% (SD 2.6%) and 93.8% (SD 14.4%) respectively. The algorithm performed exceptionally well in
avoiding false positives, with a specificity of 97.1% (SD 3.5%) for nonsnoring files. Inclusive of all snoring and nonsnore tests,
the aggregated accuracy for all trials in this bench study was 95.6% (SD 5.3%). The Bland-Altman analysis indicated a mean
bias of −29.8 (SD 41.7) snores per hour, and the Spearman correlation analysis revealed a strong positive correlation (rs=0.974;
P<.001) between detected and actual snore rates.
Conclusions: The SleepWatch snore detection algorithm demonstrates high accuracy and compares favorably with other snore
detection apps. Aside from its broader use in sleep monitoring, SleepWatch demonstrates potential as a tool for identifying
individuals at risk for sleep-disordered breathing, including obstructive sleep apnea, on the basis of the snoring index.
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Introduction
The central importance of high-quality sleep in the mainte-
nance of physical and mental health cannot be overstated, as

well as the critical role of sleep in avoiding disease states
and other physiologic impairments. Insufficient or poor-qual-
ity sleep has extensively documented associations with an
array of negative consequences that affect both personal and
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public health. These issues include cardiometabolic disease
states, such as hypertension, diabetes, and obesity, as well as
increased frequency of heart attacks and strokes [1-3]. Sleep
disruption profoundly impacts mental health and emotional
well-being, increasing the frequency of depression, anxiety,
inattentiveness, learning and memory impairment, and mood
disorders [4-6]. From a public health perspective, poor-qual-
ity sleep correlates with workplace and vehicular accidents,
and health issues arising from sleep impairment impart a
massive economic burden to the health care system, as well as
an increase in all-cause mortality [2,7-9].

Although the health risks of insufficient or poor-quality
sleep are well known among the scientific community and
society at large, most individuals struggle to obtain sleep of
appropriate quality and quantity. The frequency of insuffi-
cient sleep varies by study, but as a conservative estimate,
at least one-third of the US adult population reports regu-
larly sleeping less than the recommended 7 hours each night
[10-12]. Moreover, there is evidence that sleep problems are
worsening over time globally; the percentage of US adults
reporting short sleep durations (defined as less than 6 h) has
consistently increased over the last several decades [13,14].
The precise cause of this declining trend in sleep health is
multifactorial but is influenced in large part by poor sleep
hygiene related to the ongoing technological evolution of the
modern world [15,16]. These concerns emphasize the need
for interventions to address the profound personal and societal
issue of sleep impairment.

Among other factors related to poor-quality sleep, a
noteworthy and underappreciated cause of sleep impairment
is the physiological phenomenon of snoring. Snoring is
an auditory process that occurs during sleep as a result
of air passing over relaxed tissues of the oropharynx,
which produces vibrations and the sounds that are classi-
cally associated with snoring. Snoring is extremely com-
mon, especially among older adults, male individuals, and
individuals with obesity; the reported frequency of habitual
snoring among adults ranges from 20% to 60%, depending
on risk factors [17-20]. Snoring is often benign but may be a
source of personal embarrassment and a cause of relationship
distress between sleep partners [19,21]. On a more concern-
ing note, snoring may be associated with serious clinical
conditions, including coronary artery disease, obstructive
sleep apnea, and depressive disorders [17,22,23].

As with other areas of health optimization, smartphone-
based apps have been developed to help address the need for
improved sleep quality and sleep duration, and several such
apps include snore detection capabilities. Because snoring
occurs during sleep, individuals often lack insight into
how frequently or how intensely they snore, and obtaining
this information through formal polysomnography can be
inconvenient, time-consuming, and cost-prohibitive. As such,
there is an unmet need for novel, personalized methods of
monitoring sleep quality, including evaluation of snoring and
sleep-disordered breathing. There are several smartphone-
based snoring detection apps in existence, and while these
apps are promising in terms of their cost and scalability,
most lack rigorous validation, and questions remain with

regard to their real-world accuracy for individual users. This
paper highlights the results of a bench study that evaluated a
proprietary snore detection algorithm in a simulated real-
world setting.

Methods
Study Design
The smartphone-based, acoustical snore detection algorithm
used in the SleepWatch app was developed by the Bodymat-
ter team in-house, using a deep neural net model trained
on over 60,000 individually validated, real-world snore and
nonsnore sounds. The SleepWatch snore detection capabili-
ties were then tested against an array of snoring and sleep
audio files in a controlled acoustic setting. Sleep audio files
were derived from volunteers in an anonymized fashion, as
outlined in the Ethical Considerations subsection. No raw or
identifying human participant data were used in this study.
Additionally, all training data were derived entirely from
audio sources that were separate from the validation and test
audio sets used in this bench study and prior trials.

In total, 36 trials were conducted based on test audio files
that were 10 minutes in duration and were derived from 18
individual SleepWatch participants (male: n=9; female: n=9).
Audio quality fidelity of the test files was ensured during
their editing, exporting, and uploading. There were 2 audio
files made from each participant, simulating a snoring index
of 30, 60, 120, 240, 360, or 600 snores per hour. For each
file with a snoring index of 120, 240, 360, or 600 snores per
hour, 10 unique snores were repeated at regular intervals. For
each file with a snoring index of 30 or 60 snores per hour, 5
unique snores were repeated at regular intervals. The duration
of snore events was limited to a maximum of 5 seconds, in
accordance with the scoring methodology described further in
this paper. The intervening audio between inserted acoustic
events was the ambient noise present at baseline during a
given participant’s sleep recording. Additionally, 9 trials were
conducted based on test audio files that exclusively contained
confounding, nonsnoring audio events (including percussive
sounds, coughing, speech sounds, movement of bedding, etc).
These confounding audio events reflected common ambient
noise that was expected during typical sleeping conditions
and had the potential to be erroneously detected as a snore.
Again, no confounding acoustic event lasted longer than
5 seconds, in accordance with the scoring methodology.
Of note, any audio samples that were determined to have
corruption at any level of the editing or exporting process and
resulted in distorted playback were discarded.

For each trial, a SleepWatch sleep recording session was
started on an iPhone 13 smartphone (Apple Inc) that ran
the SleepWatch app (v8.2.3.0-pkf33, public release v8.3.0)
shortly before simultaneously starting the test audio playback.
Test audio files were played from a dedicated JBL 305P
MKII (Harman International Industries, Inc) studio speaker
in close proximity to the detection smartphone to simulate
product implementation in a real-world setting, where users
would place their smartphone within 5 feet of their sleeping
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position. Trials were conducted under acoustically controlled
ambient conditions. For each test, audio playback intensity
was confirmed via an independent decibel meter and limited
to a 125-millisecond (fast response) peak of 65 A-weigh-
ted decibels (dB[A]) and a floor of 50 dB(A). Trials were
performed for 10 minutes, after which the SleepWatch app
performance was recorded.

After each trial, the SleepWatch-detected snore count
was compared against the known number of snoring events
present in each audio file. Additionally, app performance
was assessed by reporting sensitivity (true-positive rate),
specificity (true-negative rate), and accuracy (ratio of true
events to total events). As a scoring method, each audio
file was discretized into 5-second intervals (N=120). An
appropriately identified snoring event was considered a
true-positive event for a 5-second interval, and conversely,
a sound that was inaccurately reported as snoring was
considered a false-positive event for the corresponding
5-second interval. False-negative events were missed snores,
and true-negative events were 5-second regions of silence or
ambient noise that were not reported as snoring. Sensitivity

was calculated as “(true positive)/(true positive + false
negative),” and specificity was calculated as “(true nega-
tive)/(true negative + false positive).” Positive and negative
predictive values were also determined, calculated as “(true
positive)/(true positive + false positive)” and “(true nega-
tive)/(false negative + true negative),” respectively. Accuracy
was determined as “(true positive + true negative)/all events”
(all events: N=120). In the case of the 9 trials that used
confounding nonsnore sounds, only specificity and accuracy
could be described due to the absence of positive events, and
this was factored into the aggregate accuracy. This scoring
methodology is summarized in Table 1.

After the initial analysis, a Bland-Altman plot, which
compared the average snoring index (snores/h) and difference
in the snoring index between the app and test audio files,
was produced as a visual method of analyzing bias associ-
ated with the app’s performance. A Spearman correlation was
performed between known and detected snoring index values,
and the correlation coefficient (rs) and statistical significance
were determined. All statistical analyses were completed by
using IBM SPSS Statistics (version 29.0.2.0; IBM Corp).

Table 1. Analytical validation reference table showing the schematic and equationsa,b,c,d,e used to report snore detection performance of the
SleepWatch app in this study.

Constructed sleep audio (gold standard)
Snoring occurred Snoring did not occur

Smartphone app
Snoring detected True positive False positive
Snoring not detected False negative True negative

aAccuracy = (true positive + true negative)/(true positive + true negative + false positive + false negative).
bSensitivity = true positive/(true positive + false negative).
cSpecificity = true negative/(false positive + true negative).
dPositive predictive value = true positive/(true positive + false positive).
eNegative predictive value = true negative/(false negative + true negative).

Ethical Considerations
A principal aim of this study was to closely reproduce
a real-world environment for the validation of Bodymatter
software. As such, raw audio files were voluntarily obtained
from individuals who were willing to participate in this study.
Written consent was obtained for the use of their sleep audio
for internal testing purposes. No compensation was provided
to participants for their participation in this study. All audio
files were anonymized at both the level of audio editing and
the level of audio playback to ensure participant privacy. As
no direct intervention was performed on study participants
and this study posed no risk to participants, this study was
granted an exemption from formal institutional review board
approval for human subjects research.

Results
Across the 18 participants in this study, 9 were male and 9
were female. The age distribution skewed toward a younger
adult demographic, with 28% (5/18) of participants aged 25 to
34 years, 44% (8/18) aged 35 to 44 years, 22% (4/18) aged 45

to 54 years, and 6% (1/18) aged 55 to 64 years. The average
BMI was 31.21 (SD 5.03) kg/m2 for male participants and
33.93 (SD 8.07) kg/m2 for female participants. With respect
to the presence of sleep partners, 56% (10/18) of participants
reported sleeping alone, and 44% (8/18) reported having a
consistent sleep partner.

The snore detection performance was evaluated for the
36 snoring tests and 9 confounding noise tests. During
the development and internal validation of the SleepWatch
snore detection algorithm, several trends were observed. The
SleepWatch snore detection algorithm has a strong capacity
to appropriately designate true-positive events (sensitivity)
and an extremely strong capacity to appropriately define
true-negative events (specificity); that is, the algorithm almost
never reports a snore when one did not occur. Table 2
reports the sensitivity, specificity, and accuracy for both the
snoring tests and the confounding audio (nonsnore) tests. The
cumulative sensitivity for the snoring tests was 86.3% (SD
16.6%), the cumulative specificity was 99.5% (SD 10.8%),
and the cumulative accuracy was 95.2% (SD 5.6%). The
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positive and negative predictive values were 98.9% (SD
2.6%) and 93.8% (SD 14.4%), respectively.

Consistent with the performance observed for the
dedicated snore audio files, the SleepWatch algorithm
continued to perform exceptionally well for the dedicated
nonsnore audio files, with an overall specificity (ie, the
true-negative capacity) of 97.1% (SD 3.5%). The sensitivity,
positive predictive value, and negative predictive value

cannot be reported, as there were no snoring or positive
events in these audio files, but a false-positive rate of 2.9%
was observed across all the noise audio files—defined as the
ratio of erroneously detected snores to the total number of
nonsnoring time intervals. Inclusive of the nonsnore audio
files, the aggregated accuracy for all trials in this bench study
was 95.6% (SD 5.3%).

Table 2. Detection performance of the SleepWatch app for cumulative, snoring, and nonsnore noise audio tests. The results were produced from 36
snoring trials and 9 nonsnoring noise trials.

Test condition
Sensitivity (%),
mean (SD)

Specificity (%),
mean (SD)

Positive predictive value (%),
mean (SD)

Negative predictive value (%),
mean (SD)

Accuracy (%),
mean (SD)

Snore audio 86.3 (16.6) 99.5 (10.8) 98.9 (2.6) 93.8 (14.4) 95.2 (5.6)
Nonsnore audio —a 97.1 (3.5) — — 97.1 (3.5)
Cumulative 86.3 (16.6) 98.0 (9.8) 98.9 (2.6) 93.8 (14.4) 95.6 (5.3)

aNot applicable.

Of note, the detected false-positive events were not evenly
distributed across files. Algorithm performance was strong for
coughing, percussive sounds, and loud speaking, for which no
false-positive events were observed. Intermediate perform-
ance was observed for movement sounds, such as sounds
resulting from pacing around a room, climbing stairs, or
rustling pillows or bedding. Algorithm performance was poor
for a specific file that included whispering and sleep talking,
for which a false-positive rate of 10.8% was observed.

The results of the 36 snoring tests were compiled and
displayed in a Bland-Altman plot (Figure 1). The average
of the known versus detected snoring index (snores/h) was
plotted on the x-axis, and the difference in the known
versus detected snoring index was plotted on the y-axis. As
expected, there were roughly 6 vertical data clusters around
the x values 30, 60, 120, 240, 360, and 600 snores per hour,
corresponding to the planned variations in snoring rate for
each audio file. If the average of the known versus detected

snores per hour aligned closely with these six x values, then
excellent performance was interpreted. In contrast, if the
difference in the known versus detected snores per hour was
close to 0 on the y-axis across all tests, irrespective of the
snoring rate, then ideal performance was also indicated. The
mean bias of the SleepWatch app for this study was −29.8
(SD 41.7) snores per hour, indicating an average difference of
approximately 30 snores per hour between the detected and
expected snores. Most values were contained within the 95%
limits of agreement (51.8 and −111.5 snores/h).

A Spearman correlation coefficient was calculated to
statistically evaluate the association between the detected and
known snoring index (snores/h) in each test audio file (Figure
2). The Spearman coefficient (rs) for this cohort was 0.974,
denoting an extremely strong, positive correlation between
detected snores and expected snores (P<.001). These findings
are highly encouraging and demonstrate a robust capacity for
identifying true snores in a simulated real-world setting.
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Figure 1. Bland-Altman plot of the difference in and average of the detected versus expected snores/h. The Bland-Altman plot demonstrates a
mean bias of –29.8 (95% limits of agreement –111.5 to 51.8) snores/h for the average of the detected versus expected snores/h graphed against the
difference in the detected versus expected snores/h. This demonstrates a relatively tight relationship between detected and expected snores.

Figure 2. The expected snore index graphed against the snore index detected by the SleepWatch app. This demonstrates a tight grouping and a
Spearman correlation coefficient of 0.974, indicating a strong, positive correlation between expected and detected snores.

Discussion
SleepWatch Snore Detection Accuracy
Compares Favorably to Similar Snore
Detection Modalities
The SleepWatch app provides users with consistent, valuable
insight into their sleep quality, and the snore detection
feature constitutes an accuracy benchmark for acoustic snore
detection software. This study reports the performance of the
SleepWatch snore detection algorithm in detail; the algorithm
showed an average sensitivity of 86.3% (SD 16.6%), an
average specificity of 99.5% (SD 10.8%), and an average
accuracy of 95.2% (SD 5.6%). Furthermore, the accuracy of

the SleepWatch snore detection feature reflects performance
that is superior to that of similar apps, and this feature is
solely dependent on existing smartphone hardware; thus, it
has powerful implications for improving sleep quality and
screening for sleep-disordered breathing on an individualized
basis.

There are several snore detection modalities in existence
that have published results with respect to the accuracy of
snore detection. The accuracy, sensitivity, specificity, positive
predictive values, and negative predictive values of such
modalities are summarized in Table 3, though these results
must be compared with caution due to the differing methodol-
ogies between studies. Shin et al [24] integrated and analyzed
a series of sleep and noise datasets for 10 individuals,
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attempting to distinguish verified snoring from ambient noise
(playing music, running a fan, talking, etc). They reported a
95.1% overall accuracy in detecting snores and a sensitivity
and specificity of 98.6% and 94.6%, respectively, as well
as a positive and negative predictive value of 70.4% and
99.8%, respectively. Chiang et al [25] evaluated the sleep
records of 11 patients using the Snore Clock app. The authors
reported an overall mean snore detection accuracy of 95%
and a sensitivity and specificity of 78.2% and 97%, respec-
tively, along with a positive and negative predictive value
of 65.3% and 97%, respectively. They also commented that
the false-negative rate (type II error) was higher in patients
with greater snoring frequencies. In a cohort of 19 patients,
Klaus et al [26] compared the performance of the SnoreLab
app with that of formal polysomnography, reporting an

accuracy of 94.7% and a sensitivity and specificity of 100%
and 94.1%, respectively, as well as a positive and negative
predictive value of 66.6% and 100%, respectively. These
findings leave room for misinterpretation however, as these
statistics were observed only in a group of participants that
snored for >50% of the time recorded, constituting approxi-
mately 10% of the cohort. Inclusive of users who snored for
>5% of the time recorded—a far less restrictive threshold
comprising 42% of the participants—the accuracy, sensitivity,
and specificity were 73.6%, 100%, and 54.5%, respectively,
with a positive and negative predictive value of 61.5% and
100%. Klaus et al [26] also noted that the app had a strong
tendency to overestimate the ratio of snoring time to quiet
sleep time, relative to the comparison polysomnogram.

Table 3. Cross-study comparison of our study’s snore detection app and other snore detection modalities reported in available literature. Our study’s
modality compares favorably against similar snore detection modalities relying on acoustic input.
Study Accuracy, % Sensitivity, % Specificity, % Positive predictive value, % Negative predictive value, %
Our study 95.6 86.3 99.5 98.9 93.8
Shin et al [24]a 95.1 98.6 94.6 70.4 99.8
Klaus et al [26]b 73.6 100 54.5 61.5 100
Chiang et al [25]c 95 78.2 97 65.3 97

aShin et al [24] only used a smartphone for audio recording; snore detection was processed through a separate modality.
bStatistics from the Klaus et al [26] study are reported for participants with a snoring ratio of >5%, inclusive of the largest subset of participants
evaluated.
cChiang et al [25] selected participants from patients with known sleep apnea who were using an oral device that was intended for reducing snoring.

Collectively, the previously mentioned studies suggest that
there is reasonable accuracy for smartphone-based snor-
ing detection software, but there are several limitations
with comparing our study to those snore detection studies.
Notably, only 2 of those studies used working smartphone
apps that recorded and processed snoring. Shin et al [24]
only used a smartphone as a recording device and processed
sleep audio and snore detection through a separate modality.
Chiang et al [25] and Klaus et al [26] used smartphone
apps with a methodology that was consistent with our study.
However, Chiang et al [25] recruited participants with known
sleep-disordered breathing or obstructive sleep apnea who
had received a mandibular advancement device that was
intended for reducing airway obstruction and snoring, which
could potentially introduce a degree of selection bias and
thereby limit cross-study comparison. Further, as previously
stated, Klaus et al [26] reported results for an arbitrarily
defined cohort that was considered to have spent >50% of
the sleep session snoring, relative to quiet sleeping. App
performance was far worse when the snoring threshold
was >5%, with an accuracy of 73.6% in that subcohort.
This discrepancy in methodology imparts limitations in the
comparison of snore detection statistics between the study by
Klaus et al [26] and our study, making cross-study compari-
son largely irrelevant.

The SleepWatch app by Bodymatter stands out for several
reasons. Given that only 2 of the previously referenced
studies involved a working smartphone app running snore
detection software, many of the processes and protocols

in the referenced studies do not seem practical to imple-
ment on an individualized, large-scale basis, whether due to
concerns regarding privacy or concerns regarding conven-
ience. Furthermore, the SleepWatch snore detection feature
far outcompetes the referenced studies’ modalities in positive
predictivity and specificity, which, in practical language,
denotes that (1) there is an extremely high likelihood that
a true snore actually occurred when a snore was identified
by the algorithm, and (2) the app has an extremely strong
capacity to appropriately discriminate silence and nonsnoring
noise events, with the latter representing one of the most
significant challenges in snore detection. This reflects an
engineering priority of avoiding false-positive reported snores
in the development of the Bodymatter SleepWatch algo-
rithm. Finally, this study carries the advantages of reporting
performance on a snore-by-snore basis and including ambient
noise and confounding sound events in the testing of the
snore detection software, thereby evaluating performance in
conditions that more closely reflect real-world settings and
expected use.
Screening for Sleep-Disordered
Breathing
As previously described, snoring is independently associated
with an array of disease states, and snore detection smart-
phone apps provide individual users with insight into the
presence and frequency of their snoring. Loud snoring is
a cardinal symptom of obstructive sleep apnea—a disease
characterized by airway collapse during sleep, which results
in intermittent deoxygenation, apneic events, and arousal at
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night [27]. Furthermore, obstructive sleep apnea results in
daytime sleepiness and an associated increase in accidents,
as well as an increased risk of hypertension, coronary artery
disease, depression, and death [28,29].

Diagnostic criteria for obstructive sleep apnea center
around the apnea-hypopnea index (AHI), which describes
the number of episodes where an individual stops breathing
due to airway obstruction (apnea) or experiences decreased
oxygenation due to inadequate breathing (hypopnea). A
diagnosis of moderate-severity sleep apnea is made when
>15 apneic or hypopneic events occur in 1 hour (AHI>15)
[30]. Previous studies have described a positive correlation
between the snoring index and AHI and, thereby, a positive
correlation with the diagnosis of obstructive sleep apnea
[31,32]. Moreover, it has been estimated that as many as 85%
of individuals with obstructive sleep apnea are undiagnosed,
highlighting the importance of novel, affordable, and scalable
tools for disease screening [33].

These findings suggest that there is utility in exploring the
SleepWatch app as a screening tool for stratifying users along
a risk spectrum for sleep-disordered breathing, including
obstructive sleep apnea. As previously mentioned, the snoring
index alone is a useful metric for assessing user risk, aside
from formal diagnostic criteria, such as apneic and hypopneic
events. Ultimately, there is both significant need and potential
for at-home technological innovations to assist with screening
for underdiagnosed health conditions, including obstructive
sleep apnea, and SleepWatch may have potential uses in a
clinical context, aside from providing individual users with
insights into their sleep health.
Limitations
Although the reported results of the SleepWatch snore
detection feature are promising, this study must be evalu-
ated with several limitations in mind. As mentioned pre-
viously, while false-positive snore events were infrequent,
it is difficult to entirely eradicate such events. This is a

priority for the future development of the snore detection
algorithm. Further, this initial study involved a relatively
small cohort, and a study with a larger sample size might
more comprehensively evaluate the performance of the snore
detection algorithm, due to a greater degree of acoustic
heterogeneity. Additionally, there are intrinsic limitations in
participant-derived audio collection, as individuals may place
their phones at varying distances from the sleeping location,
and the ambient acoustic environment naturally differs from
person to person. From another perspective however, this
acoustic diversity may represent a strength of this study, as it
provides evidence that app performance is robust, irrespective
of ambient sound conditions.
Conclusion
The SleepWatch app by Bodymatter has a strong track record
of providing users with individualized insights into their sleep
hygiene and represents a powerful and scalable modality for
improving overall sleep quality. This study evaluated the
performance of the deep neural net algorithm powering the
SleepWatch snore detection feature. Over a series of trials
involving snoring and nonsnoring sounds from 18 partici-
pants, a strong, positive correlation (rs=0.974; P<.001) was
found between detected and reference snoring indices that
ranged from 30 to 600 snores per hour. The snore detec-
tion feature exhibited an overall accuracy (95.6%) that was
competitive with those of similar modalities, as well as a
remarkable ability to discriminate true snores from nonsnores,
as reflected by the superior specificity and positive predic-
tive value. This positions SleepWatch as a powerful tool
for monitoring sleep quality and snoring. Although finan-
cial, geographic, and time constraints may prevent individu-
als from accessing traditional health and wellness resources,
SleepWatch represents an accessible, scalable, and intuitive
instrument for monitoring an individual’s snoring over time
and potentially identifying individuals at risk for sleep-dis-
ordered breathing, thus helping reduce the growing disease
burden of impaired sleep.
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