
Original Paper

Application of the Bidirectional Encoder Representations
from Transformers Model for Predicting the Abbreviated
Injury Scale in Patients with Trauma: Algorithm Development
and Validation Study

Jun Tang1*, MEng; Yang Li2,3*, MD; Keyu Luo4, MD; Jiangyuan Lai5, BM; Xiang Yin4, MD; Dongdong Wu1, PhD
1Department of Information, Daping Hospital, Army Medical University, Chongqing, China
2Department of Emergency Medicine, Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing, China
3National Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
4Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
5Department of Traumatic Surgery, School of Basic Medicine, Army Medical University, Chongqing, China
*these authors contributed equally

Corresponding Author:
Dongdong Wu, PhD
Department of Information
Daping Hospital, Army Medical University
No.10 Daping Changjiang Branch Road, Yuzhong District
Chongqing, 400042
China
Phone: 86 18302302369
Email: 604269346@qq.com

Abstract
Background: Deaths related to physical trauma impose a heavy burden on society, and the Abbreviated Injury Scale (AIS)
is an important tool for injury research. AIS covers injuries to various parts of the human body and scores them based on the
severity of the injury. In practical applications, the complex AIS coding rules require experts to encode by consulting patient
medical records, which inevitably increases the difficulty, time, and cost of evaluation of patient and also puts higher demands
on the workload of information collection and processing. In some cases, the sheer number of patients or the inability to access
detailed medical records necessary for coding further complicates independent AIS codes.
Objective: This study aims to use advanced deep learning techniques to predict AIS codes based on easily accessible
diagnostic information of patients to improve the accuracy of trauma assessment.
Methods: We used a dataset of patients with trauma (n=26,810) collected by the Chongqing Daping Hospital between
October 2013 and June 2024. We mainly selected the patient’s diagnostic information, injury description, cause of injury,
injury region, injury types, and present illness history as the key feature inputs. We used a robust optimization Bidirectional
Encoder Representations from Transformers (BERT) pretraining method to embed these features and constructed a prediction
model based on BERT. This model aims to predict AIS codes and comprehensively evaluate its performance through a 5-fold
cross-validation. We compared the BERT model with previous research results and current mainstream machine learning
methods to verify its advantages in prediction tasks. In addition, we also conducted external validation of the model using 244
external data points from the Chongqing Emergency Center.
Results: The BERT model proposed in this paper performs significantly better than the comparison model on independent test
datasets with an accuracy of 0.8971, which surpassed the previous study by 10 % points. In addition, the area under the curve
(AUC value of the BERT model is 0.9970, and the F1-score is 0.8434. In the external dataset, the accuracy, AUC, and F1-score
results of the model are 0.7131, 0.8586, and 0.6801, respectively. These results indicate that our model has high generalization
ability and prediction accuracy.
Conclusions: The BERT model we proposed is mainly based on diagnostic information to predict AIS codes, and its
prediction accuracy is superior to previous investigations and current mainstream machine learning methods. It has a high
generalization ability in external datasets.
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Introduction
Background
With the frequent occurrence of traffic crashes and the
intensification of natural disasters, injuries have become the
main cause of morbidity and mortality worldwide. Accord-
ing to the World Health Organization’s (WHO) 2022 report
[1], approximately 4.4 million people die, and tens of
millions endure from nonfatal injuries every year due to such
incidents.

The Abbreviated Injury Scale (AIS) [2] is the most widely
used injury severity coding system, developed and periodi-
cally refined by the AIS Committee under the Association
for the Advancement of Automotive Medicine (AAAM). AIS
serves as the foundation for several severity scoring systems,
such as the Injury Severity Score (ISS) [3], the Maximum
Abbreviated Injury Score [4], and the New Injury Severity
Score [5]. Since 2008, the AIS score or ISS score has been
used as a criterion for evaluating trauma centers in various
countries and has now developed into a globally recognized
trauma scoring system.

However, the AIS coding system is a highly refined
and complex scoring system that covers injuries to vari-
ous parts of the human body and scores them based on
the severity of the injury. In practical applications, AIS
codes often rely on the subjective judgment and rich
clinical experience of medical professionals, which may
lead to certain coding differences between different med-
ical institutions or personnel. While advances in trauma
care have improved overall outcomes, significant dispari-
ties persist across sociodemographic groups. Low-income
populations experience 38% longer prehospital delays for
penetrating injuries compared with high-income counter-
parts [6], potentially biasing AIS severity assessments due
to delayed clinical documentation. This dual challenge of
subjective variability and systemic bias further increases the
difficulty of accurate AIS code prediction.

The application of artificial intelligence (AI) models in
medicine is increasing and many are based on AIS codes to
predict mortality and prognosis outcomes [7,8]. While few
studies have used diagnostic-related information to predict
AIS codes. Although the neural machine translation (NMT)
[9] model uses International Classification of Diseases (ICD)
codes and other relevant information to predict AIS codes,
the accurate acquisition of ICD codes itself necessitates
substantial coding effort and also depends on detailed medical
records and other clinical information during the patient’s
diagnostic process. Therefore, this also puts higher demands
on the workload of information collection and processing. To
overcome these shortcomings, we hope to use advanced deep
learning (DL) techniques to directly predict AIS codes based
on easily accessible diagnostic information, thereby improv-
ing the accuracy of trauma assessment for patients.

Therefore, we aim to use patient with trauma data from
Chongqing Daping Hospital from October 2013 to June 2024
to construct a Bidirectional Encoder Representations from
Transformers (BERT) [10] model based on DL for predict-
ing the AIS codes corresponding to specific trauma. In this
model, we use the patient’s diagnostic information as the
main input feature and compare it with the NMT model from
previous research.
Related Work
In recent years, AI technology has been frequently used to
discover complex correlations between various features in
medical applications [11-13], such as individual injuries and
mortality [14]. Lee et al [15] developed an ensemble model
based on deep neural networks, incorporating the ICD, triage
scale, procedure codes, and other clinical features as inputs
to predict in-hospital mortality among patients with physical
trauma. This model achieved an area under the curve (AUC)
of up to 0.9507, outperforming advanced predictive models
such as AdaBoost and XGBoost. Kang et al [8] created an
AI algorithm grounded in DL models, leveraging the AIS
codes to predict in-hospital mortality. By comparing their
model with conventional ISS and New Injury Severity Score
systems, they demonstrated the superior accuracy and AUC
value of their proposed model. Tran et al [16] used ICD-10
codes and machine learning (ML) algorithms to develop a
mortality prediction model via the National Trauma Data
Bank. A comparison of its performance with that of logis-
tic regression, ISS, and Trauma Mortality Prediction Model
(TMPM-ICD10) validated that their XGBoost–based ML
model exhibited superior performance. In terms of AIS code
prediction, Hartka et al [9] proposed the use of an NMT
model to convert ICD codes into AIS codes and compared
its accuracy in assessing injury severity with that of two
established conversion methods: the ICD-AIS map [17] and
the ICD Programs for Injury Classification in R (ICDPIC-
R) package [18]. Their results demonstrated that the NMT
model achieved the highest accuracy across all injury severity
classifications.

In the past few years, advanced pretrained language
representation models such as BERT, Robustly Optimized
BERT Pretraining Approach (RoBERTa), and HFL (a
Chinese BERT pretraining model) have made remarkable
breakthroughs in the field of natural language processing,
demonstrating significant performance gains in various tasks
such as text classification, sentiment analysis, and question
answering [19]. However, to our current knowledge, despite
the increasingly widespread application of DL techniques in
the field of medical information processing, DL methods with
pretrained language representation models have not yet been
widely used for predicting AIS codes. Although the NMT
model has shown some accuracy in predicting AIS codes, the
AIS coding system, as a standardized tool for assessing the
severity of injuries, occupies an important position in trauma
medicine and emergency medicine. It can provide objective

JMIR FORMATIVE RESEARCH Tang et al

https://formative.jmir.org/2025/1/e67311 JMIR Form Res 2025 | vol. 9 | e67311 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/67311
https://formative.jmir.org/2025/1/e67311


and comparable injury assessment for clinical doctors based
on the specific injury situation of patients, which is of great
significance for guiding treatment decisions and evaluating
prognosis.

Methods
Patients and Dataset
The Chongqing Daping Hospital Trauma Database contains
data about patients’ diagnostic information, injury descrip-
tion, age, sex, place of injury, cause of injury, external cause
code 1 (ECode1), external cause code 2 (ECode2), injury
region, injury types, present illness history, and AIS codes,
where the AIS codes are based on the AIS2015 version [20],
provided by professionally trained doctors according to the
specific injury situation of the patient. To ensure the accuracy
of the coding, the hospital has adopted a dual coding system:
one doctor is responsible for preliminary coding, while the
other doctor conducts follow-up checks.

The Daping Hospital Trauma Database contains data from
26,810 patients registered between October 1, 2013 and June
30, 2024 with the exclusion criteria of (1) patients transferred
to another hospital, (2) patients who died in the emergency
department before admission to the ICU or general ward, (3)
data in the Daping Hospital Trauma Database with a feature
loss rate ≥30%, (4) samples with any missing AIS codes or
diagnostic information, and (5) data with less than 30 AIS
code categories. According to the exclusion criteria, 13,216
pieces of data met the requirements. In addition, we also used
an external dataset of 244 Chongqing Emergency Centers that
met the inclusion and exclusion criteria.

We divided the Daping Hospital Trauma Database dataset
into training data and testing data. The training dataset
includes data from October 1, 2013 to December 31, 2022,
which is used to train our model to learn the mapping
relationship from input features to target variables. The test
dataset includes data from January 1, 2023 to June 30, 2024.
This partitioning dataset method has multiple benefits: the test
dataset uses the most recent data, which can better evaluate
the model’s adaptability. By having the model learn historical
data during the training phase and then face different but
relevant data during the testing phase, it can encourage
the model to learn more generalized features, which helps
improve the accuracy of predicting future unknown data.

The number of training, testing, and external datasets is
10,827, 2389, and 244, respectively, with 337 types of AIS
codes included in the training dataset, 332 types in the testing
dataset, and 83 in the external dataset. In the training dataset,
the number of AIS code 853161.3 is the highest, reaching
475 (accounting for 4.38%), while the number of AIS code
854221.2 is the lowest, at 25 (accounting for 0.23%). In the
test dataset, the number of AIS code 853161.3 is also the
highest, at 119 (accounting for 4.98%), while the number of
AIS code 910200.1 is the lowest, at 6 (accounting for 0.25%).
In the external dataset, the number of AIS code 853161.3
is also the highest, reaching 10 (accounting for 4.10%),
while the number of AIS code 856151.2 is the lowest, at 1
(accounting for 0.41%). The injuries covered by our dataset
are mainly concentrated in areas such as the skin, limbs, and
head and neck, especially those types of injuries that are
most common in practical work and have a direct impact on
clinical decision-making and treatment plans.

The testing dataset (n=2389) was used only to independ-
ently test our developed model and not for training or internal
validation. We first performed a 5-fold cross-validation using
the training data to prevent overfitting. The training dataset
(n=10,827) was randomly shuffled and stratified into 5 equal
groups with 4 groups used for training and 1 group used for
validation. This process was repeated 5 times by shifting the
internal validation group. Then, the overall performance of
the model was evaluated through independent testing data.
Finally, the generalization ability of the model was validated
through multicenter validation using external data.
BERT Prediction Model Development

BERT Model Architecture
As shown in Figure 1, we developed a DL–based BERT
model for predicting AIS codes. The model uses the
masked language modeling technique of the pretrained model
RoBERTa [10] to learn contextual information about data of
patient with trauma. This approach can capture both forward
and backward contextual information of the input sequences
to achieve a deeper understanding of input textual data.

To provide further clarity on the data used in our model,
we have included a Multimedia Appendix 1 with examples
of model inputs and outputs. These examples illustrate the
structure of the data and how our model processes it to
generate AIS scores.
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Figure 1. The Bidirectional Encoder Representations from Transformers model architecture. AIS: Abbreviated Injury Scale.

BERT Pretraining
Our BERT model is a pretraining model based on a modified
version of the RoBERTa model, and we similarly carry out
in-depth optimizations of the BERT model, including the
implementation of dynamically tuned masking strategies and
enhanced text encoding processing. The significant advant-
age of these optimizations is that by randomly performing
masking operations on the input data, different masking
patterns are used for the same training data in different
training epochs, thus effectively increasing data diversity
during model training without the need to expand the training
dataset. In addition, by adopting a larger batch size, more
training data, and longer training time, the BERT model can
learn richer linguistic features and potential patterns in the
data, which significantly improves the prediction performance
of the model.

Specifically, the vocabulary list used for training includes
the patient’s diagnostic information, injury description, age,
sex, place of injury, cause of injury, procedure codes
(ECode1 and ECode2), injury region, injury types, and
present illness history, as well as the necessary special tokens
(eg,<CLS_TOKEN>,<SEP_TOKEN>,<PAD_TOKEN>, and
<MASK_TOKEN>). The entire text sequence is trea-
ted as a sentence with the sequence being identified
by the start token <CLS_TOKEN> and the end token
<SEP_TOKEN>;<PAD_TOKEN> is used to pad the
sequence to a uniform length, and <MASK_TOKEN> is
used for masking. We chose the masked language modeling
method for training to accommodate the need for contex-
tual understanding in AIS code prediction. During train-
ing, we randomly perturbed 15% of the trauma diagnostic
information elements in the input sequences, similar to the
RoBERTa setup, where 80% of the tokens of these 15%
selected elements were replaced with <MASK_TOKEN>,
requiring the model to predict the correct AIS codes at these
<MASK_TOKEN> locations during training, 10% of the
tokens were replaced with other trauma diagnostic informa-
tion randomly selected to increase the difficulty of train-
ing and generalization, and the remaining 10% remained
unchanged and served as positive samples for model learning.
During pretraining, the model predicts what kind of residue it
is in the masked position. For each batch, the loss is defined
as:

Loss = −1|batcℎ| seq ∈ batcℎ i ∈ mask log p si |S
where p si S\mask  represents the probability that the model
predicts the element si at the ith masked position, given all the
sequence information except for the masked positions.

BERT Fine-Tuning
We consider the task of AIS code prediction as a multivari-
ate labeling classification task, where the BERT model is
used to predict the AIS codes for each instance in the input
sequence. To accomplish this, we map AIS code categories to
unique integer labels, which are used as supervised learning
objectives. We add a multivariate classification header on top
of the pretrained model, whose output dimension matches
the number of AIS codes categories. During training, the
BERT model receives input sequences and extracts contextu-
ally relevant feature representations. These features are then
passed to the multivariate classification header to gener-
ate predicted probabilities corresponding to each AIS code
category. We use a cross-entropy loss function to compute the
difference between the predicted probability distribution and
the true AIS code label. The loss during fine-tuning is defined
as:

L = −1N i = 1
N log yi, yi

where yi is the true category index of the ith sample, and yi, yi
is the probability that the ith sample predicted by the model
belongs to category yi.
BERT Model Configuration
After a careful hyperparameter search, we determined the
optimal model configuration: an 8-layer BERT architecture
including an input layer, six 384-unit hidden layers, and
an output layer, which together form the encoder-decoder
transformer components with 5 transformer blocks. In the
process of determining the 8-layer architecture, we conduc-
ted subsequent experiments and tried different configurations
of BERT models with 4, 8, and 12 layers and comprehen-
sively evaluated their performance. The results showed that
the 8-layer architecture demonstrated excellent performance
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on multiple evaluation metrics, so we ultimately chose this
architecture for our research. The model is also configured
with 12 attention heads and an embedding size of 128. During
optimization, we used the Adam optimizer to adjust the model
weights with a learning rate of 0.0001, a batch size of 64, and
the Gaussian Error Linear Unit as the activation function. To
further reduce the number of parameters and computational
costs, we implemented low-rank factorization techniques in
the embedding layer.

The BERT model was trained via early stopping with
training concluding after the validation loss did not improve
after 10 epochs. The model was trained on a computing
cluster with 48 GB of memory and one Graphics Processing
Unit (NVIDIA RTX A6000). We implemented the model
through the Pytorch framework.

Evaluation Methods
We use accuracy, AUC, and F1-scores as evaluation metrics.
Because our prediction task is a multiclass problem and all
categories of AIS codes are considered equally important, we
chose the macro averaging method when calculating AUC
and F1-scores to ensure that the model’s performance across
all AIS code categories is comprehensively reflected.
Comparison Method
To validate the performance of our BERT model, we
selected a series of representative methods for comparison.
Specifically, we used previous research (NMT) and current
mainstream ML methods, including K-nearest neighbors
(KNN), multilayer perceptron (MLP), XGBoost, AdaBoost,
and decision tree (DT). The following is a detailed introduc-
tion to these methods:

Neural Machine Translation
The NMT model proposed by Hartka et al [9] is a DL
technique commonly used for human language translation.
The model is implemented using OpenNMT, an open-source
toolkit developed by the Harvard NLP team and SYSTRAN
for NMT, to convert ICD codes into exact AIS codes. This
paper shares the same goals and tasks as their work. However,
accurately obtaining ICD codes not only requires a lot of
coding work but also relies on detailed medical records
and other clinical information during the patient’s diagnos-
tic process. In contrast, the BERT model mainly relies on
easily accessible diagnostic information to predict specific
AIS codes. The NMT model and the BERT model both
adopt a similar Transformer architecture. In their experi-
mental configuration, the NMT model includes 6 hidden
layers with 512 units, 8 attention heads, a loss rate of 0.1,
weights adjusted by the Adam optimizer, learning rate decay
determined by Noam decay, and classification cross entropy
used as the training loss function.

Machine Learning
For ML methods, we use Word2Vec word embedding
technology to convert text data into a format suitable for ML
algorithm processing.

K-Nearest Neighbor
KNN is a simple but effective classification algorithm. It is
based on distance metrics such as Euclidean distance to find
the k samples in the training set that are most similar to the
test samples and predicts the category of the test samples
based on the categories of these neighbors. In our experiment,
the value of k was set to 3.

Multilayer Perceptron
MLP is a feedforward neural network consisting of an input
layer, a hidden layer, and an output layer. It approximates
complex functional relationships through multilayer nonlinear
transformations. In our experiment, MLP used 2 hidden layers
with the first layer having 20 neurons and the second layer
having 50 neurons.

XGBoost
XGBoost is an ensemble learning method based on gradient
boosting, which constructs strong classifiers by combining
multiple weak classifiers. XGBoost has achieved significant
performance improvements in multiple fields, especially
when dealing with large-scale datasets and high-dimensional
features. In our experiment, we used multiclass log loss as
an evaluation metric, which is a commonly used choice in
multiclass classification problems.

AdaBoost
AdaBoost is an adaptive boosting algorithm that constructs
strong classifiers by adjusting the weights of each weak
classifier. AdaBoost has demonstrated strong performance in
handling classification tasks, especially when dealing with
imbalanced datasets. In our experiment, a DT stump (with a
depth of 1) was used as the weak classifier.

Decision Tree
DT is an intuitive classification and regression method. It
generates decision paths through a series of conditional
judgments, thereby achieving classification or regression
prediction of samples. In our experiment, the default Gini
impurity was used as a measure of splitting quality, and the
model was constructed by recursively segmenting the feature
space.
Ethical Considerations
This study is an observational study; the data used were
reviewed and approved by the Internal Review Board of
Chongqing Daping Hospital (approval number: 2024_219),
and informed consent from patients was exempted.

Results
BERT Model Training
The Daping Hospital dataset used in this study contains a total
of 13,216 records, including 10,827 in the training dataset
and 2389 in the independent testing dataset. In addition, we
obtained 244 external data from the Chongqing Emergency
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Center. Table 1 provides a detailed list of the demographic
characteristics and injury status of these datasets. In both
the training and testing datasets, the IQR of age is 33
years. In terms of gender distribution, males accounted for
62.5%, 59.3%, and 63.9% of the training, testing, and external
datasets, respectively. In terms of injury causes, the most
common were falls (accounting for 57.2%, 57.9%, and 41.0%
in the 3 datasets) and traffic crashes (accounting for 14.4%,

16.6%, and 43.9%, respectively). To reflect the distribution
of severity data for single injuries, we presented the severity
distribution of individual injuries based on the data after the
decimal point of the AIS code. Our dataset mainly includes
data for mild, moderate, and severe injuries. It is worth noting
that in all 3 datasets, moderate injuries account for the highest
proportion, at 45%, 51.5%, and 49.6%, respectively.

Table 1. Demographic and injury characteristics of patients with trauma in the datasets (N=13460).

Variables
Training dataset
(2013/10‐2022/12)

Testing dataset
(2023/01‐2024/06)

External dataset
(2023/09‐2023/10)

Total number of patients 10,827 2389 244
Age range (years), IQR 1‐102 (33) 3‐98 (33) 14‐97 (31)
Males (%) 6771 (62.5) 1419 (59.3) 156 (63.9)
Mechanism of injury, n (%)       
  Traffic crash 1557 (14.4) 397 (16.6) 107 (43.9)
  Falls 6189 (57.2) 1382 (57.9) 100 (41.0)
  Blunt 123 (1.1) 80 (3.3) 22 (9.0)
  Sports injury 329 (3.0) 140 (5.9) 10 (4.1)
  Other 2629 (24.3) 390 (16.3) 5 (2.0)
Severity of injury, n (%)       
  Mild injury 2468 (22.8) 392 (16.4) 40 (16.4)
  Moderate injury 4870 (45.0) 1231 (51.5) 121 (49.6)
  Severe injury 3489 (32.2) 766 (32.1) 83 (34.0)

Overall Predictive Performance of the
BERT Model
We first compared the performance of the BERT model with
the NMT model and several advanced ML models, includ-
ing KNN, MLP, XGBoost, AdaBoost, and DT. Comparison
results on our independent test dataset are shown in Table 2.
We used accuracy, AUC, and F1-scores as evaluation metrics.
It is worth noting that since the NMT model only provides
prediction results for AIS code accuracy, we only present the
accuracy of NMT in Table 2. For other metrics not provided
by the NMT model, we uniformly use the symbol “—” for
annotation.

The performance of our proposed BERT model is
significantly better than all comparison models across all
indicators. Specifically, the accuracy of the BERT model
is as high as 0.8971, while the accuracy of the NMT
model is only 0.7380 with a difference of over 10 %
points between the two. In addition, the AUC value of the
BERT model is 0.9970, and the F1-score is 0.8434. Among
all the ML methods compared, the DT method achieved
excellent performance in accuracy and AUC of 0.8506 and
0.9945, respectively, and the XGBoost method achieved the
best results in the F1 index at 0.7586, but they still failed
to surpass the performance of our BERT model. These
comparative experiments fully demonstrate that our BERT
model has high prediction accuracy.

Figure 2 shows the training curve of the BERT model
with the (A) and (B) graphs displaying their results on

the training and testing datasets, respectively. The x-axis
represents epochs and is set to 50, whereas the y-axis
represents the values of accuracy, AUC, and F1-score. The
figure shows that the BERT model tends to be stable in all
the metrics when the training or test dataset reaches epoch
26. The test dataset shows that the model performs well in
terms of overall prediction accuracy and accurately classifies
samples into the correct categories. For both the training and
testing datasets, the AUC is close to 1, and high AUC values
further demonstrate the model’s strong ability to distinguish
between positive and negative samples, maintaining excellent
performance at almost all possible classification thresholds.

To demonstrate the performance advantage of our
fine-tuned BERT model, we compared it with the base
version of BERT (BERT-base) and the pretrained model
HFL/chinese-roberts-wwm-ext [21]. The comparison results
are shown in Table 3. Compared to the BERT-base and
HFL models, the BERT model exhibits higher performance
in accuracy, reaching 0.8971, while also significantly leading
in the F1-score, at 0.8434. The results of these two indicators
are 2.99% and 7.54% higher than the HFL model, respec-
tively, indicating that our BERT model achieves a better
balance between accuracy and recall in classification tasks.
Although the BERT is not significantly different from HFL
and BERT-base on AUC, its advantages in key evaluation
metrics highlight BERT’s superior overall performance in
handling specific tasks in this paper.
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Table 2. Prediction results of the Bidirectional Encoder Representations from Transformers model and comparative model in the test dataset.
Model Accuracy AUCa F1-scores
NMTb 0.7380 NAc NA
KNNd 0.7935 0.9414 0.6879
MLPe 0.8064 0.9886 0.6194
XGBoostf 0.8374 0.9937 0.7586
AdaBoostg 0.8506 0.9860 0.7050
DTh 0.8506 0.9945 0.7049
BERTi 0.8971 0.9970 0.8434

aAUC: area under the curve.
bNMT: neural machine translation.
cNA: not available.
dKNN: K-Nearest Neighbor.
eMLP: multilayer perceptron.
fXGBoost: Extreme Gradient Boosting.
gAdaBoost: adaptive boosting
hDT: decision tree.
iBERT: Bidirectional Encoder Representations from Transformers

Figure 2. The visualization curve of Bidirectional Encoder Representations from Transformers model’s predictive performance on training and
testing datasets. AUC: area under the receiver operating characteristic curve.

Table 3. Comparison between our Bidirectional Encoder Representations from Transformers model and other pretrained models in the test dataset.
Model Accuracy AUCa F1-scores
BERT-baseb 0.8559 0.9971 0.7284
cHFL 0.8672 0.9973 0.7680
BERT 0.8971 0.9970 0.8434

aAUC: area under the curve.
bBERT: Bidirectional Encoder Representations from Transformers.
cHFL: a Chinese BERT pretraining model.

Ablation Study
To verify the maximum contribution of specific input data
feature combinations to the model, we designed a series of
ablation studies. The input features of the original experi-
ment include patients’ diagnostic information, age, sex, injury
description, place of injury, cause of injury, procedure codes
(ECode1 and ECode2), injury region, injury types, and
present illness history.

First, we conducted a single-factor ablation study to
observe the impact of removing each feature item one by one
on the performance of the model. The experimental results
show that diagnostic information and injury description are
the most significant data types that affect the performance of
the model. Based on the findings of the single-factor ablation
study, we further designed the following multifactor ablation
study to explore the importance of diagnostic information and
injury description in feature combination. The specific results
are shown in Table 4.
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As shown in Table 4, after removing diagnostic infor-
mation, the accuracy and F1-score of the model signifi-
cantly decreased. Although the AUC remained high, it also
decreased, indicating that diagnostic information features
have a significant impact on the performance of the model.
After removing the injury description, the performance of

the model also decreased, but the decrease was smaller
compared to removing diagnostic information. The ablation
study demonstrated that diagnostic information contributed
the most to the model, followed by the injury description, and
the feature combination we used achieved the best results.

Table 4. Results of ablation study in the test dataset.
Model Accuracy AUCa F1-scores
Diagnostic information removedb 0.6033 0.9523 0.4668
Injury description removedc 0.8888 0.9875 0.8047
Diagnostic information and injury
description removedd

0.6014 0.9438 0.4699

BERTe 0.8971 0.9970 0.8434
aAUC: area under the curve.
bDiagnostic information removed: Remove diagnostic information based on all basic features.
cInjury description removed: Remove the injury description based on all basic features.
dDiagnostic information and injury description removed (simultaneously remove diagnostic information and injury description): Based on all basic
features, simultaneously remove diagnostic information and injury description.
eBERT: Bidirectional Encoder Representations from Transformers.

External Validation
External validation of the constructed BERT model was
conducted using data from 244 patients with trauma at
Chongqing Emergency Center. This external dataset has a
similar data structure to the training dataset, containing a
total of 83 AIS code categories. The experimental results
of the external dataset are shown in Table 5 with accuracy,

AUC, and F1 of 0.7131, 0.8586, and 0.6801, respectively.
Compared with the test dataset, the performance of the BERT
model slightly decreases on external datasets, which may
be due to differences in data distribution between different
medical institutions. But the overall performance is still
satisfactory, indicating that the BERT model has strong
generalization ability.

Table 5. Validation results of Bidirectional Encoder Representations from Transformers model on external datasets.

Dataset Accuracy AUCa
F1-
scores

Test dataset 0.8971 0.9970 0.8434
External dataset 0.7131 0.8586 0.6801

aAUC: area under the curve.

Discussion
Principal Findings
In this study, we successfully constructed a BERT–based DL
model using data of patient with trauma from Chongqing
Daping Hospital to predict AIS codes, achieving an accu-
racy of 89.71%. This model, leveraging patient diagnostic
information as primary input features, demonstrated superior
performance compared to existing advanced AIS prediction
models, including the previously studied NMT framework
[9]. Additionally, we validated the model’s high generali-
zation ability using data from an external center, thereby
fulfilling our objective of enhancing trauma assessment
through DL.

Key innovations such as dynamic masking strategies,
low-rank embedding decomposition, and bidirectional
contextual modeling enabled the model to capture nuanced
clinical semantics while maintaining computational effi-
ciency. Notably, the model directly outputs complete AIS

codes—a critical advancement over rule-based methods like
the ICD-AIS map [17] and the ICDPIC-R package [18] tools,
which lack granular code prediction capabilities. These results
underscore the potential of transformer-based architectures
to enhance trauma assessment workflows, particularly in
scenarios requiring rapid, large-scale injury coding.

Our findings align with emerging evidence supporting
transformer models in clinical text processing [10], yet extend
prior work by addressing the unique challenges of AIS
coding. Unlike NMT models that process sequential tokens
independently via recurrent mechanisms [9], the BERT
model’s bidirectional attention dynamically links contextual
elements of injury descriptions. In addition, the pretrained
biomedical embeddings provided higher precision in rare
injury terminology recognition compared to NMT’s task-spe-
cific training.

The model’s external validation performance further
reinforces its clinical utility. While annual variations in
trauma patterns typically degrade conventional models, our
temporal split testing revealed stable predictive accuracy.
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This robustness suggests the framework could adapt to
shifting trauma trends without frequent retraining. Moreover,
direct AIS code generation eliminates the multistep map-
ping required by ICD-based tools [9,17,18], reducing error
propagation risks in mass casualty scenarios where rapid
triage coding is critical.

These findings suggest that BERT may become a powerful
tool for injury research. Although independent coding of AIS
injuries by trained medical professionals and comprehensive
medical data remains the gold standard in this field, in some
cases, such as when the number of patients is large or detailed
medical records are difficult to obtain, independent coding
becomes impractical. At this point, given input features that
satisfy the model, our BERT model can automatically provide
prediction results for AIS codes, providing highly accurate
AIS code predictions for individual patients.
Limitations
Our research has several limitations. First, during the data
collection and processing phase, a large amount of data was
excluded due to the lack of information on injury descrip-
tion and present illness history, which had a significant
impact on the integrity and representativeness of the final
dataset. Second, while low-rank decomposition improved
efficiency, BERT’s inherent sequence length restrictions
(≤512 tokens) may truncate complex trauma descriptions.
Third, the Chinese-language training data raises questions
about cross-lingual applicability, given known variations in
medical terminologies across languages [22]. Finally, as with
most DL systems, the model’s black-box nature limits clinical
interpretability.

Future studies should address these gaps by (1) integrat-
ing multimodal data (eg, imaging reports) to compensate for
text incompleteness, (2) benchmarking against large language
models with superior few-shot learning capacities, and (3)
developing hybrid systems that combine BERT’s predic-
tive power with large language model–driven explainability
features.
Conclusions
The BERT model we propose is mainly based on diagnostic
information to predict AIS codes, and its prediction accuracy
is superior to existing methods. These findings highlight
the potential of advanced AI techniques to enhance clinical
decision-making processes and improve the efficiency and
accuracy of AIS code prediction.

By automating a task that traditionally requires hours of
expert review per case, our framework could democratize
high-quality trauma registries in resource-limited settings.
Crucially, the model does not seek to replace human coders
but provides a scalable adjunct for high-volume scenarios—
a balance increasingly advocated in AI-augmented health
care [23]. As trauma systems worldwide adopt electronic
health records, such tools may transform retrospective coding
into a prospective clinical decision aid, ultimately bridging
the gap between injury documentation and precision trauma
care. Future iterations incorporating multi-institutional data
and explainability interfaces could further establish BERT-
derived models as indispensable tools in computational
trauma epidemiology.
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