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Abstract
Background: The COVID-19 pandemic has highlighted the critical need for telehealth and remote patient monitoring in
health care delivery. Despite the growing use of on-body wearable sensors for continuous monitoring and predicting adverse
events, their widespread adoption remains a significant challenge. While the pandemic has accelerated the acceptance of these
technologies, achieving widespread integration requires their sustained incorporation into routine health care practices beyond
emergencies. In this study, we extend the application of our previously developed remote patient monitoring system to patients
with COVID-19.
Objective: Our objective is to assess whether the metrics obtained from our previously developed system can provide
additional insights into the recovery trajectory of individuals affected by COVID-19. This case study aims to demonstrate that
remote patient monitoring systems can be adapted to diverse patient cohorts during emergencies. We aim to illustrate the ease
of deployment, particularly when these systems are already integrated into the existing health care ecosystem.
Methods: From November 2020 to July 2021, a total of 73 patients were recruited through the University of California, Los
Angeles, Center for Smart Health, after having consented to participate in this study for 2 weeks. The research concentrated
on an exploratory analysis, focusing on the detailed examination of characteristics and behaviors of patients with COVID-19
as captured by the remote patient monitoring system. We collected day-to-day changes in the following sensor measurements:
daily activity, daily energy expenditure, indoor localization, SpO2, respiratory rate, heart rate, and temperature.
Results: Out of the 73 patients satisfying the inclusion criteria, 41 successfully adhered to using the monitoring technology,
with only 22 providing substantial watch data (>4 h). Among the participants, 39 used the pulse oximeter, 37 used the
thermometer, and 36 used respiratory monitoring at night. This study demonstrated an overall increase in patients’ activity
levels toward the end of this study, with many beginning to leave their homes after 2 weeks. Additionally, respiratory rates
shifted toward healthier lower levels, and oxygen saturation improved. Fatigue and headache were identified as the most
prevalent symptoms, followed by cough and loss of smell.
Conclusions: The conclusion highlights the critical importance of monitoring patients outside of hospital settings, especially
during pandemics, when patients travel to hospitals or receive home visits by health care professionals, which could increase
the risk of disease transmission. Studies demonstrating the benefits and efficacy of remote monitoring in home settings can
better prepare health care professionals for future pandemic events. Continuous monitoring of a wide range of patient metrics,
from activities to vital signs, and integration of these data into electronic health records would not only improve accuracy and
reduce the burden of data collection but also pave the way for enhanced home care, offering higher quality care at a lower cost.
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Introduction
In late 2019, an outbreak of COVID-19 emerged and spread
rapidly worldwide. As of May 5, 2020, when we began this
study, there were more than 3.6 million confirmed cases and
>250,000 deaths attributed to COVID-19 worldwide, with
over 69,000 deaths alone in the United States. These numbers
have reached 7 million deaths worldwide, including 1.2
million in the United States alone [1,2]. Despite the devel-
opment of multiple vaccines, the virus and its new variants
continue to wreak havoc in the public health sector. While the
mortality rate for COVID-19 was reported to be around 2%,
the number was significantly increased among older patients
with underlying coexisting conditions. Notably, in hospital-
ized patients, the death rate approached 15%. Individuals who
were at mild to moderate risk, such as those with cancer,
could demonstrate significant clinical deterioration within
24‐48 hours.

In recent years, during the COVID-19 pandemic, we
observed the implementation of policies such as “shelter in
place” aimed at preventing the unnecessary strain on the
health care system, measures that may become necessary
in the face of another pandemic. Some high-risk patients
were instructed to “weather the storm” at home without
adequate monitoring, despite the potential for rapid deterio-
ration in their health [3]. Over the past decade, the emer-
gence of commercially available, affordable, and lightweight
sensors has significantly accelerated the adoption of remote
patient monitoring systems within the health care system for
continuous and comprehensive patient tracking. Even before
the COVID-19 pandemic, substantial evidence indicated that
continuous monitoring of vital signs, such as pulse oxime-
try and heart rate, was associated with reduced mortality
[4,5]. This aligns with numerous studies conducted during the
pandemic, which explored the use of pulse oximetry and other
wearable devices for continuous vital sign monitoring [4,6,7].
During the COVID-19 pandemic, numerous studies evaluated
the use of technology for patient management and assessed
its effectiveness in reducing hospitalizations [3,6,8-11]. While
some initiatives were labeled as remote patient monitoring,
they often focused more on telehealth, e-visits, and the use
of patients’ existing technologies, such as smartphones to
connect to health care professionals. These studies demon-
strated encouraging results, indicating that technology can
significantly enhance patient management [6,8,9].

In a series of studies, we had introduced and documen-
ted the development and implementation of our remote
patient monitoring system and its clinical validation within
older patient populations at risk of various health conditions
[12-15]. This platform, known as Sensing At-Risk Population
(SARP), encompasses activity monitoring through smart-
watches, indoor localization using stationary beacons, and
the collection of additional physiological data via wireless
sensors. Data are securely and automatically transmitted
to a Health Insurance Portability and Accountability Act

(HIPAA)–compliant cloud infrastructure. For this study,
we expanded the capabilities of our system to serve as a
monitoring hub and to support additional devices tailored
to the needs of COVID-19 positive patients. We incorpora-
ted commercially available Bluetooth-enabled thermometers,
pulse oximeters, and respiratory distress monitors. These
additions enabled us to capture relevant information for
monitoring and assessing COVID-19 positive cases. The
primary objective of this study was to enhance existing
outpatient COVID-19 positive clinical trials, which incorpo-
rate the variables that our system captures as secondary or
exploratory endpoints. By leveraging our platform, we aimed
to minimize COVID-19 positive patients’ exposure while
collecting crucial vital information. We intended to gather
this data within a natural environment, shedding light on the
diverse array of symptoms presented by COVID-19 positive
patients, thus contributing to a better understanding of this
disease and the ongoing pandemic using the emerging remote
patient monitoring systems.

Methods
Design, Setting, and Participants
Of study design and participants, patient recruitment occurred
from November 2020 to March 2021 at the University
of California, Los Angeles (UCLA) Health Center. We
emphasized that participation in the study would not affect
their care at UCLA and was entirely separate from their
medical treatment. Participation would conclude either after
2 weeks or if the patient was admitted to the hospital during
that timeframe. This study’s protocol was obtained from the
Institutional Review Board of UCLA.

Eligible participants were individuals aged 18 years or
older with a COVID-19 diagnosis who were not hospitalized
or had known exposure to a COVID-19 positive case. They
required the ability to manage their condition at home, access
to home Wi-Fi, proficiency in either English or Spanish,
and a willingness to provide informed consent by signing
the approved form (IRB #20‐001565) from the UCLA,
titled “Early Detection of Health Improvement and Decline
Through Remote Health Monitoring in COVID-19 Positive
Patients.”
Inclusion and Exclusion Criteria
Inclusion criteria were wearable device compatibility (ability
to wear a watch), willingness to host the remote monitoring
system for 2 weeks, aged 18 years or older, current UCLA
Health patient, confirmed positive COVID-19 laboratory
result, or known exposure to COVID-19.

Exclusion criteria were clinical diagnosis of movement
disorders (eg, Parkinson Disease) and failure to meet
inclusion criteria.
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About SARP
SARP is a remote patient monitoring system developed
by UCLA’s Center for SMART Health, designed to cater
to patients beyond the confines of health care institutions.
Its primary purpose is to monitor vulnerable, at-risk popula-
tions by simulating the measurement of activities of daily
living and instrumental activities of daily living [16] through
cost-effective sensor technology. SARP has been used to
generate prognostic data and predictive models for mortality
and functional decline [12-15].

The core components of SARP encompass hardware,
including an Android Smartwatch and readily available
proximity Bluetooth Low Energy (BLE) beacons, and
clinically validated software featuring activity recognition and
indoor localization algorithms. Additionally, SARP incor-
porates a remotely triggered adaptive smart questionnaire
mechanism, data visualization tools, and algorithms for
assessing frailty, all within a HIPAA-compliant infrastructure
[17].

Activity features were derived from three groups of
parameters using smartwatches and BLE beacons: (1) activity
recognition (eg, sitting time or standing time), (2) indoor
localization (eg, time in bed or time in the bathroom), and
(3) raw acceleration quantification (mean absolute devia-
tion [MAD] in accelerometer signal). By combining these
attributes, we created features such as sitting time in bed and
energy expenditure during walking or while in bed [12,13].

To ensure fair comparisons among patients with different
watch wearing times, we normalized features by dividing the
time spent on activities or in locations by the total wear time
(uptime). Energy-related features were also normalized by
uptime to yield energy intensity and by the total daily value to
calculate energy percentage.

BLE beacons are used in the SARP system to estimate
indoor patient locations by measuring the received signal
strength indicator values via smartwatches [18-20]. Patients
were instructed to place a BLE beacon in each designated
indoor location: the kitchen, bathroom, bedroom, dining
room, and television or sitting room. If the system does
not detect any beacons, it infers that the patient is outside,
indicating they are not at home.
Ethical Considerations
This study was approved by the UCLA Ethics Review Board
(IRB #20‐001565), ensuring adherence to ethical standards
and the protection of human participants’ rights and wel-
fare. Participants were recruited through oral consent, which
included a clear explanation of the study’s purpose, dura-
tion, procedures, potential risks (such as discomfort from
wearing a smartwatch or placing sensors at home), and
confidentiality measures. Patients were also informed that
the data collected could be used for future research studies,
may be shared with other investigators, or used in collabo-
ration with the private sector to develop smart algorithms,
without requiring additional consent. Data collected were
anonymized and deidentified before analysis, following strict

confidentiality protocols. No financial compensation was
offered to participants. Additionally, no identifiable images
or data of participants are presented in this paper or supple-
mentary materials.
Data Collection
For this study, SARP was modified to integrate a series of
US Food and Drug Administration (FDA)–cleared, Blue-
tooth-enabled devices, including pulse oximeters, thermom-
eters, and ultra-wideband radar technology for respiratory
monitoring. The utility of these metrics for patient assess-
ment has been demonstrated in numerous studies, with
further research validating the accuracy of Bluetooth-enabled
devices for home and remote monitoring [5,7,9,10,21-24].
While evaluating the efficacy of these devices is beyond
the scope of this paper, we assume their reliability, given
that pulse oximeters, thermometers, and respiratory monitor-
ing devices incorporated into the SARP system are FDA-
cleared. However, it is worth noting that some studies
indicate ultra-wideband radar may overestimate respiratory
rates at low levels and underestimate them at high lev-
els [25,26]. While FDA clearance validates accuracy in
controlled settings, real-world performance may vary due to
user compliance, environmental factors, and device position-
ing. Our study did not independently validate these devices
but relied on their FDA clearance as a baseline for integration
into remote monitoring workflows.

Among the integrated devices, the smartwatch was
designed for continuous monitoring, inferring metrics such
as activity tracking, energy expenditure, and time spent in
various indoor locations. In contrast, other devices were
used on a spot-check basis, voluntarily recorded by patients.
Patients were advised to use the pulse oximeter and thermom-
eter at least twice daily, while the respiratory monitoring
device was mounted next to the bed for continuous tracking
whenever the patient was present.

All data were securely uploaded to a HIPAA-compliant
Azure internet of things cloud infrastructure, expanding the
SARP system’s remote patient monitoring capabilities. The
integration of Bluetooth-enabled devices allowed for the
remote collection of additional vital data, complementing
existing infrastructure. Specifically, for this project, pulse
oximeters and thermometers were used to detect potential
COVID-19 symptoms, such as shortness of breath and
fever, aiding in testing recommendations. Additionally, SARP
incorporated an FDA-cleared Bluetooth device equipped with
radar, a microphone, and a light sensor to monitor respi-
ratory function, enabling the detection of hypoventilation,
hyperventilation, and impaired lung function. This device
was recommended to be placed adjacent to the patient’s bed,
primarily for nighttime monitoring or when the patient was in
the room.

The devices used included the AndesFit Non-Contact
Forehead and Surface Thermometer with Bluetooth 4.0
(ADF-B38A), AndesFit Pulse Oximeter with Bluetooth 4.0,
Circadia ultra-wideband Respiration Monitoring Device,
TicWatch Pro 3 Smartwatch with Bluetooth module,
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Proximity Beacons (MCU ARM Cortex-M4 32-bit processor
with floating-point unit), and Amazon Fire Tablet 7.

We recorded the day-to-day changes in the following
sensor measurements and compiled the assessments shown
in Textbox 1:

1. Position: lying down, sitting, standing, and walking
inferred from continuous accelerometer data collection.

2. Active: active (walking), active (not walking), and
nonactive inferred from continuous accelerometer data
collection.

3. Steps: total daily steps is the total distance traveled
inferred from continuous accelerometer data collection.

4. Indoor localization: bedroom, bathroom, kitchen,
dining room, family room, and office inferred from
accelerometer data and indoor location beacon received

signal strength indicator scans during and immediately
after each movement detected by the smartwatch.

5. Sleep quality: duration and toss and turn, inferred from
continuous accelerometer.

6. Heart rate: spot check by patient using pulse oximeter.
7. Temperature with infrared technology spot check by the

patient using a Bluetooth thermometer.
8. SpO2 oxygen saturation spot check by the patient using

pulse oximetry.
9. Breaths per minute measured using ultra-wideband

radar technology, captured during sleep by a device
positioned next to the patient’s bed.

10. Respiration waveform (inhalation or exhalation
patterns) with ultra-wideband radar technology.

Textbox 1. Patient assessments from sensor measurements.
Summary sensor assessments

• Percent of time out of bedroom
• Percent of time out of house
• Percent of time walking
• Total daily steps
• Walking speed
• Counts of activities and locations
• Total active time
• Total energy
• Weighted total activity score
• Spot check of temperature
• Spot check of SpO2
• Spot check of average breaths per minute
• Respiratory rate and chest displacement
• Early warning score

As described in the study by Ramezani et al [12], active or
nonactive is determined by an empirical threshold of 0.02
m/s2 (2 cm/s2) imposed on the MAD value of an acceler-
ometer signal every 10 seconds. The threshold translates to
1 meter of displacement of the hand in 10 seconds (hand
wearing the smartwatch with accelerometer). Furthermore,
the energy expenditure is estimated to be proportional to the
MAD of the accelerometer magnitude signal.
Exploratory Analysis
The primary objective of this study was to conduct an
observational analysis aimed at developing predictive models
for forecasting adverse COVID-19 outcomes, including
hospitalization within 24 or 48 hours. Given the absence of
adverse events among the participants, the research empha-
sis shifted toward an exploratory analysis, concentrating on
the delineation of characteristics and behaviors of patients
with COVID-19 as captured by the remote patient monitoring
system.

All the analyses were performed using the Python
Programming Language (version 3.11.3; Python Software
Foundation) libraries, Pandas (version 2.2.1), NumPy (version
1.25.2), SciPy (version 1.11.1), Scikit-learn (version 1.3), and
Seaborn library (version 0.12.2) were used for statistical data
visualization.

Analytics Inclusion Criteria
To ensure the meaningfulness of the activity data, we
imposed an additional inclusion criterion requiring a
minimum daily wear time of the smartwatch of at least 4
hours. However, the use of the remote patient monitoring
system kit was not limited solely to the smartwatch; it also
included a thermometer and pulse oximeter for spot checks,
along with a respiratory monitor capable of continuous data
capture in the bedroom. Data collection was conducted either
continuously or at specific intervals from these devices. For
analysis, we included individuals with measurements taken on
more than 7 distinct days and calculated the mean value of the
metric for each day.
Activity and Energy
Energy intensity, as detailed in the SARP section, was
analyzed for all individuals on their first day of the study
(baseline) and their last day using a box plot. The plot
displays the median line, representing the central tendency,
and the overall distribution of energy intensity values. It is
important to note that these observations were made after
applying the inclusion criteria, which only considered days
where patients had more than 4 hours of watch wearing time.
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Using Bluetooth beacons, the time each patient spent in
specified locations within their home was calculated to better
form a daily storyline of their activity patterns. The goal
was to assess whether patients spent less time in the bed-
room as this study progressed and whether they spent more
time outside their residence. The percentage of time spent in
each location was calculated by dividing the duration in that
location by the total uptime (watch wearing time) for that day.
A heatmap was generated to visualize the average percentage
of time spent in each location longitudinally over 2 weeks.

It is important to note that data were analyzed after
applying inclusion criteria, and some participants were in
this study for fewer than 2 weeks. For each day of this
study, the time spent in each location was averaged across
the number of patients observed on that particular day. Given
that the start and end dates varied across patients, the analysis
was conducted by calculating each patient’s individual day.
For example, “day 1” represents the average time percentage
spent in each location for all patients on their respective first
day, which may differ chronologically between patients.
Vital Signs
The distributions of SpO2, pulse rate, respiratory rate, and
temperature were visualized using kernel density estimate
(KDE) plots. The KDE plots depict patients’ baseline (the
first day of data collection) and their final day (the last
available day of this study). For each patient, the mean value
of observations was used for both the baseline and the final
day. A minimum interval of 7 days between the baseline
and final day was enforced to exclude patients with only a
few days of data, as their differences could not accurately
represent longitudinal trends. It is important to note that the
KDE visualization may include out-of-bounds values due to
the edge effect, where Gaussian distribution-based estimation
extends beyond the actual data range. When the observations

are close to the edges of the data range, the KDE, which
is formed by centering around each data point, may extend
beyond the boundary. This can be addressed by truncating the
graph and clipping the x-axis out-of-bound values, although
this is merely a visualization adjustment. Alternatively, the
edge effect can be mitigated by smoothing the KDE curve
through bandwidth adjustment. In the Seaborn library, the
default bandwidth value is determined by Scott rule (set to
1) [27] and automatically adapts to the data characteristics
[28]. While increasing the bandwidth reduces sensitivity to
individual observations and produces a smoother curve, the
authors opted not to adjust the bandwidth due to the limited
number of observations and the need to maintain the graph’s
sensitivity to changes.

Self-Reported Survey
Daily self-reported surveys, collected using the SARP app
provided to patients on tablets, were integrated with sensor
data. The purpose of this integration was to later align
the data with potential complications, including cardiovascu-
lar issues or hospitalizations, to retrospectively investigate
whether any early indications could have been inferred
from the observational data. This analysis aimed to identify
potential early warning signs and develop timely interven-
tions.

Results
Demographic Characteristics
Of 176 interested patients who were approached by our team,
73 met the eligibility criteria and were enrolled to use our
remote patient monitoring kit, SARP, as detailed in Table 1.
Of these, 41 patients successfully connected to and complied
with the system.

Table 1. Sociodemographic characteristics of the patient cohort (N=73).
Characteristics Patients, n (%)
Race   
  Asian 3 (4.1)
  Black or African American 6 (8.2)
  Hawaiian or Other Pacific Islander 1 (1.4)
  White 42 (57.5)
  Other 21 (28.8)
Ethnicity   
  Not Hispanic or Latino 44 (60.3)
  Hispanic or Latino 26 (35.6)
  Unknown or not reported 3 (4.1)
Sex   
  Female 38 (52)
  Male 31 (42.5)
  Prefer not to say 4 (5.5)
Highest education level   
  High school diploma 6 (8.2)
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Characteristics Patients, n (%)
  Some college 19 (26)
  Bachelor’s degree 28 (38.3)
  Graduate degree 18 (24.7)
  No response 2 (2.73)
Employment status   
  Employed 44 (69.8)
  Unemployed 10 (13.7)
  Self-employed 8 (11)
  Retired 4 (5.5)
Marital status   
  Married 34 (46.6)
  Divorced 2 (2.7)
  Widowed 2 (2.7)
  Single 29 (45.3)
  Separated 2 (2.7)
Age (years)   
  20‐30 14 (19.2)
  30‐40 15 (20.5)
  40‐50 17 (23.3)
  50‐60 14 (19.2)
  60‐70 9 (12.3)
  70‐80 3 (4.1)
  80‐90 1 (1.4)
Weight (lbs)   
  110‐150 20 (27.3)
  150‐190 17 (23.3)
  190‐230 24 (32.9)
  230‐270 9 (12.3)
  270‐310 2 (2.8)
  310‐360 1 (1.4)
  Not reported 1 (1.4)
Height (feet)   
  3‐4 1 (1.4)
  4‐5 15 (20.5)
  5‐6 56 (76.7)
  Not reported 1 (1.4)

To reiterate, the SARP remote patient monitoring system
included a smartwatch, thermometer, pulse oximeter, and
a respiratory rate monitoring device. We established an
additional inclusion criterion that mandated a minimum daily
wear time for the smartwatch of at least 4 hours.

There were 22 patients with substantial watch data (>4
h per day) with an average usage of 10.1 (SD 4.3) days
of watch wearing time. A total of 39 patients used a pulse
oximeter to check the SpO2 and heart rate, with an average
usage of 10.1 (SD 4.7) days of using the device. The number
of patients who used the thermometer decreased to 37 with
an average usage period of 9.7 (SD 4.8) days. The number of

patients with respiratory data is 36, with an average of 11.4
(SD 4.7) nights of continuous monitoring of breathing rate per
minute.
Activity and Energy
The box plot in Figure 1 shows that the overall energy levels
of patients increased on the last day of this study compared
to the first day. Both the mean intensity and the variability of
energy levels showed an upward trend. The figure indicates
an overall improvement in the physical activity of patients
with COVID-19 over time, though with varying degrees of
recovery across the patients.
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Figure 1. Average energy intensity: first day versus last day.

By analyzing the heatmap of patient activities shown in
Figure 2, it is evident that toward the end of this study,
patients were expending less time in the bedroom and more in
other areas outside the home. The fading color in the bedroom
area toward the end of this study suggests a decrease in
time spent in that location. Similarly, there is a noticeable

decline in activity within other home settings, such as the
television or sitting area, as captured by indoor localization
beacons. This trend likely reflects patients’ gradual recovery
and increased mobility, allowing them to engage more in
activities outside their homes.

Figure 2. Heatmap of patients' activities during the 2-week study.
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Vital Signs
In Figure 3, KDE graphs for 4 vital signs show that the
distribution for SpO2 has shifted slightly to the right from
baseline to the last day, indicating an overall improvement in

oxygen saturation levels by the end of this study. The value
of the last day’s SpO2 distribution is higher than the baseline,
suggesting more patients reached higher SpO2 levels on the
last day.
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Figure 3. Biomarkers: first day versus last day.

The pulse rate distribution on the last day shows a slight
shift to the right compared to the baseline. This suggests that
patients’ pulse rates tended to increase slightly by the end of
this study. The distribution also appears to broaden slightly,
indicating greater variability in pulse rates among patients on
the last day.

On the respiratory rate subgraph, there is a noticeable
shift in distribution toward lower rates on the last day
compared to the baseline. This may indicate that, on average,
patients had a lower respiratory rate by the end of this study,
potentially reflecting improved respiratory function. The last
day’s distribution is narrower, suggesting reduced variability
in respiratory rates, with most patients converging around
healthier respiratory measures.

The temperature distributions, however, remain relatively
similar in both baseline and the last day, with only slight
differences.

Self-Reported Survey
The tablet provided to each patient, serving as a device
hub, was also available for completing protocol-mandated
surveys. Participants could voluntarily report their symptoms
and overall wellness at least once daily. The survey responses
are included in Multimedia Appendix 1, which illustrates the
prevalence of symptoms reported by patients at least once
during the 2-week observation period.

Multimedia Appendix 1 indicates that fatigue (22/75,
30%) and headache (22/75, 30%) were the most prevalent
symptoms among patients with COVID-19, followed by
cough (19/75, 25%) and loss of smell or taste (20/75, 26%).
Despite these symptoms, only 6% (5/75) of patients contac-
ted a health care provider, suggesting either mild severity or
potential difficulties in seeking medical advice. As there was
a direct contact number for the patients in this study and the
ease of contacting them, it would be safe to assume that mild
severity was the main reason. This underscores the need for
careful monitoring of common COVID-19 symptoms. Other
symptoms were chest pain (12/75, 16%), shortness of breath
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(10/75, 13%), fever (6/75, 8%), runny nose (17/75, 22%),
diarrhea (10/75, 13%), and body aches (15/75, 20%).

Discussion
Principal Findings
Our analysis of activity and indoor location suggests that
a positive trend in data from wearable and remote mon-
itoring devices is aligned with the recovery of patients
with COVID-19 over this study’s period. It is important
to emphasize that the lower numbers in each category
(smartwatch, pulse oximeter, thermometer, and respiratory
monitoring) compared to the 73 participants result from
not meeting the analytics inclusion criteria. This includes
insufficient compliance with smartwatch wear time, voluntary
use of Bluetooth-enabled devices for spot checking, and
willingness to use the respiratory monitoring device next to
their bed.

Although we did not directly ask patients about their
compliance or the reasons for not using the system more
frequently in this study, insights from our previous studies
using the same infrastructure [12]—albeit with a different
cohort (at-risk older population)—suggest that the bulki-
ness of smartwatches was a primary issue. Most commer-
cially available smartwatches, despite recent advancements in
sensor quality approaching medical-grade standards, remain
relatively bulky due to their large battery packs. This design
choice enables them to perform various functions, includ-
ing connectivity with phones, but makes them less suitable
for medical use, where comfort and continuous wearability
are crucial. In short, most smartwatches are not specifically
designed for patient use, and the current battery technol-
ogy often results in devices that are bulky and somewhat
inconvenient for continuous wear. In contrast, other sensors,
such as temperature monitors and pulse oximeters, were used
more frequently, as they were used for spot checks rather than
requiring continuous wear, making them more acceptable to
patients.

Figure 1 shows an increase in overall energy levels,
with both the mean energy intensity and variability rising
from the first to the last day, indicating an overall improve-
ment in physical activity. Figure 2 offers additional insights,
revealing that patients progressively expended less energy in
the bedroom and other indoor locations, such as the televi-
sion or sitting area, as this study progressed. This decline
in indoor activity suggests that patients were recovering and
becoming more mobile, with greater energy expenditure in
locations outside their homes. The shift in activity distribu-
tion likely reflects improved physical health, as indicated by
the higher intensity color in the heatmap corresponding to
outdoor locations toward the end of this study.

Our study results are consistent with a systemic scop-
ing review of studies published between 2019 and 2022,
in which smartwatches or fitness trackers were reported as
the preferred type of wearable technologies for early and
presymptomatic detection [29-32]. Much of the published
literature is focused on using wearables for early detection

[33,34]. These studies do show that wearables can track
heart rate and heart rate variability with improvement over
7 days [35]. Moreover, SpO2 and activity tracking from
wearable devices might be able to help identify patients
with COVID-19 at risk for sudden death [36] based on a
systematic review. However, the best results are looking at
physiological features in a multimodal approach where one
can achieve sensitivity as high as 90% and specificity as high
as 80% [37]. Our study asked about self-reported symptoms
and the importance of combining symptoms with sensor data
that has been shown to allow for better predictive models
[38]. The use of wearables and remote monitoring has also
been explored in managed long COVID-19 [39].

The prevalence of fever among patients with COVID-19
varies across studies and cohorts, with a high percentage
observed in hospitalized patients [40]. However, in nonho-
spitalized patients, fever is less frequently observed or may
be entirely absent. In studies such as the one by Shi et
al [41], fever was recorded for fewer than 2 days through-
out the illness, primarily in frail patients, even after lower-
ing the temperature threshold from 100.4°F to 100°F. Body
temperature in our cohort never exceeded 98.6°F. Figure
3 indicates that patients’ body temperatures were relatively
stable throughout this study, with a marginal increase by
the last day. Both distributions of body temperatures in
baselines and the last day are tightly clustered, indicating
consistent body temperatures across patients. This suggests
that either the cohort did not exhibit fever, or the non-
contact infrared thermometers used were not sufficiently
sensitive, despite being FDA-cleared. This aligns with an
FDA study [42] highlighting misleading labeling of FDA-
cleared devices during COVID-19, showing that noncontact
infrared thermometers may fail to reliably detect fevers when
used on adults and may not meet the accuracy specifications
advertised in manufacturers’ instructions for use. Notably,
8% of patients in this study reported fever in the self-repor-
ted surveys (Multimedia Appendix 1), indicating that the
subjective experience of fever was prevalent in at least 8%
of the cohort.

Figure 3 of vital signs overall suggests that by the end
of this study, patients generally showed signs of physiologi-
cal improvement, with higher SpO2 levels, slightly elevated
pulse rates, and lower respiratory rates. Such trends indicate
a recovery or improvement in the monitored patients’ vital
signs.
Study Limitations
Patient compliance with wearing a smartwatch and using
the Bluetooth-enabled thermometer and pulse oximeters was
one of the main challenges of this study, and we anticipate
this to be a common obstacle in similar studies that aim to
use wearable technology for patient monitoring. In contrast,
the ultra-wideband respiration monitoring device required no
patient interaction and could monitor respiration passively.
However, the accuracy of this device could be compromised
if more than 1 person were in the bedroom or if the patient
left the room. To mitigate this, we ensured that only the
results from patients who lived alone in the monitored

JMIR FORMATIVE RESEARCH Ramezani et al

https://formative.jmir.org/2025/1/e66773 JMIR Form Res 2025 | vol. 9 | e66773 | p. 9
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e66773


bedroom were included in the analysis. While setting up the
devices was designed to be straightforward—requiring only
a tablet and a simple app we provided to connect all devices
to the patients’ home internet in 1 step—it is reasonable to
assume that certain patients, particularly those less familiar
with technology, may have found the setup process challeng-
ing.

As the cohort was randomly selected, the predominance
of younger participants indicated in Table 1 may reflect
self-selection bias, accessibility to technology, or willing-
ness to participate in remote monitoring studies rather than
a deliberate sampling choice. However, this demographic
skew could impact the relevance and generalizability of the
findings, particularly if younger individuals have different
health profiles, technology engagement levels, or adherence
behaviors compared to older populations. To address this
limitation, we acknowledge that further studies with more
diverse age representation are needed to validate the findings
across broader demographics, particularly in populations
more likely to benefit from remote health monitoring, such
as older adults or individuals with chronic conditions.
Conclusions
The COVID-19 pandemic demonstrated the importance of
telehealth and remote monitoring of at-risk patients. A recent
cost-utility analysis estimates that daily pulse oximetry use
with a follow-up after 3 weeks could reduce the mortal-
ity rate to 6 per 1000 patients, compared to 26 per 1000
without at-home monitoring. Various studies suggest that

remote patient monitoring in patients with COVID-19 could
potentially reduce hospitalizations and deaths by as much as
80% and yield cost savings of around $12,000 per patient
[10,43]. This underscores the growing importance of using
technology for continuous at-home monitoring, which can
enhance the quality of care while significantly reducing costs.

In this study, we demonstrated that affordable remote
monitoring devices can effectively track individuals over
time, revealing trends in their health status. However, a
significant challenge in remote and home monitoring systems
is ensuring participant adherence. Our study found that only
41 of 73 individuals consistently used all the provided
devices. This finding aligns with previous research, which
suggests that patients are more likely to engage in remote
monitoring or mHealth when they perceive an immediate
personal benefit. Based on anecdotal feedback, patients
appeared to prefer passive sensing over more demanding
active monitoring. However, no formal assessment of patient
satisfaction was conducted.

This study also generated novel data specific to
COVID-19, comparing self-reported symptoms with objective
monitoring data. Additionally, the findings highlight the
potential benefits of implementing remote patient monitoring
systems in future pandemics, as they provide continuous,
scalable, and contactless health tracking, which could aid
in early detection, triage, and disease management while
minimizing the burden on health care facilities.
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