
Original Paper

Oxidative Stress Markers and Prediction of Severity With
a Machine Learning Approach in Hospitalized Patients
With COVID-19 and Severe Lung Disease: Observational,
Retrospective, Single-Center Feasibility Study

Olivier Raspado1, Dr Med; Michel Brack2, Dr Med; Olivier Brack3; Mélanie Vivancos4; Aurélie Esparcieux1, Dr
Med; Emmanuelle Cart-Tanneur5, Dr Bio; Abdellah Aouifi1, Dr Med
1Infirmerie Protestante, Caluire-et-Cuire, France
2Oxidative Stress College, La Garenne-Colombes, France
3Statistique Industrielle Khi² Consulting (KSIC), Bayet, France
4Clinical Research and Innovation Department, Infirmerie Protestante, Caluire-et-Cuire, France
5Eurofins Biomnis Laboratory, Lyon, France

Corresponding Author:
Olivier Raspado, Dr Med
Infirmerie Protestante
1 chemin du Penthod
Caluire-et-Cuire, 69300
France
Phone: 33 0624576962
Email: olivier.raspado@infirmerie-protestante.com

Abstract
Background: Serious pulmonary pathologies of infectious, viral, or bacterial origin are accompanied by inflammation and an
increase in oxidative stress (OS). In these situations, biological measurements of OS are technically difficult to obtain, and
their results are difficult to interpret. OS assays that do not require complex preanalytical methods, as well as machine learning
methods for improving interpretation of the results, would be very useful tools for medical and care teams.
Objective: We aimed to identify relevant OS biomarkers associated with the severity of hospitalized patients’ condition and
identify possible correlations between OS biomarkers and the clinical status of hospitalized patients with COVID-19 and
severe lung disease at the time of hospital admission.
Methods: All adult patients hospitalized with COVID-19 at the Infirmerie Protestante (Lyon, France) from February 9,
2022, to May 18, 2022, were included, regardless of the care service they used, during the respiratory infectious COVID-19
epidemic. We collected serous biomarkers from the patients (zinc [Zn], copper [Cu], Cu/Zn ratio, selenium, uric acid,
high-sensitivity C-reactive protein [hs-CRP], oxidized low-density lipoprotein, glutathione peroxidase, glutathione reductase,
and thiols), as well as demographic variables and comorbidities. A support vector machine (SVM) model was used to predict
the severity of the patients’ condition based on the collected data as a training set.
Results: A total of 28 patients were included: 8 were asymptomatic at admission (grade 0), 14 had mild to moderate
symptoms (grade 1) and 6 had severe to critical symptoms (grade 3). As the first outcome, we found that 3 biomarkers of OS
were associated with severity (Zn, Cu/Zn ratio, and thiols), especially between grades 0 and 1 and between grades 0 and 2. As
a second outcome, we found that the SVM model could predict the level of severity based on a biological analysis of the level
of OS, with only 7% misclassification on the training dataset. As an illustrative example, we simulated 3 different biological
profiles (named A, B, and C) and submitted them to the SVM model. Profile B had significantly high Zn, low hs-CRP, a
low Cu/Zn ratio, and high thiols, corresponding to grade 0. Profile C had low Zn, low selenium, high oxidized low-density
lipoprotein, high glutathione peroxidase, a low Cu/Zn ratio, and low glutathione reductase, corresponding to grade 2.
Conclusions: The level of severity of pulmonary damage in patients hospitalized with COVID-19 was predicted using an
SVM model; moderate to severe symptoms in patients were associated with low Zn, low plasma thiol, increased hs-CRP, and
an increased Cu/Zn ratio among a panel of 10 biomarkers of OS. Since this panel does not require a complex preanalytical
method, it can be used and studied in other pathologies associated with OS, such as infectious pathologies or chronic diseases.
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Introduction
Oxidative stress (OS) is an imbalance between the production
of free radicals and the body’s ability to neutralize them,
leading to damage to cells, proteins, and DNA [1-3]. This is a
natural physiological process that is not harmful if it remains
balanced, but it can be involved in the onset or worsening of
chronic diseases such as cancer [4], metabolic disorders [5],
atherosclerosis, [6] and cardiovascular diseases [7,8]. OS can
also contribute to nerve cell death and deterioration of brain
function, leading to neurodegenerative diseases [9,10].

Healthy lifestyle habits can help reduce OS and its harmful
effects, for example, learning to manage emotional stress
[11]; performing regular physical activity to promote the
production of endogenous antioxidant enzymes [12]; and
adopting a balanced diet that is able to provide antioxidants
such as vitamins C and E, beta-carotene, and polyphenols and
is rich in fruits, vegetables, whole grains, and lean protein
sources [13]. Avoiding or reducing exposure to environmen-
tal toxins, such as toxic chemicals, cigarette smoke, and air
pollutants, can also reduce OS [14].

Furthermore, many respiratory viral infections, including
COVID-19, cause death of the infected cells, activation
of the innate immune response, and secretion of inflamma-
tory cytokines. All these processes are associated with the
development of OS, which makes an important contribu-
tion to the pathogenesis of viral infections. COVID-19 is a
complex disease in which interaction of the virus with target
cells, action of the immune system, and the body’s systemic
response to these events are closely intertwined [15].

COVID-19 infection has various levels of pulmonary
involvement, with asymptomatic, benign, serious, or even
fatal forms, especially when the infected patient has
comorbidities such as a history of cancer or malignant
hematological diseases; concurrent chemotherapy treatment;
severe chronic kidney disease, with or without dialysis; a
history of solid organ transplantation or allogeneic hema-
topoietic stem cell transplantation; chronic polypathologies
such as diabetes, high blood pressure, and obesity; or 2
or more organ failures [16]. All of these associated and
chronic pathologies will influence the response of the immune
system to COVID-19 infection and inflammation, as well
as the level of OS present before and during the infection.
Recent observational studies have reported that increasing
COVID-19 severity may be responsible for a worse prognosis
[17] among diabetes patients [18] and increased severity of
lung disease [19]. Two meta-analyses showed that supple-
mentation with antioxidants (in the form of vitamins and
trace elements) in critically ill patients was associated with
decreased mortality and counteracted OS damage [20,21].

The identification of OS biomarkers is essential for
early diagnosis of chronic disease, for evaluating treatment

efficacy, for monitoring lifestyle interventions, and for
understanding the mechanisms involved. The decrease in
the blood concentration of thiol proteins is one of the most
relevant markers of OS [22]. However, clusters of evidence
are emerging from the recent literature showing that levels
of biomarkers of oxidative damage in biological fluids can
be used for the prediction of measured concentrations of a
limited number of exogenous and endogenous antioxidants
[23].

Since March 2020, our health care and medical team began
to hypothesize that antioxidant supplementation for patients
in the intensive care unit (ICU) could improve their progno-
sis. We were heavily involved in treatment on a daily basis
and tried to understand this serious and complex respiratory
pathology and treat it as effectively as possible. Our patients
benefit from a precise clinical assessment and comprehensive
blood biological assays during their initial care and during
their hospital stay. Other medical teams have been able
to establish scores or panels composed of different blood
biological assays to evaluate certain markers of OS and the
inflammatory response [16,18], but the measurement and
analysis of these biomarkers require complex preanalytical
and analytical processes that cannot be carried out during
hospitalization in the acute phase, that is, at the patient’s
bedside. To identify relevant OS biomarkers, we designed the
OXYCOVID study as a feasibility study with the primary
objective of testing whether the methodological protocol
would be appropriate and feasible in the context of the ICU
and ICU admission. The secondary objectives of this study
were to identify relevant OS biomarkers associated with the
severity of hospitalized patients and to identify whether there
is a correlation between the clinical status of hospitalized
patients with COVID-19 and severe lung disease at admission
using artificial intelligence tools, such as a support vector
machines (SVMs). SVMs are used to solve classification
problems (eg, category assignment), discrimination problems,
and regression problems. They require only a few parameters.
The performance of the SVM family of machine learning
algorithms is generally as good as, or even better than, neural
networks or Gaussian models. These biological assays, if they
can be used to determine an OS level, could become a routine
element of care, allowing a more precise assessment of the
severity of lung lesions in the event of COVID-19 infection.

Methods
Study Design
The OXYCOVID study is an observational, retrospective,
single-center study based on medical data collected dur-
ing hospitalization. All adult patients (ie, aged >18 years)
hospitalized with COVID-19 at the Infirmerie Protestante
(Lyon, France) were included, regardless of the care service
they used. Patients were not included if they did not consent
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to the collection and processing of their personal data, if they
were pregnant or breastfeeding, or if they had a protected
status (ie, curatorship or other legal protection; deprivation
of liberty by judicial or administrative decision). The data
were collected from the period from February 9, 2022, to May
18, 2022. The final sample for analysis included 28 patients
meeting the inclusion and exclusion criteria. All biological
data were recorded in each patient’s digital medical record.
Data Collection
The data were first collected and then sorted specifically
for each patient after checking for the absence of errors
and for missing data. After verification, no discrepancies
were found and the clinical and biological data were judged
to be usable. The data are fully anonymized. The data
included sociodemographics (sex and age), comorbidities,
and risk factors (weight, height, smoking status, hyperten-
sion, diabetes, chronic renal disease, severe chronic respira-
tory disease, autoimmune disease, immune deficiency, and
cancer). COVID-19 vaccines were also recorded, as were
data related to the current COVID-19 infection (date of the
latest polymerase chain reaction test from a nasopharyngeal
swab, variant, and date of first symptoms) and the reasons for
hospitalization.

At admission, clinical symptoms were recorded, includ-
ing the presence of fever (temperature >38°C), cough (yes
or no), dyspnea (felt by the patient during the initial ques-
tioning), myalgia (felt by the patient during the initial
questioning), fatigue (felt by the patient during the initial
questioning), diarrhea, oxyge saturation (SpO2), oxygenation
system used (nasal oxygen therapy, mask oxygen therapy, or
Optiflow system), and pulmonary embolism (determined by
a thoracic computed tomography angiogram). Biological data
were taken from venous blood samples during hospitalization
and included complete blood count; levels of urea, creati-
nine, C-reactive protein (CRP), troponin, D-dimer, ferritin,
lactase dehydrogenase, and prothrombin; activated partial
thromboplastin time; levels of total bilirubin, gamma-GT,
transaminase, albumin, and interleukin-6; and an OxyCheck
panel including the following 10 markers: zinc (Zn), copper
(Cu), Cu/Zn ratio, selenium, uric acid, high sensitivity
CRP (hs-CRP), oxidized low-density lipoprotein, glutathione
peroxidase, glutathione reductase, and thiols.

Patients were triaged at admission into 3 mutually
exclusive grades. Grade 0 represented asymptomatic patients.
Grade 1 represented patients with mild to moderate clinical
signs (SpO2 >94% in ambient air or with oxygen [maxi-
mum 6 L/min], fever, cough, dyspnea, and respiratory rate
between 20 and 30 respirations/min). Grade 2 represented
the most severe patients, that is, those with severe pneumo-
nia (respiratory rate >30 respirations/min; arterial oxygen
saturation <90% despite fraction of inspired oxygen >40%
[>6 L/min]) or a rapid increase in oxygen needs (tachycar-
dia [heart rate >120 beats/min]), sweating, agitation, a need
for noninvasive ventilatory support with Optiflow (flow rate
<60 L/min at 60% fraction of inspired oxygen, ROX index
[oxygen saturation/respiration rate index] >3). Grade 2 also
included critical patients with severe pneumonia or acute

respiratory distress syndrome (index ROX <3 [if the ROX
index was <2.5, the patient was intubated]; Optiflow flow
rate >60 L/min at 60% fraction of inspired oxygen [if the
Optiflow flow rate was >80 L/min at 100% of fraction of
inspired oxygen, the patient was intubated]; partial pressure
of oxygen in the arterial blood/fraction of inspired oxygen
≤300 mm Hg) and patients with septic shock; acute, life-
threatening organ dysfunction related to a known or suspected
infection; an altered mental state (delirium or confusion);
oliguria; skin mottling; laboratory evidence of coagulop-
athy, thrombocytopenia, acidosis, or elevated lactic acid; or
hyperbilirubinemia.
Statistical Analysis
Baseline characteristics are reported as counts and percen-
tages for categorical variables and medians and IQR for
continuous variables. Each patient was assigned only one
grade, so the observations are considered independent. We
tested for significant outliers among all the biomarkers,
determined if distributions followed a normal distribution
using the Shapiro-Wilk test, and used the Levene test for
homogeneity of variances. Due to the small sample size,
the criteria for outlier values were not strictly applied in
the ANOVA. Tukey post-hoc tests were used for multi-
ple pairwise comparisons between severity groups when
significant differences were observed in the ANOVA. Finally,
an SVM was used to predict assignment for each grade,
taking into account the entire analysis profile. Statistical
analysis was performed with R (version 4.1.1; R Project for
Statistical Computing) and the tidyverse, ggpubr, and rstatix
libraries. The level of significance was set at P<.05.

Considering that collinearities within our dataset induced
by obvious links between biological parameters disrupted
traditional methods (eg, logistic regression or the classifica-
tion method), we used an SVM to predict assignment to each
grade for each patient, considering the entire analysis profile.
The SVM algorithm is a supervised learning algorithm that
uses training data to build a model to predict or classify
new observations. SVMs are a machine learning method
for nonlinear regression classification [24-26]. Our approach
consisted in using the biomarker database as a training dataset
for the SVM model (eg, the SVM training dataset). This
resulted in a model capable of predicting the probability that
a patient would be assigned a specific grade based on the
results of a biological analysis, provided that the values did
not exceed those used in the initial dataset; that is, the sum
of the 3 probabilities was equal to 1. This method resulted in
a profile in the form of a graph establishing the link between
a combination of biomarkers and the probability of being
assigned to the different severity grades. The SVM analysis
was performed using JMP Pro (version 17.2; JMP Statistical
Discovery).
Ethical Considerations
Participation in this study was voluntary, and all participants
received an individual notice at admission to the ICU, which
included informed consent (the individual notice is included
in Multimedia Appendix 1). This study was based on data
available in the medical record and did not require any

JMIR FORMATIVE RESEARCH Raspado et al

https://formative.jmir.org/2025/1/e66509 JMIR Form Res 2025 | vol. 9 | e66509 | p. 3
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e66509


additional medical visits or examinations; it also did not lead
to any changes in the management or treatment of patients.
The data were irreversibly deidentified for the statistical
analysis. Participants did not receive any compensation. This
study was approved by the ethics committee of Infirmerie
Protestante of Lyon (CE-23‐01).

Results
Baseline Characteristics of Patients
A total of 28 patients met the inclusion criteria. The median
age was 75 (IQR 68.75-80) years, and the patients were

mostly male (n=17, 60.71%; Table 1). At admission, 8
patients were asymptomatic (grade 0), 14 had mild- to
moderate-severity illness (grade 1) and 6 had severe to critical
symptoms (grade 3). The most common reported symptoms
were cough and fever.

Table 1. Baseline characteristics of the 28 patients hospitalized for COVID-19, including hospitalized patients; socio-demographics, vaccination
status, clinical symptoms at admission, and comorbidities.

All patients (N=28)
Asymptomatic patients
(grade 0; n=8)

Mild to moderate patients
(grade 1; n=14)

Severe to critical patients
(grade 2; n=6)

Sociodemographics
  Sex ratio 1.54 0.6 1.8 5
Male, n (%) 17 (61) 3 (38) 9 (64) 5 (83)
  Age (years), median (IQR) 75 (68.75-80) 71.5 (65.5-75.25) 75.5 (68.75-80.25) 71.0 (65.5-78.75)
COVID-19 vaccination, n (%)
  Vaccinated (primary series) 5 (18) 1 (12) 3 (21 ) 1 (17)
  Unvaccinated 3 (11) 0 (0) 2 (14 ) 0 (0)
  Unknown 20 (71 ) 7 (87) 9 (64 ) 5 (83 )
Clinical symptoms at admission, n (%)
  Alteration of the general state 12 (43) 0 (0) 9 (64) 3 (50)
  Fever (temperature >38°C) 12 (43) 0 (0) 8 (57) 4 (67)
  Cough 10 (36) 0 (0) 9 (63) 1 (17)
  Dyspnea (>20 respirations/

min)
10 (36) 0 (0) 8 (57) 2 (33)

  Myalgia 2 (7) 2 (25) 0 (0) 0 (0)
  Diarrhea 3 (11) 0 (0) 3 (21) 0 (0)
  Pulmonary embolism 1 (4) 0 (0) 1 (7) 0 (0)
Comorbidities, n (%)
  Diabetes 11 (39) 3 (37) 5 (36) 3 (50)
  Hypertension 14 (50) 3 (37) 8 (57) 3 (50)
  Cancer 13 (46) 1 (12) 9 (64) 3 (50)

Descriptive Analysis of the OS
Biomarkers
Results for the detection of outliers, the normality test, and
the homogeneity of variance are provided in Table 2. The

OS biomarkers that met the criteria for the ANOVA were Zn
(P=.002), Cu/Zn ratio (P=.009), hs-CRP (P=.02), and thiols
(P=.004).

Table 2. Verification of the conditions for the ANOVA (outlier detection, verification of the normality of values between groups, and verification of
homogeneity of variance between groups) and results of a 1-way ANOVA.

Outlier detection, n Shapiro-Wilk test a Levene testb ANOVA
Grade 0 Grade 1 Grade 2 Grade 0 Grade 1 Grade 2

Zinc 1 0 0 .97 .97 .66 .35 0.002
Copper 0 0 0 .98 .31 .80 .78 0.343
Copper/zinc ratio 0 1 0 .68 .008 .24 .52 0.009
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Outlier detection, n Shapiro-Wilk test a Levene testb ANOVA
Grade 0 Grade 1 Grade 2 Grade 0 Grade 1 Grade 2

Selenium 0 0 0 .50 .46 .045 .63 0.303
Uric acid 1 1 0 .02 .19 .60 .89 0.528
High-sensitivity C-
reactive protein

0 0 0 <.001 .04 .72 .08 0.017

Oxidized low-density
lipoprotein

1 0 0 .18 .70 .33 .55 0.872

Glutathione peroxydase 0 0 1 .18 .51 .03 .99 0.380
Glutathione reductase 0 0 0 .23 .88 .19 .03 0.194
Thiols 1 0 0 .34 .76 .07 .63 0.004

aIf the data are normally distributed, the P value is greater than .05.
bIf the variances are homogeneous, the P value is greater than .05.

Statistical differences were observed between the grade 0 and
grade 1 patients and between the grade 0 and grade 2 patients

for the 3 OS biomarkers, but the difference was nonsignifi-
cant between the grade 1 and 2 patients (Table 3).

Table 3. Comparison between the severity grades depending on the 3 OS biomarkers using the Tukey post-hoc test.
Grade 0 versus grade 1 Grade 0 versus grade 2 Grade 1 versus grade 2

Zinc 0.005 0.003 0.609
Copper/zinc ratio 0.012 0.029 0.981
Thiols 0.004 0.019 1

Predictive Model Using SVM
Table 4 shows the results obtained from the SVM (Multi-
media Appendix 2 provides detailed results). The clinical
classification and the SVM prediction differed in only 2 of the
28 cases. One of these cases was a patient who was clinically
classified as grade 1; he was symptomatic but did not meet
the criteria for intubation. The biological analysis profile was
abnormal (low thiols [4.1], low zinc, very high Cu/Zn ratio
[2.2]). The SVM model classified this patient as grade 2
with a probability of 70.7%. He remained hospitalized for
1 month with active therapy, made good progress, and was
discharged. The other patient was initially classified as grade

2; he was strongly symptomatic with high dependence on
high-flow oxygen therapy. The biological analysis profile was
abnormal (Cu/Zn ratio=3.57). The SVM model classified this
case as grade 1 with a probability of 65.8%, probably due to
slightly decreased plasma thiol and zinc levels. The clinical
course of this patient quickly became favorable.

With a misclassification rate of only 7%, we estimated that
the training of the SVM model was good enough and that
it was able to predict the grade of patients with COVID-19
infection based on the results of the initial specific biological
assays (upon arrival).

Table 4. Comparison of the clinically observed grade and the most likely grade (eg, a higher probability of belonging to the grade) predicted by the
support vector machine (SVM).
Clinically observed grade Most likely grade predicted by SVM model (patients), n

Grade 0 Grade 1 Grade 2
Grade 0 8 0 0
Grade 1 0 13 1
Grade 2 0 1 5

Profiles of Biological Results as
Illustrative Examples
As an illustrative example, we created 3 biological result
profiles (named A, B, and C). These profiles were submitted
to the SVM model to determine the probability that they
belonged to grade 0, 1, or 2 (Table 5). Profile B had a

significantly high Zn level, low hs-CRP, a low Cu/Zn ratio,
and high thiols and was predicted to be grade 0. At the
opposite end, profile C had low Zn, low selenium, high
oxidized LDL, high glutathione peroxidase, a low Cu/Zn
ratio, and low glutathione reductase, corresponding to grade
2. Figure 1, Figure 2, and Figure 3 illustrate the predicted
probabilities per biomarker and per profile for profiles A to C.
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Table 5. Examples of 3 different biological profiles and the probability that they belonged to each grade of severity, as determined by the trained
support vector machine (Multimedia Appendix 2 provides complete results).

Profile
Zinc
(μg/L)

Copper
(μg/L)

Selenium
(μg/L)

Uric
acid
(μ
mol/L
)

High-
sensitiv
ity C-
reactive
protein
(mg/L)

Oxidized
low-
density
lipoprotei
n (U/L)

Glutathione
peroxidase
(U/L)

Cop
per/
zinc
ratio

Glutathione
reductase
(U/g of
hemoglobin
)

Thiols
(µmol/
g of
protei
n)

Pa grade
0

P grade
1 P grade 2

A 584.6
8

1300.8
2

55.96 329.8
2

134.34 58.75 403.54 2.35 9.80 4.58 12.8% 73.9% 13.3%

B 850.0
0

850.00 70.00 350.0
0

2.00 30.00 400.00 1.00 9.00 7.00 99% 0.7% 0.3%

C 595.0
0

1313.0
0

75.00 266.0
0

206.00 91.00 600.00 2.20 9.70 4.10 5.9% 23.9% 70.2%

aP: probabililty.

Figure 1. Predicted probabilities of belonging to grade 0, 1, or 2 per biomarker for profile A. Values shown in red indicate the specific values for the
profile. P: probability.

Figure 2. Predicted probabilities of belonging to grade 0, 1, or 2 per biomarker for profile B. Values shown in red indicate the specific values for the
profile. P: probability.

Figure 3. Predicted probabilities of belonging to grade 0, 1, or 2 per biomarker for profile C. Values shown in red indicate the specific values for the
profile P: probability.
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Discussion
Main Findings
Initially, we assumed that antioxidant supplementation for
patients in the ICU would reduce the severity of clinical
signs and improve their prognosis. The main challenge of
this feasibility study was performing a preanalytical and
analytical process for measuring OS biomarkers. As a first
observational finding, this study identified 3 biomarkers of
OS (Zn, Cu/Zn ratio, and thiols) associated with the severity
of patients, especially patients with a severity grade of 0
(ie, asymptomatic) or 1 (ie, mild to moderate severity). As
a second analytical finding, we found that the SVM model
could provide a prediction of the level of severity based on a
biological analysis of the level of OS in a relatively limi-
ted cohort and during an epidemic of respiratory infectious
disease, with only 7% misclassified cases in the training
dataset.

The originality of this work is the determination of the
grade of clinical severity through the analysis of specific OS
biomarkers using a machine learning model. What distin-
guishes an SVM algorithm from other classical approaches
is that when the response is continuous, the fitted models
are called a support vector regression (SVR) model. In a
typical regression problem, the goal is to fit a model that
minimizes the error between a predicted response and the
actual response. In an SVR problem, the goal is to fit a
model such that the error between a predicted response and
the actual response lies in a range of −ε to ε. This allows for
more flexible fitting. In JMP Pro, ε is equal to 0.1. The SVR
algorithm doubles the data by creating 2 classes, Y + ε and
Y − ε. Then, the same algorithm used for the classification
problem is also used for the prediction problem (ie, SVR).

Maximization in SVM algorithms is done by solving
a quadratic programming problem. In JMP Pro, the algo-
rithm used by the SVM platform is based on the sequen-
tial minimal optimization (SMO) algorithm introduced by
John Platt in 1998 [27]. Typically, the SVM quadratic
programming problem is very large. The SMO algorithm
divides the overall quadratic programming problem into a
series of smaller problems. The smaller problems are solved
analytically rather than numerically, which means that they
produce closed-form solutions. Therefore, the SMO algo-
rithm is more efficient than solving the overall quadratic
programming problem. While this univariate analysis did
not find any differences between grade 1 and grade 2, the
trained SVM model estimated the severity grade from the
same OS biomarkers; this could have a significant impact
in the management of patients at risk of sudden respiratory
decompensation. Although the power of the model would
benefit from being improved with clinical and biological data
from a larger cohort, this approach could be applied to other
types of epidemics and other biological assays, as well as to
the investigation of other diseases.

Comparison With Prior Work
We know that moderate and severe forms of COVID-19 are
associated with high OS and a low total antioxidant level,
which is measured with complex preanalytical and analytical
methods [28,29] that are not generally used in all laboratories,
have long delays in receiving results, and are not compatible
with management in ICUs [30]. Moderate and severe forms
of COVID-19 are accompanied by an increase in inflamma-
tory biomarkers, such as CRP, procalcitonin, the neutrophil
to lymphocyte ratio, and hemostasis parameters (activated
partial thromboplastin time, prothrombin time, D-dimers, and
fibrinogens) [29]. The natural correction of low levels of
endogenous antioxidants is slow, with a tendency to recover 3
months after hospital discharge [28].

High OS is not only specific to severe disease or infection,
but positively influences their severity. A basic infectiology
study with a porcine animal model of infection with the
avian-type H1N1 European swine influenza virus has shown
that prior infection of animals with mycoplasma generates
a high level of OS, increasing the severity of influenza
and reducing animal performance; host responses could be
influenced by diet [31].

The systemic OS status, determined using many bio-
markers, was still significantly increased in recovered
COVID-19 patients during the recovery phase. Nonhospital-
ized individuals with COVID-19 presented signs of systemic
OS, which is longitudinally associated with the development
of post–COVID-19 condition. Regular assessment of plasma
thiol levels as a monitoring biomarker and supplementation in
cases of deficiency might be potential therapeutic targets at
the onset of post–COVID-19 condition [32].

From the beginning of the epidemic, plasma thiol assays at
admission were a promising tool to predict ICU admission in
patients with COVID-19 [19]. The principles of nutrition for
patients in intensive care follow validated recommendations
with a high level of evidence [33]. Faced with inflamma-
tory syndrome and significant catabolism, caloric and protein
intake must be sufficient to combat muscle wasting and the
risk of infection. In products intended for parenteral or enteral
nutrition, specific micronutrients or macronutrients intended
to modulate inflammatory processes and optimize the body’s
immunological or metabolic responses are added, such as the
antioxidants β-carotene, vitamin A, vitamin C, or vitamin E,
in order to combat OS [34], which plays a central role in
the development of major inflammatory states and visceral
failure through the production of reactive oxygen species
(free radicals), which influence the consumption, distribution,
and level of antioxidants [35]. Lowered levels of antioxi-
dants are common and are associated with an increase in
morbidity and mortality [36]. Two meta-analyses showed that
supplementation with antioxidants (eg, vitamins and trace
elements) among ICU patients is associated with a reduction
in mortality [20,21] and a reduction in mechanical ventila-
tion time [20], but two more recent meta-analyses showed
that the evidence for these benefits remained questionable
because they were measured in small study populations and
with highly variable cocktails of antioxidant nutrients [23,37].
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Currently, it is not recommended to provide massive doses of
antioxidants to patients treated in intensive care.
Strengths and Limitations
The main limitation of this study is the sample size, with
less than 10 patients in the grade 0 and grade 2 groups.
Despite the small number of patients, we observed a statistical
difference between grade 0 and grade 1 patients in terms
of biomarkers associated with severity. The small sample
size was caused by a short study inclusion period due to
the hospital context and the ongoing crisis, which was not
suited to the inclusion of more patients or to the inclusion of
other hospitals. The medical and nursing team has contin-
ued to collect relevant clinical and biological data concern-
ing patients treated for COVID-19 infection since the end
of the study. These new data could be aggregated with
those collected during this study and analyzed with an SVM
in order to improve the performance of the severity stage
prediction. As a beneficial side effect, this study allowed
us to test the ability of the clinical research team to study
OS biomarkers and identify covariates and risk factors for
further investigation after using propensity scoring to adjust
for comorbidities and sociodemographic variables of patients.

As early as 2020, applying the SVM method to COVID-19
was reported in the scientific literature, but it was mainly
used for diagnosis and prediction of severity in a radiological
manner and as a scanner [26]. The prediction of severity stage
by SVM has been extended to the analysis of biomarkers
classically used in inflammatory and infectious pathologies
[27,28] but has not provided a consensus or an infallible score
to predict the level of severity. To our knowledge, this study
is the first to show the SVM method being used for predicting
the severity stage of COVID-19 with pulmonary involvement.

An important point to consider before generalizing the use
of prediction scores based on this panel of blood biologi-
cal OS analyses is the dosage method and standardization
of reference values for each analysis and between each
laboratory.
Conclusions
In patients with COVID-19 infection, moderate to severe
symptoms were correlated with a lowered Zn level, a
lowered plasma thiol level, an increased hs-CRP level, and
an increased Cu/Zn ratio in a panel of 10 OS biomarkers
not requiring complex preanalysis (Zn, Cu, Cu/Zn ratio,
selenium, uric acid, hs-CRP, oxidized LDL, glutathione
peroxidase, glutathione reductase, and thiols). Applying a
machine learning method (an SVM) to the results of this
same panel to evaluate the OS level in a retrospective cohort
allowed prediction of the level of severity of pulmonary
damage in hospitalized patients with COVID-19. Since this
panel does not require a complex preanalytical method, it can
be used and studied in other pathologies associated with OS,
such as infectious pathologies or chronic diseases. Intensive
care teams are accustomed to monitoring and managing major
inflammatory symptoms, and although it is likely that they
need to augment their practices to manage OS and the supply

of antioxidants, the biological exploration of OS requires
highly complex preanalytical and analytical processes that,
to date, are highly limiting factors in the development and
dissemination of relevant OS assessments. The fragility and
thermolability of certain biomarkers means that any redox
reactions that might take place in the sample must be halted;
thus, the mandatory use of −80 °C conditions throughout
the preanalytical phase makes analysis complex and in
some cases even technically unfeasible. We have therefore
developed an OS panel with 10 biomarkers that overcomes all
these constraints without compromising scientific relevance
by performing an assessment of OS based on a series of
biomarkers that do not require complex preanalysis (simple
freezing at −20 °C); these biomarkers were selected with a
machine learning approach in 2009 [23]. The results from this
panel showed real significance in estimating OS with robust
and reproducible results. Iterative training of this SVM model
with a biomarker panel in a larger cohort of patients with
OS would give it more power and precision. By determin-
ing the ideal weighting of each of the biomarkers with a
scientifically validated algorithm, we could obtain a score
to estimate the level of OS. A Belgian intensive care team
assessed total antioxidant capacity with an electrochemical
method (eg, the Total Antioxidant Power technology) rather
than by the analysis of biological samples (blood, saliva, or
urine), finding that it had potential as a less expensive and
much faster alternative to the individual analysis of biomark-
ers linked to pro-oxidants [30]. This would allow intensive
care teams to monitor and respond in real time to systemic OS
in their patients.

The World Health Organization has already announced
the very probable risk of the appearance of a new epidemic
caused by new types of severe acute respiratory syndrome or
by the “humanization” of the avian influenza A (H5N1) virus
in the years to come [38]. Given the contagiousness and the
risk of decompensation, particularly respiratory decompensa-
tion, or even death from these viral infections, considering
systemic OS in addition to the inflammatory syndrome could
be a determining factor in the effectiveness of care in the
future. The early and systematic use of machine learning
models such as SVMs in clinical, radiological, and biologi-
cal assessments at the start of an epidemic could provide
a better understanding of the functioning and mechanisms
of novel pathogens and reduce human loss of life. Shar-
ing of results between different care centers with dedicated
databases would accelerate learning and improve the accuracy
of these statistical tools.

From a public health perspective, individuals are subject to
a range of exposures through the environment (air pollution,
solar radiation, and temperature variations) and lifestyle (lack
of sleep, psychological stress, tobacco, and poor diet); this is
summarized in the term “exposome.” This directly impacts
the OS level and therefore the body’s ability to defend itself
in the event of infection. Taking action to maintain a healthy
environment and lifestyle would help mitigate the severity of
diseases such as COVID-19 [39].
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