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Abstract
Background: Unlike one-snap data collection methods that only identify high-risk patients, machine learning models using
time-series data can predict adverse events and aid in the timely management of cancer.
Objective: This study aimed to develop and validate machine learning models for sunitinib- and sorafenib-associated thyroid
dysfunction using a time-series data collection approach.
Methods: Time series data of patients first prescribed sunitinib or sorafenib were collected from a deidentified clinical
research database. Logistic regression, random forest, adaptive Boosting, Light Gradient-Boosting Machine, and Gradient
Boosting Decision Tree were used to develop the models. Prediction performances were compared using the accuracy,
precision, recall, F1-score, area under the receiver operating characteristic curve, and area under the precision-recall curve. The
optimal threshold for the best-performing model was selected based on the maximum F1-score. SHapley Additive exPlanations
analysis was conducted to assess feature importance and contributions at both the cohort and patient levels.
Results: The training cohort included 609 patients, while the temporal validation cohort had 198 patients. The Gradient
Boosting Decision Tree model without resampling outperformed other models, with area under the precision-recall curve of
0.600, area under the receiver operating characteristic curve of 0.876, and F1-score of 0.583 after adjusting the threshold.
The SHapley Additive exPlanations analysis identified higher cholesterol levels, longer summed days of medication use, and
clear cell adenocarcinoma histology as the most important features. The final model was further integrated into a web-based
application.
Conclusions: This model can serve as an explainable adverse drug reaction surveillance system for predicting sunitinib- and
sorafenib-associated thyroid dysfunction.
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Introduction
Background
Sunitinib- and sorafenib-associated thyroid dysfunction are
time-varying and underreported adverse drug reactions
(ADR). Despite the efficacy of multitargeted tyrosine kinase
inhibitors TKI as first- or second-line therapies for solid
and hematologic cancers, thyroid dysfunction—especially
hypothyroidism—may complicate treatment regimens using
sunitinib and sorafenib. Although not life-threatening, such
adverse events can lead to a suboptimal quality of life,
physical discomfort, or the need for thyroid dysfunction
treatment [1,2]. Incidences of thyroid dysfunction vary
from 10%- to 85% for sunitinib and from 6.3% to 27%
for sorafenib [3-6]. Hypothyroidism develops late and is
prolonged, with onset ranging from 5 to 20 months [1,6-8].
Due to its high variability and difficulty in predicting, close
monitoring and proactive ADR surveillance with machine
learning (ML) models may be warranted to manage sunitinib-
and sorafenib-associated thyroid dysfunction.

Incorporating real-time laboratory data can enhance the
performance of ML models in predicting thyroid adverse
events. Previous studies have demonstrated the effectiveness
of ML in predicting thyroid dysfunction, such as amiodar-
one-induced dysfunction using time-series data collection
methods with a robust performance [9]. In contrast, predict-
ing immune checkpoint inhibitor-induced adverse thyroid
events without continuous laboratory testing resulted in an
area under the precision-recall curve (AUPRC) of 0.510 [10].
Another study developed a predictive model for immune
checkpoint inhibitor-induced adverse thyroid events without
detailed time-point data collection, achieving an area under
the receiver operating characteristic curve (AUROC) of 0.885
with thyroid-related features [11]. However, no studies have
focused on predicting thyroid adverse events caused by
TKIs such as sunitinib and sorafenib. Adopting timely data
collection with detailed clinical biochemical tests to develop
thyroid dysfunction surveillance systems can help clinicians
timely adjust TKI treatment by balancing risks and benefits.

Applying model interpretation and web-based applications
can alleviate the black-box drawback of ML models and
enhance understanding of ADRs. The SHapley Additive
exPlanations (SHAP) analysis is a mathematical method
that has become increasingly popular for explaining ML
models [12-14]. It is based on game theory concepts that
calculate feature importance and contributions to predicted
outcomes at both population and individual levels [15].
Model deployment in web-based or smartphone applications
were constructed in recent years to strengthen the scala-
bility of predicting specific diseases or ADRs [13,16,17].
Through a user-friendly interface and explainable model,
applications can provide clinicians with a greater understand-
ing and actionable preventive remedies for their patients.
These techniques successfully have increased the interpret-
ability and accessibility of ML models to support clinical
decision-making.

The landscape of drug surveillance has experienced
notable changes, shifting from passive reporting systems
or rules-based alerting systems to active identification of
adverse drug events, driven by advancements in electronic
health records and artificial intelligence. Traditional methods
often rely on spontaneous reporting or rules-based alerting,
which may lead to underreporting and delays in identifying
ADRs. The ML models, particularly tree-based algorithms,
can analyze large-scale clinical data in real time, proactively
detecting ADRs and enhancing medication safety at the point
of care [18]. By continuously collecting and analyzing patient
data, ML-driven drug surveillance based on time-series
data extraction enables dynamic risk assessment, facilitating
early intervention and personalized treatment adjustments.
Given the underreported and time-varying nature of thyroid
dysfunction, this progressive approach can serve as a valuable
tool for predicting ADRs in patients undergoing TKI therapy.

Objective
The objective of this study was to develop and vali-
date progressive ML predictive models for sunitinib- and
sorafenib-induced thyroid dysfunction. Five algorithms—
logistic regression (LR), random forest (RF), Gradient
Boosting Decision Tree (GBDT), Light Gradient Boosting
Machine (LGBM), and Adaptive Boosting (AdaBoost)—were
used to construct the models. The specific aims of this study
were (1) to use time-series data collected at the baseline, and
at 1, 2, 3, 4, 5, 6, 9, 12, 18, 24, 30, and 36 months after
the index date to generate predictive models using the five
algorithms; (2) to select the best model by comparing the
accuracy, precision, recall, F1-score, AUROC, and AUPRC,
after adjusting for the optimal threshold; (3) to interpret
the best-performing model with a SHAP analysis to ana-
lyze feature importance levels and contributions, compar-
ing findings with a previous amiodarone-induced thyroid
dysfunction predictive model; and (4) to deploy the best-per-
forming model by constructing a web-based application.

Methods
Ethical Considerations
This retrospective study used the deidentified Clinical
Research Database (CRD) which includes data from Taipei
Medical University Hospital, Wan Fang Hospital, and Shuang
Ho Hospital of the TMU health care system. Ethical review
for this study was waived by the TMU-Joint Institutional
Review Board (approval no.: N202202053). As the data had
been deidentified, the requirement for informed consent was
waived. No compensation was provided to the participants.
Study Design and Patient Cohort
Data from patients who were first prescribed sunitinib or
sorafenib from 2013 to 2019 were collected as the derivation
(training) cohort, whereas data from patients treated between
2010 and 2012 were collected as a temporal validation
(testing) cohort. The data-splitting time point was chosen
considering a common proportion of 7:3 for the training and
testing cohorts and similar incidences of thyroid dysfunction
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in both cohorts for better model development and validation.
More recent data were used for model training to better reflect
current clinical practice, allowing models to be developed
with up-to-date treatment patterns and patient characteristics.
Patients were excluded if they were younger than 18 years,
pregnant, with a history of hypothyroidism, had a diagnosis
of thyroid carcinoma, had undergone thyroidectomy, used
levothyroxine, or had abnormal thyroid-stimulating hormone
(TSH) levels within 1 year before the index date, which was
the first day of sunitinib or sorafenib use. Patients were also

excluded if they were lost to follow up. Each individual was
followed up for 3 years, and data were collected until the end
of the study period, loss to follow-up, death, or occurrence of
thyroid dysfunction. Figure 1 demonstrates the study design
of the proposed models. This study followed the Transparent
Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis + Artificial Intelligence (TRIPOD +
AI) reporting guideline [19]. Registration was not required,
and no separate study protocol was prepared.

Figure 1. Study design of the proposed models. The study process included data collection, data splitting, data preprocessing, feature selection,
resampling, model development, model validation, threshold adjustment, model interpretation, and development of a web-based application.
AdaBoost: Adaptive Boosting; AUPRC: area under the precision recall curve; AUROC: area under the receiver operating characteristic curve;
B-SMT: Oversampling with the Borderline Synthetic Minority Oversampling Technique; CRD: clinical research database; GBDT: Gradient Boosting
Decision Tree; LGBM: Light Gradient Boosting Machine; RFECV: Recursive Feature Elimination with Cross-Validation; SMT: Synthetic Minority
Oversampling Technique; TMU: Taipei Medical University.

Time-Series Data Collection and
Preprocessing
Variables including patient demographics, cancer-related
information, medication use, laboratory tests, coexisting
drugs, and comorbidities were collected from the CRD.

Patient demographics including age, gender, and cancer-rela-
ted information were collected once at the baseline. Labora-
tory tests, medication use, comorbidities, coexisting drugs,
weight, and body mass index (BMI) were collected at the
baseline, and at 1, 2, 3, 4, 5, 6, 9, 12, 18, 24, 30, and
36 months after the index date (Multimedia Appendix 1).
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Reengineering features included calculating the cumulative
dose, summed days of medication, duration of sunitinib or
sorafenib, and the slope of laboratory tests at recent and
previous data collection time points. The number of coexist-
ing thyroid-related drugs was calculated to determine whether
the aggregated use of these medications increased the risk of
thyroid dysfunction.

Data preprocessing including missing value imputation
and feature scaling was performed to ensure data quality.
Features with over 80% missing values, except for the TSH
level, were first excluded from the model. Missing values
were imputed using multivariate imputation by chained
equations [20]. If previous data were traceable, missing
values, using time-series data collection, were precisely
imputed using the last observation carried forward. Missing
values in laboratory test slopes were imputed with zero.
A feature-scaling method—the robust scaler—was used to
reduce the effect of extreme values of continuous varia-
bles. Features were first selected through a literature review
and clinical domain knowledge to identify thyroid-related
variables. Recursive feature elimination, a feature selec-
tion technique that recursively removes the least important
features with 5-fold cross-validation was then used, and the
AUROC was considered to select optimal features for each
model. The codebook and missing rates of each variable
in the training and testing set are described in Multimedia
Appendix 2.
Prediction Outcome
The predictive outcome of this study was the occurrence
of sunitinib- or sorafenib-associated thyroid dysfunction.
Patients were defined as a TSH level ≥4 mIU/L, a diagno-
sis of hypothyroidism with International Classification of
Diseases codes (ICD-9-CM; 243 or 244 or ICD-10; E02
or E03), or use of levothyroxine (Anatomical Therapeutic
Chemical code: H03AA02). These criteria were defined
following previous studies that focused on drug-induced
thyroid dysfunction [9,21,22].
Model Development and Validation
The study used three resampling strategies and raw data
applied to the five algorithms to develop 20 machine learning
models. The five algorithms included LR, RF, AdaBoost
[23], LGBM [24], and GBDT [25]. Resampling strategies
used were random over-sampling (ROS), borderline synthetic
minority oversampling technique (B-SMT), and a combina-
tion of over- and under-sampling using SMT and Tomek
links (STMK). Bayesian optimization with 5-fold cross-vali-
dation and the AUPRC were considered for hyperparameter
tuning [26]. For boosting models, hyperparameters such as
learning_rate and n_estimators were optimized to balance
convergence speed and model complexity. Specifically, in
LGBM, subsample and colsample_bytree were fine-tuned to
mitigate overfitting. Key parameters including max_depth,
min_samples_split, and min_samples_leaf were adjusted to
improve generalization and prevent overfitting for RF. Table
S3.1 in Multimedia Appendix 3 lists the ranges of hyper-
parameters used for tuning in each algorithm. Pseudocodes

of the model development process are listed in Multimedia
Appendix 4.

A stratified 5-fold cross-validation was first used for
internal validation of the training dataset, and the perform-
ances of the 20 models were evaluated using the temporal
validation cohort. The accuracy, precision, recall, F1-score,
AUROC, and AUPRC were the metrics used for evaluating
model performance. Model performance was compared and
evaluated following the sequence of the highest AUPRC,
AUROC value, and F1-score to select the best-performing
model.
Threshold Adjustment, Model
Interpretation, and Web-Based
Application
To optimize the performance of the best-performing model,
different thresholds were selected on the PRC based on
different percentages of outcome predictions. Five cutoff
points were chosen: (1) a high-risk threshold for identifying
a lower number of patients potentially at risk; (2) a default
threshold of 0.50; (3) an optimal threshold based on the
maximum F1-score; (4) an equal threshold where precision,
recall, and F1-score were equal, and (5) the low-risk threshold
for identifying a higher number of patients potentially at
risk. The F1-score, recall, precision, and accuracy were then
compared for these 5 thresholds. The best model was further
examined by SHAP analysis to explain feature importance
and contribution at both the population and individual levels
[27]. At the population level, SHAP summary plots were used
to demonstrate feature importance and how the top-ranked
features impacted outcome predictions. On the other hand,
SHAP force plots were used to visualize how the features
contributed to outcome predictions in specific patients.

The model was further integrated into a web-based
application to increase the accessibility of the model. The
Python Flask framework was used to develop the application
programming interface. The value of each feature served as
input data that were fed back into the model to generate
a predictive probability of thyroid dysfunction. The consis-
tency of feature scaling between input data and training
data was ensured by applying the same scaling transforma-
tion. The input variables with missing values were imputed
with the last observation or the same multivariate imputation
by chained equations transformation applied during model
development to ensure consistency in predictions.
Statistical Analysis
Patient characteristics were evaluated with independent t
tests or the Wilcoxon rank-sum test for continuous varia-
bles, and the χ2 test or Fisher exact test for categorical
variables. A two-sided P value <.05 was considered statis-
tically significant. Data were analyzed using SAS (version
9.4; SAS Institute), Python (version 3.9.5; Python Software
Foundation), and R software (version 4.2.2; R Foundation
for Statistical Computing). The statistical significance of the
AUPRC was calculated using MedCalc software (version
22.001).
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Results
Patient Characteristics and Multivariate
Analysis
This study enlisted data from 900 patients prescribed sunitinib
or sorafenib from initial screening from the CRD. A STROBE
(Strengthening The Reporting of Observational Studies in
Epidemiology) flowchart of patient selection is described in
Multimedia Appendix 5. After applying the exclusion criteria,
807 patients remained. Patient characteristics and multivari-
ate analysis of the training and temporal validation cohorts
are listed in Multimedia Appendix 6. The training cohort
contained 609 patients, with 52 (8.5%) patients developing
thyroid dysfunction, while 16 (8.1%) patients experienced
thyroid dysfunction in the temporal validation cohort of
198 patients. There were no significant differences in age
or gender in the derivation or temporal validation cohort.
Cancer type, histology, aspartate aminotransferase (AST),
and bilirubin levels significantly differed (P<.001) between
patients with and those without thyroid dysfunction in the two
cohorts.
Model Development and Validation
The total number of features selected by recursive feature
elimination were 20, 18, 15, 40, and 20 in GBDT, AdaBoost,

LGBM, RF, and LR, respectively. The most frequently
selected features were recent laboratory tests including
AST, alanine transaminase (ALT), bilirubin, cholesterol, and
triglyceride levels. Patient demographics such as age and
BMI summed days of medication use, and follow-up duration
were also among the top-ranked selected features (Multi-
media Appendix 7). The optimal hyperparameter subsets
selected by Bayesian optimization are listed in Table S3.2
in Multimedia Appendix 3.

Figure 2 shows the model performance based on the
AUPRC, AUROC, F1-score, precision, recall, and accu-
racy in 20 ML models of the temporal validation cohort.
Most of the GBDT and AdaBoost models had higher
AUPRC values and F1-scores, while recall was higher in
the RF and LR models. Of all the ML models, the GBDT
without resampling (GBDT_RAW) outperformed the other
models, with an AUPRC of 0.600, AUROC of 0.876,
and an F1-score of 0.522. The AUPRC of GBDT_RAW
(0.600, 95% CI 0.350-0.798) was significantly higher than
those of the GBDT_ROS (0.388, 95% CI 0.175‐0.618;
P<.05), GBDT_BMST (0.300, 95% CI 0.124‐0.549; P<.05),
and GBDT_STMK (0.346, 95% CI 0.147‐0.582; P<.05).
Multimedia Appendix 8 lists model performances of 5-fold
cross-validation with the training cohort and the statistical
significance tests of the AUPRC of all the models.

Figure 2. Model performance on temporal validation. The model performance evaluated by the six metrics is demonstrated in a heatmap. Blue and
green colors represent higher and lower values, respectively. ROS: random oversampling; BSMT: Oversampling with Borderline Synthetic Minority
Oversampling Technique; STMK: Synthetic Minority Oversampling Technique-Tomek Links; GBDT: Gradient Boosting Decision Tree; AdaBoost:
Adaptive Boosting; LGBM: Light Gradient Boosting Machine; RF: random forest; LR: logistic regression; AUPRC: area under the precision-recall
curve; AUROC: area under the receiver operating characteristic curve.
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Threshold Adjustment
Figure 3 shows the five cutoff points on the PRC and
the precision, recall, and F1-score at different thresholds of
the GBDT_RAW model. Based on different percentages of
outcome predictions, cutoff points were 0.851 for identifying
the top 1% of patients (2 predictive positive cases, point A
— high-risk threshold),0.500 for the top 3.5% (7 predictive
positive cases, point B — default threshold), 0.495 for the top
4% (8 predictive positive cases, point C — optimal threshold
based on the maximum F1-score), 0.272 for the top 8% (16
predictive positive cases, point D — equal threshold), and
0.071 for the top 26% of patients (51 predictive positive

cases, point E — low-risk threshold). When moving the
threshold from 0.500 to 0.851 (point A), the precision
increased from 0.875 to 1.000, while recall significantly
decreased to 0.125. In contrast, recall significantly increased
to 0.750 and the precision decreased to 0.231 when changing
the threshold to 0.066 (point E). The precision, recall, and
F1-score reached 0.500 when the threshold was adjusted to
0.272 (point D). The optimal threshold of 0.495 (point C) for
the GBDT_RAW model was selected based on the maximum
F1-score, with a precision of 0.875, recall of 0.438, and
F1-score of 0.583.

Figure 3. Threshold adjustment for the GBDT_RAW model. The five cutoff points on the precision-recall curve (A) represent different percentages
of outcome predictions, precision, recall, and F1-scores based on different thresholds; (B) ,The X-axis represents the value of the threshold and the
Y-axis shows values of the precision, recall, and F1-score.
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Model Interpretation
Figure 4 shows model interpretation implemented with the
SHAP analysis on the best-performing GBDT_RAW model.
The summary plot in Figure 4A displays that the top five
important predictors were the AST level, TG level, follow-
up duration, cholesterol level, and albumin level. Figure
4B shows that patients with lower AST levels, higher
cholesterol levels, higher albumin levels, longer durations of
medication use, and clear cell adenocarcinoma histology had
higher SHAP values for predicting the occurrence of thyroid

dysfunction. At the individual level, force plots showed the
impacts of features on predicting thyroid dysfunction in two
specific patients. Figure 4C shows a patient with a predic-
tive probability of 0.02, resulting from his AST level of 69
IU/L and the summed days of medications of 62 days, which
contributed most negatively to outcome predictions. For a
patient with a predictive probability of 0.82 in Figure 4D,
the medication duration of 708 days and clear cell adenocar-
cinoma served as the most important factors that positively
impacted outcome predictions.

Figure 4. Model interpretation with a SHAP analysis for the GBDT_RAW model. At the population level, the summary bar plot (A) Mean
SHAP values of all features, and a summary dot plot; (B) shows how each feature impacted the outcome prediction. The x-axis shows SHAP
values of all features, and the colors represent the feature values, with red and blue respectively demonstrating higher and lower values. At the
individual level, force plots in (C) and (D) show how features contributed to the model output value in each patient. Red and blue arrows represent
positive and negative contributions of features, and the length of the arrow shows the magnitude of the impact on outcome predictions. LAB_AST:
recent aspartate aminotransferase level; LAB_TG: recent triglyceride level; PRED_DUR: follow-up days; LAB_Cholesterol: recent cholesterol
level; LAB_Albumin: recent albumin level; LAB_AST_SLOPE: slope of aspartate aminotransferase level; MED_SUM: sum days of medication;
LAB_MCV_SLOPE: slope of mean corpuscular volume; PRE_Hb: previous hemoglobin level; PRE_ALT: previous alanine transaminase level;
LAB_MCH: recent mean corpuscular haemoglobin level; LAB_SCr: recent serum creatinine level; LAB_Hct_SLOPE: slope of hematocrit level;
MED_DUR: duration of medication; PRE_MCHC: previous mean corpuscular hemoglobin concentration level; LAB_SCr_SLOPE: slope of serum
creatinine level; LAB_MCHC_SLOPE: slope of mean corpuscular hemoglobin concentration level.
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Web-Based Application
A web-based application for predicting sunitinib- and
sorafenib-associated thyroid dysfunction was developed using
the GBDT_RAW model (Figure 5). The application provides
a user-friendly interface by showing 20 features selected
by the GBDT model. Values of the features can be filled

in with the appropriate units shown in each input box.
The model then generates a predictive probability for the
risk of sunitinib- or sorafenib-associated thyroid dysfunction.
Ultimate predictions for the occurrence of thyroid dysfunc-
tion were determined based on thresholds adopted by clinical
users.

Figure 5. Web-based application with a user-friendly interface. A web-based application developed using the GBDT_RAW model showing 20
selected features selected and the predictive probability.

Discussion
Principal Findings
This study developed explainable ML models by collecting
time-series data to predict sunitinib- and sorafenib-associated
thyroid dysfunction. The present model allowed ongoing
predictions according to the rapidly shifting status of the
disease for patients undergoing long-term TKI treatment.
The best-performing GBDT without resampling model was
optimized by threshold moving strategies to achieve a
maximum F1-score. This study further used a SHAP analysis
that provided interpretability at both the population and
individual levels, identifying key predictors such as AST,
cholesterol, and albumin levels. The feature selection process
revealed similarities with prior research on amiodarone-
induced thyroid dysfunction, supporting the model’s potential
applicability to other drug-induced thyroid dysfunctions
[9]. Integrating the model into a web-based application

demonstrated its practical utility by allowing real-time risk
estimation based on patient-specific data.
Time-Series Data Collection
Time-series data collection in this study had a few advan-
tages for thyroid dysfunction predictions on TKI users as
illustrated in Figure 6. Clinical data at multiple time points
in a long-term follow-up period were collected for model
building. Time-series data allowed reengineering features by
calculating rates of change of laboratory tests at recent and
previous time points. The last observation carried forward
method using the last value to replace missing data in
subsequent time points ensured that missing values were
imputed with plausible estimates [28]. This time-series data
collection closely monitored patients newly prescribed TKI
users and those on long-term TKI therapy. The time-ser-
ies model captured the critical moment of an approaching
adverse event for an individual patient, providing oncologists
with invaluable information to treat patients on TKIs.
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Identifying thyroid dysfunction was reported to poten-
tially serve as a prognostic indicator for treatment outcomes.
Sunitinib and sorafenib respectively demonstrated progres-
sion-free survival (PFS) periods of 11 and 5.5 months in
patients with renal cell carcinoma [29,30]. Interestingly,
studies indicated that patients with thyroid dysfunction had a
longer PFS compared to patients with normal thyroid function
among sunitinib (11.9 vs 8.8 months) and sorafenib users
(19.3 vs 5.5 months) [4,31]. These findings suggest that
thyroid dysfunction may not only represent an adverse event
but could serve as a marker of enhanced therapeutic response.
Leveraging a time-series data collection approach, this study

can predict thyroid dysfunction risk while simultaneously
identifying patients who may derive greater clinical benefits
from sustained TKI therapy. Unlike one-snap data collec-
tion which arbitrarily differentiates high-risk patients from
a low-risk group, this time-series approach allows high-risk
patients to use lifesaving TKIs for a relatively longer grace
period which can significantly enhance their survival times.
Models with time-series data collection balance the risks
and benefits of survival and adverse drug events, bestowing
precious survival periods for end-stage cancer patients with
reasonable medication safety and improved quality of life.

Figure 6. Graphic comparison of one-snap and time-series data collection methods. Time-series and one-snap data collection methods were
compared. The dashed line represents possible changes in variables during a long-term follow-up period. LOCF: Last Observation Carried Forward

Best-Performing Model With Threshold
Adjustment
The GBDT_RAW model outperformed other machine
learning models in this study, with thresholds adjusted to
optimize model performance. The gradient boosting method
analyzed nonlinear relationships and handled imbalanced
data to predict diagnoses, hospital readmissions, and clinical
outcomes [32-34]. During the hyperparameter tuning process,
the AUPRC was considered, rather than the F1-score,
without adjusting the threshold for imbalanced data [35,36].
The model without resampling outperformed resampling
approaches by maintaining high precision, while the sparsity
of the minority class in this study probably caused resampling
to introduce noise or unrealistic synthetic data, failing to
improve recall. The final model then used five cutoff points
on the PRC to decide optimal thresholds and percentages of
positive predictions. A relatively low threshold can identify
all patients at risk but may increase the number of false
positives, overwhelming clinicians with numerous warnings
to review. On the contrary, choosing a relatively high
threshold reduces the number of false positives but increa-
ses the chances of missing true positive cases. The selected
threshold increased the precision, recall, and F1-score of the

model’s performance, while considering the relative costs of
false positives and false negatives to meet clinical needs [37].
Model Interpretation and Potential for
Model Expansion
Similar features for predicting drug-induced thyroid
dysfunction were selected by the presence of TKIs and a
previous amiodarone model built by our research team [9].
The feature selection process identified age, BMI, medica-
tion duration, summed days of medication, rate of change
in serum creatinine levels, and recent mean corpuscular
hemoglobin, AST, and cholesterol levels as key predictors
of thyroid dysfunction in this study. Interestingly, these
same features were also selected in our previous amiodarone
model, suggesting their potential relevance across different
drug-induced thyroid dysfunction models. Similar features
highlight the potential for model expansion to increase
generalizability. Top-ranked features identified in this study
and their contributions calculated by the SHAP analysis were
aligned with clinical domain knowledge. Higher cholesterol
levels were found to positively impact predictions, which can
be explained by the effect of thyroid function on lipoprotein
metabolism [38]. The present study also found that longer

JMIR FORMATIVE RESEARCH Chan et al

https://formative.jmir.org/2025/1/e67767 JMIR Form Res 2025 | vol. 9 | e67767 | p. 9
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e67767


summed days of medication increased the risk of thyroid
dysfunction. This finding was confirmed by a long-term
safety study of sunitinib, which showed the frequency of
thyroid dysfunction, unlike other adverse events, gradually
increased over time [39]. The AST level and histology of
clear cell carcinoma served as important predictors, which
may have resulted from a relatively lower incidence of
thyroid dysfunction in patients with hepatocellular carcinoma
and renal cell carcinoma.
Clinical Implications of Web-Based Drug
Surveillance
ML-based drug surveillance provides a promising tool for
predicting and managing thyroid dysfunction caused by TKIs.
Traditional clinical decision support systems (CDSS) rely on
rule-based alerts for drug interactions or contraindications but
often fail to capture the multifactorial nature of drug-induced
thyroid dysfunction, which depends on thyroid-related factors
[40]. AI-driven CDSSs, leveraging ML algorithms, can
overcome these limitations by identifying complex patterns
in patient data, providing personalized risk assessments,
and generating timely alerts for thyroid function moni-
toring. Deploying such ML models on cloud-based plat-
forms alongside rule-based CDSSs could enhance real-time
risk stratification, enabling early detection, intervention,
and potential adjustments in therapy to prevent endocrine
complications. Further exploration of CDSSs incorporating
ML predictions are warranted to improve clinical practice and
medication safety [40].

Limitations
There are a few limitations of this study. Data were from
a single healthcare system and included limited numbers of
sunitinib- or sorafenib-treated patients. There were missing
data in the diagnosis of comorbidities and medication use.
The nature of a retrospective study introduces underestima-
tions of the incidence of thyroid dysfunction. As a result,
different features selected by the present model and our
previous amiodarone model mainly resulted from features
with higher missing rates. Multicenter and multicountry
studies for improving model extrapolation are needed before
clinical application. Future qualitative research and prospec-
tive studies with the involvement of physicians should also
be conducted to assess the usability and accessibility of the
model for real-world evidence.
Conclusions
This study applied time-series data collection to capture
the critical moment of sunitinib- and sorafenib-associated
thyroid dysfunction for ADR surveillance. The optimal
threshold can balance the precision and recall meeting
clinical needs. Feature importance was explained at the
population and individual levels. The web-based application
increased the model accessibility, allowing clinical users to
receive real-time predictions. The comparison of features
with amiodarone-induced thyroid dysfunction highlighted the
potential for future model expansion.
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