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Abstract

Background: The incidence of delirium in patients with burns receiving treatment in the intensive care unit (ICU) is high,
reaching up to 77%, and has been associated with increased mortality rates. Therefore, early identification of patients at high risk
of delirium onset is essential for improving treatment strategies.

Objective: This study aimed to create a machine learning model for predicting delirium in patients with burns during their ICU
stay using patient data from the first day of ICU admission and identify predictive factors for ICU delirium in patients with burns.

Methods: This study focused on 82 patients with burns aged ≥18 years who were admitted to the ICU at Mie University Hospital
for ≥24 hours between January 2015 and June 2023. In total, 70 variables were measured in patients upon ICU admission and
used as explanatory variables in the ICU delirium prediction model. Delirium was assessed using the Intensive Care Delirium
Screening Checklist every 8 hours after ICU admission. A total of 10 different machine learning methods were used to predict
ICU delirium. Multiple receiver operating characteristic curves were plotted for various machine learning models, and the area
under the curve (AUC) for each was compared. In addition, the top 15 risk factors contributing to delirium onset were identified
using Shapley additive explanations analysis.

Results: Among the 10 machine learning models tested, logistic regression (mean AUC 0.906, SD 0.073), support vector
machine (mean AUC 0.897, SD 0.056), k-nearest neighbor (mean AUC 0.894, SD 0.060), neural network (mean AUC 0.857,
SD 0.058), random forest (mean AUC 0.850, SD 0.074), adaptive boosting (mean AUC 0.832, SD 0.094), gradient boosting
machine (mean AUC 0.821, SD 0.074), and naïve Bayes (mean AUC 0.827, SD 0.095) demonstrated the highest accuracy in
predicting ICU delirium. Specifically, 24-hour urine output (from ICU admission to 24 hours), oxygen saturation, burn area, total
bilirubin level, and intubation upon ICU admission were identified as the major risk factors for delirium onset. In addition,
variables, such as the proportion of white blood cell fractions, including monocytes; methemoglobin concentration; and respiratory
rate, were identified as important risk factors for ICU delirium.
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Conclusions: This study demonstrated the ability of machine learning models trained using vital signs and blood data upon
ICU admission to predict delirium in patients with burns during their ICU stay.

(JMIR Form Res 2025;9:e65190) doi: 10.2196/65190
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Introduction

Background
Delirium is a significant complication in patients in the intensive
care unit (ICU) and is recognized as an urgent medical need
requiring treatment and prevention. Delirium is defined as acute
brain dysfunction associated with underlying conditions
characterized by fluctuating bouts of impaired consciousness,
attention, and cognition. This condition is frequently observed
in patients admitted to the ICU, with delirium occurring in 10%
to 50% of patients [1]. Delirium is an independent predictor of
poor outcomes, and there is currently no established specific
treatment, making early diagnosis and prevention critically
important [2]. In particular, the incidence of delirium in patients
with burns can reach 77% [3], with reports indicating that 30%
of patients who develop delirium respond effectively to
prevention and treatment [4]. These facts underscore the
importance of identifying patients at high risk of delirium and
implementing preventive measures.

In recent years, research on ICU delirium prediction using
artificial intelligence technology has advanced, with a particular
focus on the application of various machine learning algorithms.
These algorithms, such as random forest (RF), support vector
machine (SVM), and gradient boosting, can be used to develop
predictive models for ICU delirium [5]. While these algorithms
themselves do not identify relevant features, they can be
combined with feature importance analysis techniques such as
Shapley additive explanations (SHAP) to determine which
variables contribute most significantly to the predictions. This
approach allows for the analysis of large volumes of patient
data with speed and accuracy beyond human capacity. However,
research on the prediction of ICU delirium in patients with burns
remains underdeveloped, and very few studies have been
conducted in this field.

Objectives
This study aimed to demonstrate whether it is possible to predict
ICU delirium in patients with burns using machine learning.
Specifically, we hypothesized that a machine learning model
using clinical data such as vital signs and blood test results could
predict delirium in ICU patients. The null hypothesis was that
these models would not be superior to random chance in
predicting ICU delirium.

While ICU delirium prediction potential for multiple machine
learning models, as well as the model with the highest accuracy,
was assessed, the second objective of this study was to identify
risk factors for ICU delirium in patients with burns and
contribute to the development of more effective prevention and
treatment strategies.

This ICU delirium prediction approach using machine learning
has the potential to support the early detection of ICU delirium
in patients with burns and, ultimately, improve patient outcomes.

Methods

Patient Demographics and Data Collection
This was a retrospective observational study focused on
predicting delirium in patients with burns admitted to the ICU.
This study included 82 patients with burns aged ≥18 years who
were admitted to the Mie University Hospital ICU for ≥24 hours
between January 2015 and June 2023. The sample size of 82
patients was determined by including all patients with burns
who were admitted to the ICU within the study period.

Patients were retrospectively included based on the inclusion
criteria, which ensured the comprehensive capture of all eligible
cases during the study period. This approach minimized
selection bias and allowed for a representative sample of the
population of patients with burns in our ICU.

Physiological, biochemical, and clinical data collected from
these patients upon ICU admission were used to extract 70
explanatory variables. This study aimed to develop a model
using these 70 variables to predict delirium onset during ICU
admission, assess its accuracy, and identify the risk factors
contributing to each model.

The Definition, Diagnostic Criteria, and Standard
Assessment of ICU Delirium
ICU delirium, also known as ICU psychosis, is an acute,
fluctuating change in consciousness and cognition that occurs
frequently in patients who are critically ill. ICU delirium is
characterized by disturbances in attention, awareness, and
cognitive function. These disturbances are often temporary and
reversible but can lead to prolonged ICU stays, increased
morbidity and mortality, and long-term cognitive impairments
if not properly managed.

The standard assessment of ICU delirium involves the use of
validated diagnostic tools to ensure accurate detection and timely
intervention. In total, 2 widely recognized tools are the
Confusion Assessment Method for the Intensive Care Unit
(CAM-ICU) and the Intensive Care Delirium Screening
Checklist (ICDSC).

The CAM-ICU is a structured diagnostic tool specifically
designed for use in the ICU setting. It is based on the Confusion
Assessment Method and has been modified for the critical care
environment. The CAM-ICU assesses four key features: (1)
acute onset of mental status changes or a fluctuating course, (2)
inattention, (3) disorganized thinking, and (4) altered level of
consciousness. A positive CAM-ICU diagnosis requires the
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presence of both features 1 and 2 and either feature 3 or 4. This
tool is favored for its ease of use and quick administration,
making it suitable for frequent assessments.

The ICDSC is another tool used to screen for delirium in ICU
patients, consisting of an 8-item checklist that assesses various
cognitive and behavioral symptoms associated with delirium.
The items are (1) altered level of consciousness, (2) inattention,
(3) disorientation, (4) hallucinations or delusions, (5)
psychomotor agitation or retardation, (6) inappropriate speech
or mood, (7) sleep and wake cycle disturbances, and (8)
symptom fluctuation. Each item is scored based on its presence
within the previous 24 hours, and a total score of ≥4 indicates
the presence of delirium. The ICDSC provides a comprehensive
overview of the patient’s condition over a longer period than
the CAM-ICU.

In this study, delirium was assessed using the internationally
recognized ICDSC every 8 hours after ICU admission. Delirium
was diagnosed when the ICDSC score was ≥4 points. We opted
for a binary classification approach because this method
simplifies the model’s output to either delirium present or
delirium absent, facilitating smoother decision-making in
clinical settings. Another reason for this choice was the diversity
in patient conditions in real-world clinical environments, where
a few specific atypical cases can skew the predictions of
regression models. Binary classification is less susceptible to
the influence of such outliers, enabling the development of a
more robust model. This method allowed for accurate
determination of the presence and severity of delirium.

Development of Machine Learning Models
In total, 10 different algorithms were used to develop the
machine learning models: logistic regression (LR), RF, SVM,
neural network, k-nearest neighbor (KNN), decision tree, naïve
Bayes, adaptive boosting (AdaBoost), gradient-boosting machine
(GBM), and linear discriminant analysis (LDA). These models
were selected based on the area under the receiver operating
characteristic curve (AUC) to compare the accuracy of delirium
prediction.

Ethical Considerations
This study was approved by the ethics committee of Mie
University (H2020-164), ensuring compliance with ethical
guidelines for clinical research. This study underwent ethical
review and was approved as a clinical research study. For
informed consent, we applied the opt-out method, allowing
participants to refuse the inclusion of their data in this study. If
participants chose to opt out, their data were excluded from the
analysis. To protect privacy and confidentiality, all study data
were fully anonymized. Data extracted from electronic medical
records were deidentified, ensuring that individual patients could
not be identified. No compensation was provided to participants.
As the study used an opt-out approach, participants had the right
to refuse the inclusion of their data without any consequences.

Feature Importance Analysis Using SHAP
In this study, we used SHAP to interpret the feature importance
of our machine learning models. SHAP provides a unified
measure of each variable’s contribution to the prediction

outcome. By applying SHAP, we identified the top 15 predictors
of ICU delirium across all models, which allowed for a detailed
understanding of the factors most associated with delirium onset.
The SHAP values helped clarify the influence of variables such
as 24-hour urine output, total bilirubin (T-bil) levels, and
respiratory rate on the predictive performance of the models.
SHAP analysis also enabled clinicians to visualize and interpret
the risk factors, enhancing the practical applicability of the
model’s predictions.

Data Preprocessing for Machine Learning

Handling Missing Values
In this study, missing values were not handled. This approach
ensured that all features had complete data, thus preserving the
dataset’s integrity without excluding any records.

Data Splitting
The dataset was loaded from a CSV file using the Pandas
library. It was then split into explanatory variables and the target
variable, where the target variable was delirium. The data were
divided into 2 subsets: 80% was allocated for training the model,
and 20% was reserved for internal validation. To evaluate the
model’s performance, the dataset was further split into folds
using stratified k-fold cross-validation, which ensures that the
proportion of classes remains consistent across folds.

Data Standardization
The explanatory variables in both the training and test sets were
standardized using StandardScaler from the sklearn library to
ensure that each feature had a mean of 0 and an SD of 1. This
preprocessing step is crucial for models sensitive to feature
scaling.

Model Selection and Initialization
Several machine learning models were initialized for this study,
including SVM, neural network, KNN, decision tree, naïve
Bayes, AdaBoost, GBM, LDA, LR, and RF. Each model was
imported from the sklearn or SciPy library and initialized with
appropriate default parameters.

Hyperparameter Tuning
For specific models, such as SVM, neural network, KNN,
decision tree, and RF, hyperparameter tuning was performed
using grid search with cross-validation. The GridSearchCV
class from the sklearn library was used to search for the best
combination of hyperparameters, optimizing the model’s
performance based on the AUC metric.

Model Training and Evaluation
Each model was trained using stratified k-fold cross-validation
to ensure robust performance evaluation. For models with
hyperparameter grids defined, grid search was applied to find
the best hyperparameter set. The best-performing model from
the grid search was then used to fit the data in each fold. The
model’s performance was evaluated using the AUC score on
the test subset within each fold.
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Statistical Analysis
Continuous variables are reported as medians with IQRs and
were compared using the Mann-Whitney U test or the
Kruskal-Wallis test, depending on the number of groups.
Categorical variables are expressed as counts and percentages,
with comparisons made using the Fisher exact test or the
chi-square test, as appropriate. All statistical analyses were
conducted using the SPSS software (version 21; IBM Corp),
and statistical significance was defined as P<.05.

To evaluate differences in model performance, pairwise 2-tailed
t tests were applied to the AUC scores using the ttest_ind
function from the scipy.stats module. In addition, a 1-way
ANOVA was conducted using the f_oneway function to identify
statistically significant differences across models.

Model performance results were visualized through bar charts
displaying the mean AUC scores along with their SDs for each
model. These visualizations were created using the Matplotlib
library. A heat map was also generated to illustrate pairwise P
values from the t tests, offering a clear representation of the

statistical significance of the differences between models. The
ANOVA P value was similarly calculated and displayed.

Results

Comparative Analysis of ICU Delirium in Patients
With Burns
Compared to patients without delirium (Table 1), patients with
burns with ICU delirium were older (age: median 77.0, IQR
69.5-84.5 years vs median 60.5, IQR 37.5-73.0 years; P<.001),
were more likely to have airway burns (12/32, 38% vs 8/50,
16%; P=.03), and experienced longer ICU stays (median 2.5,
IQR 1.8-11.2 days vs 2.0, IQR 1.0-3.0 days; P=.009). The
mortality rate was significantly higher in the delirium group
(7/32, 22% vs 0%; P=.001), and these patients more frequently
required intubation (20/32, 62% vs 4/50, 8%; P<.001). The
delirium group also had greater burn areas (median 16%, IQR
9.75%-34% vs 8%, IQR 4.6%-17%; P=.007) and burn indexes
(median 9.5, IQR 4.7-25.1 vs median 4.0, IQR 1.0-10.0;
P=.002).
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Table 1. Characteristics of patients with burns with intensive care unit (ICU) delirium—comparison of explanatory factors between patients with and
without deliriuma.

P valueBurns without delirium (n=50)Burns with delirium (n=32)

<.001 b60.5 (37.5-73.0)77.0 (69.5-84.5)Age (y), median (IQR)

.9032 (64)20 (63)Sex (male), n (%)

.42162.2 (158.0-168.0)160.5 (150.0-170.0)Height (cm), median (IQR)

.0760.2 (50.5-67.1)54.4 (44.4-63.3)Weight (kg), median (IQR)

.0623.1 (19.7-24.9)21.2 (19.0-23.4)BMI (kg/m2), median (IQR)

.03 b8 (16)12 (38)Airway burns, n (%)

.009 b2.0 (1.0-3.0)2.5 (1.8-11.2)Length of ICU stay (days), median (IQR)

.001 b0 (0)7 (22)Mortality rate, n (%)

<.001 b4 (8)20 (62)Intubation, n (%)

.007 b8 (4.6-17)16 (9.75-34)Burn area (%), median (IQR)

.002 b4.0 (1.0-10.0)9.5 (4.7-25.1)Burn index, median (IQR)

.006 b8.8 (6.5-11.3)11.9 (9.0-18.5)WBCc (103 per μL), median (IQR)

.514.4 (4.0-4.9)4.3 (3.7-5.3)RBCd (106 per μL), median (IQR)

.04 b14.6 (14.0-15.9)13.5 (11.9-15.9)Hemoglobin (g/dL), median (IQR)

.009 b43 (41-46.7)40 (35-44)Hematocrits (%), median (IQR)

.9592.3 (87.7-95.6)92.0 (89.9-93.8)MCVe (fL), median (IQR)

.7131.4 (29.7-32.9)30.8 (30.0-32.4)MCHf (pg), median (IQR)

.7733.9 (33-34.6)33.8 (33.2-34.6)MCHCg (%), median (IQR)

.50249.5 (202.2-302.0)205.5 (165.0-314.8)Platelet count (103 per μL), median (IQR)

.04 b74.4 (64.6-80.9)77 (73.9-83.7)Neutrophils (%), median (IQR)

.02 b16.8 (12.6-23.6)15.8 (8.4-17.9)Lymphocytes (%), median (IQR)

.736.6 (5.7-7.2)6.6 (5.2-7.7)Monocytes (%), median (IQR)

.04 b1.2 (0.6-1.9)0.6 (0.4-1.4)Eosinophils (%), median (IQR)

.840.4 (0.2-0.5)0.4 (0.2-0.5)Basophils (%), median (IQR)

.03 b6840.0 (4449.2-9029.0)8985 (6265-10,830)Neutrophil count (103 per μL), median (IQR)

.551550.0 (1178.2-2145.0)1550 (1130-1943)Lymphocyte count (103 per μL), median (IQR)

.04 b575.0 (447.5-767.0)767 (478-993)Monocyte count (103 per μL), median (IQR)

.2290.0 (40.0-167.7)70.0 (37.5-111.0)Eosinophil count (103 per μL), median (IQR)

.1337.0 (20.0-50.0)38.5 (30.0-62.5)Basophil count (103 per μL), median (IQR)

.02 b27.4 (24.9-29.9)30.8 (25.9-36.8)APTTh (seconds), median (IQR)

.001 b11.3 (10.8-12.1)12.2 (11.5-13.6)PTi (seconds), median (IQR)

.001 b105.4 (97-116.9)94.8 (77-104.1)PT (%)j, median (IQR)

.002 b0.9 (0.9-1.0)1.0 (0.9-1.1)PT-INRk, median (IQR)

.20272.5 (225.2-327.7)299.0 (251.2-374.2)Fibrinogen (mg/dL), median (IQR)

.02 b1.0 (0.2-8.2)4.0 (1.5-8.5)D-dimer (μg/mL), median (IQR)

.04 b7.4 (7.3-7.4)7.3 (7.3-7.4)pH, median (IQR)
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P valueBurns without delirium (n=50)Burns with delirium (n=32)

.2836.5 (33.2-39.7)40.0 (31.7-45.0)PCO2
l (mm Hg), median (IQR)

.03 b123.0 (83.2-166.0)152.5 (93.5-322.7)PO2 (mm Hg), median (IQR)

.01 b97.6 (94.9-99)99.1 (98.3-99.6)SO2
m (%), median (IQR)

.7623.1 (20.5-24.4)23.1 (18.9-25.6)HCO3−n (mmol/L), median (IQR)

.2413.1 (10.4-17.2)10.4 (4.4-17.9)Anion gap (mmol/L), median (IQR)

.5995.9 (90.8-97.1)96.0 (92.5-97.3)O2-Hbo (%), median (IQR)

.751.7 (0.7-3.4)1.6 (1.1-3.4)CO-Hbp (%), median (IQR)

.004 b0.4 (0.3-0.9)0.9 (0.5-1.1)MetHbq (%), median (IQR)

.601.1 (1.0-1.1)1.1 (1.0-1.1)Ionized calcium (mmol/L), median (IQR)

.452.3 (1.8-3.3)3.0 (1.5-4.9)Lactate (mmol/L), median (IQR)

.006 b7.0 (6.2-7.5)6.4 (5.9-6.7)TPr (g/dL), median (IQR)

.004 b4.1 (3.2-4.4)3.6 (3.1-3.9)Albumin (g/dL), median (IQR)

.0113.4 (11.0-19.0)16.9 (12.8-22.7)BUNs (mg/dL), median (IQR)

.03 b0.7 (0.5-0.8)0.8 (0.6-1.0)Creatinine (mg/dL), median (IQR)

.02 b83.7 (59.9-101.0)67.2 (47.8-87.2)eGFRt (mL per minute per 1.73 m2), median
(IQR)

>.99140.0 (138.0-141.0)139.0 (138.0-141.0)Sodium (mmol/L), median (IQR)

.583.9 (3.7-4.4)4.0 (3.7-4.5)Potassium (mmol/L), median (IQR)

.57104.0 (103.0-106.7)105.0 (102.0-107.0)CLu (mmol/L), median (IQR)

.009 b8.9 (8.4-9.2)8.5 (8.2-8.9)Calcium (mg/dL), median (IQR)

.3030.5 (24.2-38.0)39.5 (22.7-60.5)ASTv (U/L), median (IQR)

.4620.5 (14.5-29.0)23.0 (14.0-43.5)ALTw (U/L), median (IQR)

.05255.5 (197.7-303.0)294.5 (216.7-630.7)LDHx (U/L), median (IQR)

.05177.0 (91.5-221.7)215.5 (154.2-263.5)ALPy (U/L), median (IQR)

<.001 b0.6 (0.4-0.8)0.9 (0.7-1.3)T-bilz (mg/dL), median (IQR)

.64136.0 (113.2-180.5)147.0 (120.5-179.2)Glucose (mg/dL), median (IQR)

.06129.0 (80.0-243.0)249.5 (96.5-645.7)CPKaa (U/L), median (IQR)

.4680.5 (61.0-103.5)85.5 (57.7-134.0)AMYab (U/L), median (IQR)

.03 b0.1 (0.0-1.85)0.4 (0.0-5.5)CRPac (mg/dL), median (IQR)

<.001 b1493.0 (985.0-1977.0)412.5 (215.0-908.2)Daily urinary output (mL), median (IQR)

.01 b16.0 (14.0-20.0)19.5 (17.7-21.0)Respiratory rate (breaths per minute), median
(IQR)

.84141.0 (124.2-157.0)146.5 (115.5-160.2)sBPad (mmHg), median (IQR)

.9974.0 (65.5-86.5)81.0 (64.7-88.5)dBPae (mmHg), median (IQR)

.1288.5 (81.2-99.0)97.0 (81.0-113.5)HRaf (beats per minute), median (IQR)
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P valueBurns without delirium (n=50)Burns with delirium (n=32)

.2337.0 (36.8-37.4)37.0 (36.3-37.5)BTag (°C), median (IQR)

aThis table presents the demographic, clinical, and laboratory characteristics of adult patients with burns who were admitted to the ICU at Mie University
Hospital between January 2015 and June 2023. This study compared patients who developed ICU delirium with those who did not, highlighting
differences in vital signs, burn severity, inflammatory markers, coagulation parameters, organ function indicators, and other physiological variables.
The findings aimed to identify key risk factors for ICU delirium and provide insights into the pathophysiology and early prediction of delirium in patients
with burns who are critically ill. Statistical comparisons were conducted using median and IQR values, with a P value of <.05 considered statistically
significant.
bStatistically significant at P<.05.
cWBC: white blood cell count.
dRBC: red blood cell count.
eMCV: mean corpuscular volume.
fMCH: mean corpuscular hemoglobin.
gMCHC: mean corpuscular hemoglobin concentration.
hAPTT: activated partial thromboplastin time.
iPT: prothrombin time.
jPT percentage.
kPT-INR: prothrombin time international normalized ratio.
lPCO2: partial pressure of carbon dioxide.
mSO2: saturation of oxygen.
nHCO3–: bicarbonate.
oO2-Hb: oxygenated hemoglobin.
pCO-Hb: carboxyhemoglobin.
qMetHb: methemoglobin.
rTP: total protein.
sBUN: blood urea nitrogen.
teGFR: estimated glomerular filtration rate.
uCL: chloride.
vAST: aspartate aminotransferase.
wALT: alanine aminotransferase.
xLDH: lactate dehydrogenase.
yALP: alkaline phosphatase.
zT-bil: total bilirubin.
aaCPK: creatine phosphokinase.
abAMY: amylase.
acCRP: C-reactive protein.
adsBP: systolic blood pressure.
aedBP: diastolic blood pressure.
afHR: heart rate.
agBT: body temperature.

Laboratory parameters further demonstrated significant
differences. The delirium group showed higher white blood cell
counts (median 11.9, IQR 9.0-18.5 per μL vs median 8.8, IQR
6.5-11.3 per μL; P=.006), lower hemoglobin (median 13.5, IQR
11.9-15.9 g/dL vs median 14.6, IQR 14.0-15.9 g/dL; P=.04),
and lower hematocrit levels (median 40%, IQR 35%-44% vs
median 43%, IQR 41%-46.7%; P=.009). Neutrophil percentages
were elevated (median 77%, IQR 73.9%-83.7% vs median
74.4%, IQR 64.6%-80.9%; P=.04), whereas lymphocyte (median
15.8%, IQR 8.4%-17.9% vs median 16.8%, IQR 12.6%-23.6%;
P=.02) and eosinophil (median 0.6%, IQR 0.4%-1.4% vs median
1.2%, IQR 0.6%-1.9%; P=.04) percentages were lower in the
delirium group. Absolute neutrophil counts were higher (median
8985, IQR 6265-10,830 cells per µL vs median 6840, IQR

4449.2-9029.0 cells per µL; P=.03), as were monocyte counts
(median 767, IQR 478-993 cells per µL vs median 575.0, IQR
447.5-767.0 cells per µL; P=.04).

Coagulation parameters revealed that activated partial
thromboplastin time was prolonged in the delirium group
(median 30.8, IQR 25.9-36.8 seconds vs median 27.4, IQR
24.9-29.9 seconds; P=.02). Prothrombin time (PT) and PT
percentage also differed significantly (median 12.2, IQR
11.5-13.6 seconds vs median 11.3, IQR 10.8-12.1 seconds with
P=.001 and median 94.8%, IQR 77%-104.1% vs median
105.4%, IQR 97%-116.9% with P=.001, respectively), as did
the PT international normalized ratio (median 1.0, IQR 0.9-1.1
vs median 0.9, IQR 0.9-1.0; P=.002). D-dimer levels were
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elevated (median 4.0, IQR 1.5-8.5 mg/L vs median 1.0, IQR
0.2-8.2 mg/L; P=.02).

Acid-base and oxygenation parameters showed a lower pH
(median 7.3, IQR 7.3-7.4 vs median 7.4, IQR 7.3-7.4; P=.04)
and higher PO2 (median 152.5, IQR 93.5-322.7 mmHg vs
median 123.0, IQR 83.2-166.0 mmHg; P=.03) in the delirium
group. Oxygen saturation was also significantly higher (median
99.1%, IQR 98.3%-99.6% vs median 97.6%, IQR 94.9%-99%;
P=.01), as was methemoglobin (MetHb; median 0.9%, IQR
0.5%-1.1% vs median 0.4%, IQR 0.3%-0.9%; P=.004).

Biochemical markers indicated lower total protein (median 6.4,
IQR 5.9-6.7 g/dL vs median 7.0, IQR 6.2-7.5 g/dL; P=.006)
and albumin (median 3.6, IQR 3.1-3.9 g/dL vs median 4.1, IQR
3.2-4.4 g/dL; P=.004) levels in the delirium group. Creatinine
levels were higher (median 0.8, IQR 0.6-1.0 mg/dL vs median
0.7, IQR 0.5-0.8 mg/dL; P=.03), and estimated glomerular
filtration rate was lower (median 67.2, IQR 47.8-87.2 mL per

minute per 1.73 m2 vs median 83.7, IQR 59.9-101.0 mL per

minute per 1.73 m2; P=.02). Serum calcium was lower (median

8.5, IQR 8.2-8.9 mg/dL vs median 8.9, IQR 8.4-9.2 mg/dL;
P=.009), and T-bil levels were elevated (median 0.9, IQR 0.7-1.3
mg/dL vs median 0.6, IQR 0.4-0.8 mg/dL; P<.001). C-reactive
protein levels were significantly higher in the delirium group
(median 0.4, IQR 0.0-5.5 mg/dL vs median 0.1, IQR 0.0-1.85
mg/dL; P=.03).

Finally, daily urinary output was markedly reduced in the
delirium group (median 412.5, IQR 215.0-908.2 mL vs median
1493.0, IQR 985.0-1977.0 mL; P<.001), and respiratory rates
were higher (median 19.5, IQR 17.7-21.0 breaths per minute
vs median 16.0, IQR 14.0-20.0 breaths per minute; P=.01).

Visual Examination of the Data Using Violin Plots
Next, the distribution of the data between the 2 groups (those
with and without ICU delirium) was visually examined using
violin plots. As shown in Figure 1, violin plots visually represent
the density and range of the data, allowing for the identification
of data dispersion and bimodality, that is, the shape of the
distribution. Specifically, it became evident that urine output
decreased proportionally, serving as a risk factor for ICU
delirium.
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Figure 1. Comparative analysis of explanatory factors for intensive care unit (ICU) delirium in patients with burns using violin plots. This figure
illustrates the distribution of key clinical and laboratory variables among 2 groups of ICU patients with burns: those who developed delirium (with
delirium) and those who did not (without delirium). Violin plots visualize the distribution and density of each variable, highlighting differences in factors
such as age, burn area, total bilirubin (T-bil), methemoglobin (MetHb) levels, daily urinary output, and respiratory rate. These comparisons emphasize
the significance of various explanatory factors in predicting ICU delirium, aiding in the identification of potential risk indicators for clinical
decision-making. Alb: albumin; APTT: activated partial thromboplastin time; BUN: blood urea nitrogen; Ca: calcium; CPK: creatine phosphokinase;
CRP: C-reactive protein; eGFR: estimated glomerular filtration rate; Hb: hemoglobin; Hct: hematocrit level; PT-%: prothrombin time percentage; PT:
prothrombin time; PT-INR: PT international normalized ratio; sO2: oxygen saturation; TP: total protein; WBC: white blood cell count.

Machine Learning Model Evaluation for Delirium
Prediction
In this study, we evaluated 10 different machine learning models
for delirium prediction using 2 performance metrics: the AUC

and Matthews correlation coefficient (MCC). The results are
summarized in Table 2 and Figure 2.
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Table 2. Performance comparison of machine learning models across various metricsa.

F1-scoreRecallPrecisionAccuracy
False nega-
tives

False posi-
tives

True nega-
tives

True posi-
tives

MCCc,
mean
(SD)

AUCb,
mean
(SD)Model

0.1500.0950.4000.6475.80.010.00.60.157
(0.202)

0.897
(0.056)

Support vector
machine

0.6640.6520.7500.7572.21.68.44.20.522
(0.238)

0.857
(0.058)

Neural network

0.6050.5240.7330.7933.00.49.63.40.529
(0.311)

0.894
(0.060)

K-nearest neigh-
bor

0.6340.6240.6550.7202.22.47.64.20.417
(0.059)

0.729
(0.033)

Decision tree

0.5330.4620.6830.7443.40.89.23.00.411
(0.351)

0.827
(0.095)

Naïve Bayes

0.6510.6140.7530.7562.41.68.44.00.493
(0.126)

0.832
(0.094)

AdaBoostd

0.6510.5860.7960.7682.61.48.63.80.486
(0.026)

0.821
(0.074)

Gradient boosting
machine

0.5830.5900.6010.6842.62.67.43.80.337
(0.163)

0.660
(0.114)

Linear discrimi-
nant analysis

0.7550.7430.7970.8181.61.48.64.80.625
(0.162)

0.906 e

(0.073)

Logistic regres-
sion

0.6170.5290.8110.7573.00.89.23.40.505
(0.217)

0.850
(0.074)

Random forest

aThis table presents the predictive performance of 10 machine learning models trained on clinical and laboratory data from patients with burns admitted
to the intensive care unit (ICU) at Mie University Hospital. Model performance was evaluated using the mean area under the curve, the mean Matthews
correlation coefficient, accuracy, precision, recall, and F1-score, providing a comprehensive assessment of each model’s ability to predict ICU delirium
onset. The table also reports the true positive, true negative, false positive, and false negative counts, offering insights into each model’s sensitivity and
specificity. Logistic regression demonstrated the highest predictive performance (area under the curve=0.906), whereas decision tree and linear
discriminant analysis showed relatively lower predictive power. These findings highlight the potential of machine learning in early risk stratification
for ICU delirium, emphasizing the importance of selecting an optimal predictive model for clinical application.
bAUC: area under the curve.
cMCC: Matthews correlation coefficient.
dAdaBoost: adaptive boosting.
eValues in italics indicate the best performance for each metric. Logistic regression exhibited the highest AUC, MCC, accuracy, recall, and F₁-score,
demonstrating superior overall performance.
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Figure 2. Receiver operating characteristic (ROC) curves for machine learning models predicting intensive care unit (ICU) delirium. This figure shows
ROC curves for 10 machine learning models, illustrating sensitivity and 1-specificity from 5-fold stratified cross-validation. The legend presents mean
area under the curve (AUC) values with SDs, indicating predictive accuracy. Logistic regression (LR; mean AUC 0.906, SD 0.073) achieved the highest
performance, whereas decision tree and linear discriminant analysis (LDA) performed poorly. The diagonal line (AUC 0.5) represents random guessing.
Models with curves near the top left corner demonstrate superior predictive ability for ICU delirium in patients with burns. AdaBoost: adaptive boosting;
GBM: gradient-boosting machine; KNN: k-nearest neighbor; SVM: support vector machine.

The LR model showed the best overall performance, achieving
the highest mean AUC of 0.906 (SD 0.073) and the highest
mean MCC of 0.625 (SD 0.162). This suggests that LR provides
a good balance between discriminative power and classification
accuracy for delirium prediction. The SVM and KNN models
also showed strong discriminative ability, with mean AUC
values of 0.897 (SD 0.056) and 0.894 (SD 0.060), respectively.
However, the SVM model’s relatively low MCC score of 0.157
(SD 0.202) indicates that it may struggle with precise
classification, possibly due to class imbalance or suboptimal
threshold selection. Neural network and RF demonstrated
comparable performance, with mean AUC values of 0.857 (SD
0.058) and 0.850 (SD 0.074), respectively. Their MCC scores
were also similar, suggesting consistent performance across
both metrics. The decision tree model and LDA showed the
lowest performance among the evaluated models, with mean
AUC values of 0.729 (SD 0.033) and 0.660 (SD 0.114),
respectively. This suggests that these models may not capture
the complexity of the delirium prediction task as effectively as
the other algorithms. It is noteworthy that, while some models
(eg, SVM) achieved high AUC scores, their corresponding MCC
scores were relatively low. This discrepancy highlights the
importance of using multiple evaluation metrics to gain a
comprehensive understanding of model performance, especially

in potentially imbalanced classification tasks such as delirium
prediction. In summary, LR emerged as the most promising
model for delirium prediction in this comparative analysis.
However, the strong performance of several other models, such
as KNN and neural network, suggests that ensemble methods
or model stacking could potentially yield further improvements
in predictive accuracy (Table 2).

Performance Metrics of Machine Learning Models in
ICU Delirium Prediction
On the basis of the provided classification performance metrics,
LR showed the highest overall performance in terms of accuracy
(0.818), precision (0.797), recall (0.743), and F1-score (0.755),
indicating a robust balance between sensitivity and specificity.
Although KNN showed slightly higher accuracy (0.793) than
most models, its recall was lower (0.524), which may limit its
utility in detecting positive cases.

Among ensemble methods, GBM and AdaBoost performed
well, with GBM achieving a relatively high precision (0.796),
reflecting its ability to minimize false positives. RF also yielded
strong precision (0.811) but showed lower recall (0.529),
suggesting a higher risk of missing positive cases.
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Neural network models achieved a competitive balance across
all metrics, notably F1-score (0.664), which highlights their
consistency in handling both sensitivity and specificity.
However, SVM and LDA demonstrated weaker recall,
suggesting that these models are less suited for tasks requiring
high sensitivity.

We then compared the mean AUCs across the models to
evaluate their overall discriminative ability. When compared

with decision tree, SVM (P=.002), neural network (P=.005),
KNN (P=.003), LR (P=.003), and RF (P=.005) showed a
significantly better performance. Naïve Bayes (P=.04),
AdaBoost (P=.03), and GBM (P=.03) also demonstrated a
significantly better performance than that of decision tree. LDA
showed a comparable performance to that of decision tree
(P=.99; Figure 3).
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Figure 3. (A) Mean area under the curve (AUC) scores and (B) statistical significance across machine learning models. This figure compares the
predictive performance of 10 machine learning models for intensive care unit (ICU) delirium in patients with burns. The bar graph shows mean AUC
scores with SDs from 5-fold stratified cross-validation. Among the models, logistic regression (LR; AUC=0.906) performed best, whereas decision tree
and linear discriminant analysis (LDA) had lower AUCs. The heat map displays pairwise P values from 2-sample 2-tailed t tests, with darker cells
indicating significant differences (P<.05). This figure highlights model performance and statistical differences, aiding in selecting effective classifiers
for ICU delirium prediction. AdaBoost: adaptive boosting; GBM: gradient-boosting machine; KNN: k-nearest neighbor; SVM: support vector machine.

Similarly, when compared with LDA, SVM (P=.006), neural
network (P=.01), KNN (P=.007), LR (P=.007), and RF (P=.009)
exhibited a significantly better performance. GBM (P=.04) and
AdaBoost (P=.047) also showed a significantly better
performance than that of LDA, whereas naïve Bayes showed a

marginally better performance (P=.05). Decision tree
demonstrated a comparable performance to that of LDA (P=.99).

In summary, LR was the most balanced model across all metrics,
making it a preferred choice for clinical applications where both
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precision and recall are critical. Ensemble methods such as
GBM and AdaBoost offer strong alternatives, particularly for
optimizing precision (Table 2).

Identification of High-Risk Factors for ICU Delirium
Using SHAP Analysis
We used SHAP analysis to identify the top 15 high-risk factors
for ICU delirium in each validated machine learning model
(Multimedia Appendix 1). This comprehensive analysis revealed
distinct sets of risk factors across different models, providing
valuable insights into the complex nature of ICU delirium. Key
findings included the following:

• LR (best overall performance; AUC=0.906; MCC=0.625):
identified daily urine output, eosinophil count, age, and
fibrinogen levels as key risk factors.

• Neural network (AUC=0.857; MCC=0.522): highlighted
lactate dehydrogenase levels, daily urine output, inhalation
injury, neutrophil count, and platelet count as key risk
factors.

• SVM (AUC=0.897; MCC=0.157): uniquely identified burn
area and length of ICU stay as significant factors.

• KNN (AUC=0.894): emphasized neutrophil and monocyte
percentages as key risk factors.

• Decision tree: despite its lower performance, it identified
endotracheal intubation and D-dimer levels as risk factors.

• Other models: consistently highlighted hematological
parameters, daily urine output, and age across multiple
models. Novel factors such as MetHb levels (LDA) and
anion gap (RF) were also identified.

Discussion

Machine Learning–Based Prediction of ICU Delirium
in Patients With Burns: LR Performance and SHAP
Analysis for Risk Factor Identification
Our study demonstrated that LR effectively predicted ICU
delirium in patients with burns using clinical data, including
vital signs and blood biomarkers. Among the machine learning
models, LR achieved the highest predictive accuracy, confirming
that ICU delirium risk can be assessed through computational
modeling (Figures 2 and 3).

Furthermore, SHAP analysis identified key risk factors
associated with ICU delirium, highlighting T-bil, MetHb, daily
urine output, and leucocyte fractions as novel predictors
alongside established factors such as burn area and tracheal
intubation (Multimedia Appendix 1). These findings provide
crucial insights for developing targeted prevention and treatment
strategies, emphasizing the importance of respiratory, renal,
hepatic, and inflammatory function management in patients
with burns who are critically ill.

The Role of T-Bil Levels in Predicting Delirium in ICU
Patients With Burns: Connections With Cholestasis
and Inflammation
T-bil levels were identified as a risk factor for the development
of delirium in ICU patients with burns. However, the direct
relationship between burns and cholestasis remains unclear.
Cholestasis often occurs after burns, and patients with burns

who have increased bilirubin levels without a corresponding
increase in alkaline phosphatase and gamma-glutamyl
transferase levels face a higher risk of mortality. Furthermore,
intrahepatic cholestasis is observed in half of patients with
severe burns [6]. Cholestasis is also associated with hypoxic
hepatitis [7]. In addition, hypovolemic shock observed in severe
burns may be involved in the elevation of T-bil levels [8].
Increases in interleukin (IL)-6 and tumor necrosis factor-α,
which are observed in the early stages of severe burns [9], have
been reportedly associated with hyperbilirubinemia [10] and
organ dysfunction [11]. Inflammatory cytokines such as IL-6
and tumor necrosis factor-α may reduce the expression of bile
transporters on the canalicular membrane of hepatocytes, leading
to an increase in T-bil levels [12,13]. These research findings
support the validity of our study, which identified an increase
in T-bil levels as an important risk factor for predicting ICU
delirium in patients with burns.

MetHb Level as a Novel Indicator of ICU Delirium in
Patients With Burns: Insights From Sepsis and
Hemolysis Research
MetHb level was identified as an explanatory factor. No
previous studies have clearly demonstrated the involvement of
MetHb level as a risk factor for ICU delirium in patients with
burns. However, several studies have shown the involvement
of MetHb in delirium in patients with sepsis, which, similarly
to burns, can cause a cytokine storm. As is well known, patients
with sepsis have a high incidence of delirium, and in these
patients, nitric oxide is released into the bloodstream due to
ischemia-reperfusion stimulation. Nitric oxide is converted into
MetHb and nitrates; as a result, the concentration of MetHb in
the blood is a useful marker for the onset of sepsis or septic
shock [14]. However, the molecular mechanisms through which
MetHb causes delirium in patients with sepsis remain largely
unknown [15]. In patients with severe conditions, such as trauma
or infection, intracellular hemolysis may occur, leading to
anemia. Anemia, which develops relatively early in severe
conditions, is thought to result from damaged red blood cells
processed by the reticuloendothelial system. Acute hemolysis
leads to an increase in free hemoglobin in the blood.
Subsequently, free hemoglobin and heme are released into the
circulatory system, and the wound interstitium is rapidly
converted into MetHb by oxidants. The increase in MetHb levels
is more pronounced in the ischemia-reperfusion areas, where
activated macrophages and neutrophils accumulate [16].
Therefore, MetHb produced by ischemia-reperfusion injury and
hemolysis, as observed in severe conditions such as sepsis, may
affect leucocyte cell adhesion, phagocytic ability, and metabolic
activation and may be involved in ICU delirium. Previous
research has shown a stronger correlation among the total
amount of hemoglobin [17,18], red blood cell count [19], and
delirium. Thus, hemoglobin and MetHb levels in the blood are
important factors influencing delirium.

The Impact of Decreased Urine Output on Delirium
Risk in ICU Patients With Burns: Insights From SHAP
Analysis
Using SHAP analysis, we identified that a decreased daily urine
output within 24 hours of ICU admission is a risk factor for
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ICU delirium in patients with burns. Interestingly, daily urine
output was identified as an important risk factor in 50% (5/10)
of the machine learning models evaluated (Multimedia Appendix
1). The finding that a decrease in 24-hour urine volume is a risk
factor for delirium in patients with burns seems reasonable
considering that acute kidney injury can potentially increase
the risk of delirium 10-fold in patients who are critically ill [20].
For example, urine output is an important indicator of renal
function and hydration status. In patients with burns, a decrease
in urine output may indicate insufficient renal perfusion or
dehydration. Both factors contribute to the development of
delirium [21]. Furthermore, patients with burns often require
multiple medications, such as sedatives and analgesics.
Decreased urine output can affect the metabolism and excretion
of these drugs, potentially leading to the accumulation of
psychoactive substances that can induce or exacerbate delirium
[22]. In addition, a decrease in urine output can lead to
electrolyte imbalance, which is known to cause neurological
dysfunction and delirium. Electrolyte abnormalities such as
hyponatremia or hypernatremia can occur in patients with burns
because of fluid shifts and inadequate fluid replacement [23].

Leukocyte Biomarkers as Indicators of Delirium in
ICU Patients With Burns: The Role of Inflammatory
Response
Our study identified the number or proportion of neutrophils
and monocytes in the leucocyte fraction as risk factors for
delirium development (Multimedia Appendix 1). This suggests
that exposure of leucocytes to a cytokine storm due to excessive
stress from burns contributes to delirium in patients with burns.
Numerous studies have used leucocyte biomarkers to diagnose
delirium in the past [24]. Inflammatory biomarkers and
brain-specific metabolic biomarkers have been extensively
studied in delirium, and inflammatory cytokines and activation
markers of astrocytes and glial cells (IL-6, IL-8, IL-10, tumor
necrosis factor-α, C-reactive protein, and S100β protein levels)
positively correlate with longer duration of delirium, severity
of delirium, and higher in-hospital mortality [25]. In addition,
elevated levels of IL-8 and S100β protein have been associated
with increased mortality in patients with delirium [26]. In a
mouse model with delirium, the infiltration of bone
marrow–derived monocytes into the blood-brain barrier [27]
and activation of microglia were observed [28]. Although the
number and proportion of neutrophils and monocytes were
identified as risk factors for ICU delirium, these leucocytes may
be involved in the production of inflammatory cytokines and
contribute to the onset of ICU delirium.

Respiratory Rate as a Predictor of ICU Delirium in
Patients With Burns: New Insights and Implications
In our study, an increase in the respiratory rate was a risk factor
for ICU delirium. Patients with ICU delirium had a higher
median respiratory rate of 19.5 (IQR 17.7-21.0) breaths per
minute compared to 16.0 (IQR 14.0-20.0) breaths per minute
in patients without delirium (P=.01; Table 1). To our knowledge,
no studies have clearly established a link between delirium and
respiratory rate. Delirium is generally recognized as a common
complication in patients with respiratory failure in the ICU. The
incidence of delirium in the ICU ranges from 10% to 78%, with

most cases occurring in patients receiving mechanical
ventilation. This suggests a significant overlap between
respiratory complications and the occurrence of delirium;
however, a direct correlation between an increase in respiratory
rate and delirium has not been explicitly stated [29]. Inhalation
injuries occur in approximately one-third of burn hospital
admissions and contribute to a high mortality rate (50%) in
patients with burns. Therefore, an increase in the respiratory
rate may be associated with carbon monoxide poisoning and
chemical tracheobronchitis due to the inhalation of toxic
combustion products and generally correlates with a higher
mortality rate. Unfortunately, many patients with burns receive
high-concentration oxygen therapy from emergency teams
before being transported to the ICU or emergency room.
Therefore, carboxyhemoglobin levels are often adjusted to lower
levels, and PO2 is frequently high during treatment, which is
why carboxyhemoglobin and PO2 were not identified as risk
factors in our model. Therefore, it might be appropriate to
consider respiratory rate as a potential risk factor for ICU
delirium in future studies [30,31].

Advancing ICU Delirium Research: The Prediction of
Delirium in ICU Patients Model and the Need for
Machine Learning Approaches in Patients With Burns
In the field of delirium research, the Prediction of Delirium in
ICU Patients (PRE-DELIRIC) model is considered a seminal
study [32]. In the ICU, the PRE-DELIRIC model uses 10
identified risk factors (age, Acute Physiology and Chronic
Health Evaluation II score, admission group, coma, infection,
metabolic acidosis, use of sedatives and morphine, blood urea
nitrogen, and emergency admission) and predicts delirium with
an AUC of 0.87 (95% CI 0.85-0.89) within 24 hours of ICU
admission [32]. Furthermore, the model by Lanzhou University
[33] heavily relies on patients’ detailed past medical histories,
making data collection challenging in busy clinical settings such
as emergency rooms and ICUs, where obtaining comprehensive
patient histories, diagnoses, and treatments can be difficult [34].
Therefore, it is crucial to establish machine learning models
that can accurately predict conditions with multifactorial risk
factors, such as ICU delirium, using data that are easily
obtainable during emergency department visits, such as vital
signs and blood data. Despite this need, a delirium prediction
model for ICU patients with burns using machine learning has
not yet been developed. Predictive models for diseases such as
ICU delirium, which involve numerous risk factors, stand to
benefit significantly from machine learning’s capability to
perform multifactorial analyses, surpassing traditional
biostatistical methods. Our proposed machine learning model
can more effectively evaluate complex interactions among
multivariate data, which is essential for accurately predicting
conditions with multifactorial risk factors such as ICU delirium.
Therefore, although our study had a small number of cases, it
is considered valuable for the development of a machine
learning–based ICU delirium prediction model and the
identification of risk factors.

Comprehensive Model Evaluation for ICU Delirium
When evaluating the performance of different models, it is
important to consider not only the AUC but also other metrics,
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such as accuracy, precision, recall, and F1-score. In a specialized
medical environment such as the ICU, some metrics may
become more important than others when dealing with specific
diseases. For example, precision is important if avoiding false
detections of delirium is crucial. Conversely, if it is vital to
avoid missing cases of delirium, recall should be emphasized.
In our study, we considered all these metrics comprehensively
and selected the model that best suited the objectives of the
research and clinical demands.

Among the 10 models we adjusted, the LR model was found to
be the most balanced and high performing. Notably, it
demonstrated the highest values across key metrics, including
AUC, MCC, accuracy, and F1-score, suggesting that it provides
the most reliable predictions from various perspectives.

Strengths
The explanatory variables in our study were based on blood
data collected immediately upon the arrival of patients with
burns at the emergency outpatient clinic. Therefore, there was
a time lag between the collection of these data and the collection
of data at the time of delirium diagnosis using the ICDSC.
However, we believe that our model, which accurately predicts
the development of delirium during an ICU stay based on blood
data and vital signs at the time of patient arrival, can be easily
interpreted by clinicians and has high general applicability. This
allows clinicians to predict the incidence of ICU delirium, which
significantly affects the prognosis of severe burns from early
in the patient’s hospitalization, enabling the initiation of early
interventions for patients at high risk of ICU delirium.

Limitations

Demerit of Binary Classification for Delirium
A binary classification model was used for predicting delirium,
which simplified the model’s output to either delirium present
or delirium absent. This approach facilitated decision-making
in clinical settings by providing clear, binary outcomes.
Conversely, using a regression model would require predicting
specific ICDSC scores and interpreting these scores to assess
patient status. Thus, binary classification often offers greater
practicality in busy clinical environments due to its
straightforward interpretation. However, regression analysis
may be more appropriate for predicting continuous outcomes,
such as the ICDSC score. This method offers detailed
information by producing continuous values, allowing for a
nuanced understanding of the severity of ICU delirium, ranging
from mild to severe. For instance, the difference in delirium
between an ICDSC score of 3 and 4 might be minimal, whereas
the difference between scores of 1 and 7 indicates substantially
different symptoms. Therefore, future research should
investigate the benefits of developing regression models that
predict ICDSC scores.

Model Selection Criteria for Small Datasets
This study examined delirium in patients with burns who were
critically ill admitted to the ICU and did not include patients
with missing data, resulting in a small number of cases. In
analyses with small datasets, such as in our 82 cases, it is
generally recommended to avoid overfitting and choose a

simpler model. In this study, we were cautious about using
complex models (such as deep neural networks or RF with many
trees) that are prone to overfitting with limited data. Therefore,
simple models are generally recommended for studies with few
cases. Typically, models with regularization effects (such as
LR) are effective in preventing overfitting. In our study, LR
demonstrated a high accuracy (0.818), indicating that overfitting
was well controlled during model creation. Linear SVMs have
also been proposed to prevent overfitting. In addition, LDA has
linear boundaries, is computationally fast, and can sometimes
provide relatively stable results even with a small amount of
data.

Limitations and Future Directions for External
Validation
The performance of our model was discussed using data from
patients in the ICU in a single hospital; however, an external
validation was not conducted. Therefore, our study is limited
by its single-institution setting. Future research could strengthen
the reliability of our delirium prediction model for patients with
burns in the ICU by conducting external validation using
datasets from other hospitals.

Enhancing Predictive Power: Inclusion of Diverse
Variables
Our machine learning model incorporated 70 explanatory
variables, including patients’ vital signs and blood biomarkers.
However, unlike the PRE-DELIRIC model, which includes
medication history and environmental factors, our study did not
consider these variables. Expanding the range of input variables
in future research may further enhance the predictive accuracy
of delirium risk assessment.

Conclusions
Our study underscores the clinical utility of machine learning
in predicting ICU delirium in patients with burns, demonstrating
that LR provided the highest predictive accuracy among the
tested models. Using SHAP analysis, we identified both
well-established and novel risk factors, such as T-bil, MetHb,
urine output, and leucocyte fractions, offering new insights into
the complex pathophysiology of delirium. These findings
suggest that early identification of patients at high risk using
readily available clinical data upon ICU admission could
facilitate proactive intervention strategies, potentially reducing
morbidity and improving patient outcomes.

Beyond its immediate clinical applications, this study highlights
the need for integrating machine learning into real-world ICU
decision-making systems. Traditional delirium prediction models
such as PRE-DELIRIC rely on a limited set of predefined
variables, whereas machine learning models can dynamically
incorporate diverse clinical parameters, enabling real-time risk
stratification. This adaptability is particularly relevant in burn
care, where patients exhibit highly variable and rapidly evolving
physiological changes.

Moving forward, the integration of multi-institutional external
validation is crucial to ensure the generalizability and robustness
of our predictive model across diverse ICU settings. In addition,
further research should explore the mechanistic pathways linking
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identified risk factors with delirium onset, which could pave
the way for personalized prevention and treatment strategies.
Ultimately, this study provides a foundation for the next

generation of delirium risk prediction models, emphasizing the
potential of artificial intelligence–driven clinical decision
support to enhance patient care in critical care medicine.
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