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Abstract

Background: In the modern economy, shift work is prevalent in numerous occupations. However, it often disrupts workers’
circadian rhythms and can result in shift work sleep disorder. Proper management of shift work sleep disorder involves
comprehensive and patient-specific strategies, some of which are similar to cognitive behavioral therapy for insomnia.

Objective: Our goal was to develop and evaluate machine learning algorithms that predict physicians’ sleep advice using
wearable and survey data. We developed a web- and app-based system to provide individualized sleep and behavior advice based
on cognitive behavioral therapy for insomnia for shift workers.

Methods: Data were collected for 5 weeks from shift workers (N=61) in the intensive care unit at 2 hospitals in Japan. The data
comprised 3 modalities: Fitbit data, survey data, and sleep advice. After the first week of enrollment, physicians reviewed Fitbit
and survey data to provide sleep advice and selected 1 to 5 messages from a list of 23 options. We handcrafted physiological and
behavioral features from the raw data and identified clusters of participants with similar characteristics using hierarchical clustering.
We explored 3 models (random forest, light gradient-boosting machine, and CatBoost) and 3 data-balancing approaches (no
balancing, random oversampling, and synthetic minority oversampling technique) to predict selections for the 7 most frequent
advice messages related to bedroom brightness, smartphone use, and nap and sleep duration. We tested our predictions under
participant-dependent and participant-independent settings and analyzed the most important features for prediction using permutation
importance and Shapley additive explanations.

Results: We found that the clusters were distinguished by work shifts and behavioral patterns. For example, one cluster had
days with low sleep duration and the lowest sleep quality when there was a day shift on the day before and a midnight shift on
the current day. Our advice prediction models achieved a higher area under the precision-recall curve than the baseline in all
settings. The performance differences were statistically significant (P<.001 for 13 tests and P=.003 for 1 test). Sensitivity ranged
from 0.50 to 1.00, and specificity varied between 0.44 and 0.93 across all advice messages and dataset split settings. Feature
importance analysis of our models found several important features that matched the corresponding advice messages sent. For
instance, for message 7 (darken the bedroom when you go to bed), the models primarily examined the average brightness of the
sleep environment to make predictions.

Conclusions: Although our current system requires physician input, an accurate machine learning algorithm shows promise for
automatic advice without compromising the trustworthiness of the selected recommendations. Despite its decent performance,
the algorithm is currently limited to the 7 most popular messages. Further studies are needed to enable predictions for less frequent
advice labels.
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Introduction

Background
In the modern economy, shift work is prevalent in numerous
occupations. Data from 2010 estimated that half of the workers
in food preparation and serving, >45% of workers in protective
service, and >35% of health care practitioners had alternative
shifts apart from regular day shifts in the United States [1].
However, shift work often conflicts with the daily rhythm of
sleep and wakefulness, which increases the risk of shift work
sleep disorder (SWSD), a circadian rhythm disorder
characterized by shift work–related sleepiness and insomnia
[2]. Multiple studies have shown the substantial prevalence of
SWSD among shift workers. A survey of nurses in 3 federal
hospitals in Ethiopia found that 25.6% (102/399) of participants
had SWSD [3]. Another study of nurses in Norway reported
prevalence rates of 44.2% (580/1313) and 23.6% (146/619) for
SWSD-indicative symptoms among night workers and day
workers, respectively [4]. A random population sample of 1163
participants in Australia revealed that 10.1% (91/898) of day
workers and 32.1% (85/265) of night workers fulfilled the
study’s criteria for SWSD and 1.3% (12/898) of day workers
and 9.1% (24/265) of night workers were further classified under
severe SWSD based on the extent of negative SWSD impacts
on their life [5]. Shift workers’ sleep problems are also
associated with risks of mental health issues [6-8], work errors
[8], burnout [6], and turnover intentions [9].

Proper management of SWSD emphasizes comprehensive and
patient-specific strategies such as circadian adaptation,
maintaining good sleep hygiene, strategic napping, clockwise
shift rotation, and wakefulness promotions for night shifts [10].
Some of these strategies are analogous to the cognitive
behavioral therapy for insomnia (CBTI), a psychological therapy
recommended by the American College of Physicians as initial
treatment for chronic insomnia [11], which consists of multiple
approaches to improve sleep, including education about normal
sleep, sleep hygiene practice, sleep restriction to consolidate
high-quality sleep, and relaxation [12].

Related Work
Researchers have experimented with CBTI on shift workers
with sleep problems and high risk of SWSD. A study by
Järnefelt et al [13] on 19 shift workers with insomnia, more
than half of whom exhibited SWSD characteristics, showed that
group-based CBTI treatment improved their insomnia severity
and sleep over a 6-month postintervention period, and a
follow-up study further demonstrated long-lasting benefits of
CBTI for up to 24 months after the intervention [14]. Järnefelt
et al [15] also conducted a randomized controlled trial of
group-based CBTI and self-help CBTI against a sleep hygiene
education control on 83 shift workers with insomnia more
recently. They found that group-based CBTI improved
participants’ mental health significantly, although both CBTI
interventions enhanced their sleep and reduced their insomnia

symptoms without significant differences from the control
group, and all interventions were more beneficial for participants
without SWSD characteristics [15]. Peter et al [16] used
web-based CBTI for shift workers with sleep problems (n=21)
and found it to be as effective as face-to-face SWSD outpatient
CBTI treatment (n=12) for improving sleep efficiency and
insomnia symptoms. Their research group also proposed a
randomized controlled trial in 2021 to further assess their
web-based CBTI intervention for shift workers against a waitlist
control and face-to-face CBTI [17]. Although this existing
research on CBTI for shift workers has shown promising
improvement in participants’sleep, group-based and face-to-face
CBTI required participants to attend several weekly sessions
for up to 120 minutes led by specialists trained for >10 hours,
and the long time commitment likely caused many participants
to miss some sessions, which might have weakened the
intervention effects [13,15,16]. Self-help, web-based CBTI was
relatively more accessible to shift workers, but time commitment
for weekly sessions was still necessary and likely contributed
to the considerable dropout rates, and the interventions either
required human input for professional feedback or only
resembled a web-based learning module without any
personalization [15,16]. Therefore, a system that automatically
provides personalized CBTI interventions and sleep
recommendations for shift workers and requires less time
commitment could benefit them substantially and yield low
dropout rates.

In recent years, several web-based and mobile CBTI systems
have been developed to deliver automated and individualized
CBTI interventions. For example, Sleep Healthy Using the
Internet [18] and Sleepio [19] provide automated web-based
CBTI modules equipped with interactive web design elements
and user-tailored recommendations, and multiple randomized
controlled trials have demonstrated their effectiveness against
insomnia and related mental health problems among various
demographic groups [18,20-23]. Beun et al [24,25] developed
Sleepcare, a mobile app equipped with an automated digital
coach interacting with users to provide CBTI interventions,
adapt interventions to user characteristics, and promote
adherence. Its efficacy has been demonstrated in a randomized
controlled trial of 151 participants by Horsch et al [26]. CBT-i
Coach is another phone app developed as a supplemental tool
for face-to-face CBTI in which users can receive sleep
education, customize sleep hygiene advice and relaxation
activities, and practice personalized sleep restrictions [27]. In
a pilot study, the app did not impair CBTI effectiveness and
potentially improved patient adherence [28]. A subsequent
variant of the app called Insomnia Coach was applied as a
self-help CBTI intervention on 25 veterans with insomnia and
showed significant treatment effects compared to the waitlist
control [29].

In addition to web-based and mobile CBTI, multiple automated
sleep recommender systems (RSs) have also been developed to
provide personalized sleep suggestions. SleepCoacher collects
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data from smartphone sensors and user self-reports to compute
sleep variables and includes recommendation templates
reviewed by clinicians for each variable combination [30]. To
deliver a recommendation, the system chooses the template of
the most correlated combination, further personalizes it
according to the user’s sleep status, and also evaluates the
effectiveness of the recommendation. In total, 2 studies on 43
undergraduate students showed the benefits of this system on
sleep, which were greater when users adhered more to the
system. Daskalova et al [31] explored cohort-based sleep
recommendations in which their system used demographic,
exercise, and sleep data collected from 1 million users of a
wearable device to assign each participant to a user group in
which all members had similar profiles and chose a
recommendation that showed the greatest improvement among
the group in some aspects of sleep behaviors on which the
participant performed poorly compared to these similar users.
Compared to general sleep suggestions, cohort-based
recommendations improved sleep duration more, and many
participants were motivated to follow these recommendations.
Pandey et al [32] used event mining to discover optimal causal
relationships between a user’s lifestyle and sleep and provided
recommendations to match their current behaviors and
environment with these relationships for better sleep. On the
other hand, some systems do not directly provide advice to users
but, instead, help them self-adjust their sleep habits. For
example, Lullaby uses multiple sensors to track users’ sleep
and environment and helps them discover environmental factors
with negative impacts on their sleep [33]. ShutEye serves as a
peripheral display on mobile phones to remind users of
recommended and inadvisable time windows for various
sleep-related activities [34]. SleepBandits enables users to
perform numerous self-experiments to adjust their behaviors
and uses data from mobile phone sensors to evaluate experiment
effects on their sleep [35].

Although existing automated and individualized CBTI and sleep
RSs have demonstrated their great potential in improving sleep,
they have not been modified to accommodate shift workers’
irregular schedules of shift and wakefulness [13] and, thus, do
not include strategies specifically beneficial to shift workers.
Moreover, these CBTI interventions are mostly delivered
through weekly learning modules and tasks requiring active
involvement and a regular time commitment, and their
personalization options are limited and mainly focus on sleep
restrictions. Unlike CBTI, sleep RSs directly send behavior
change recommendations to users, but their advice-tailoring
processes often lack clinical support and have raised doubts
about their credibility among users [31].

Objectives
We aimed to develop and evaluate a machine learning algorithm
that predicts physicians’ sleep advice using wearable and survey
data. We also examined the model’s potential in assisting
physicians and even replacing them in providing sleep advice
in the system.

We characterized shift workers’ behaviors using clustering
analyses, estimated physicians’ advice selection strategies by
interpreting the developed advice prediction models, and

assessed the effectiveness of the provided sleep
recommendations to gain more insights into the system.

Methods

Data Collection
The data were collected from shift workers, including physicians
and nurses, in the intensive care unit (ICU) at Mie University
Hospital (n=47) and Suzuka Chuo General Hospital (n=14) in
Japan [36,37]. Eligible participants must have 8 hours of work
per shift and poor sleep quality demonstrated through a
Pittsburgh Sleep Quality Index score of ≥5. The detailed
inclusion and exclusion criteria have been described in the work
by Ito-Masui et al [36,37]. Each participant enrolled in a 5-week
trial, with the first week as a baseline without an intervention
(preintervention time point) and the following 4 weeks with
interventions. During the 5 weeks, participants filled out daily
surveys and wore a Fitbit (Google) to collect physiological and
behavioral data. Physicians reviewed the data and provided
sleep advice to participants as interventions 3 to 4 times a week.
In total, 2123 days of multimodal data were collected from these
participants for the entire study.

Ethical Considerations
This study was approved by the Clinical Research Ethics Review
Committee of Mie University Hospital, Tsu, Japan (H2020-083).
This study was approved by the ethics committee of Suzuka
General Hospital (review number 254). All procedures were
performed in accordance with the ethical standards of the
institutional research committee and the 2013 Declaration of
Helsinki. This study was registered in the University Hospital
Medical Information Network Clinical Trials Registry on May
1, 2020 (ID: UMIN000040547). Participants provided written
consent after receiving sufficient information about the study.
They retained the right to opt out of the study at any time. To
protect privacy, all collected data were deidentified. No
compensation was offered for participation.

Data Modalities
The collected data included 3 main modalities—Fitbit data,
survey data, and sleep advice. We followed the methods by Yu
et al [38] to extract some features from the same Fitbit and
survey data, and engineered extra features to accommodate our
objectives.

Fitbit Data
Raw data from Fitbit included minute-by-minute steps and heart
rate as well as the start time, end time, duration, and efficiency
of each sleep period. From raw heart rate data, we computed
their average, SD, and sample entropy. Sample entropy has been
used for cardiovascular time series, and a low entropy value
suggests greater self-similarity of the series [39]. We also
computed features from step count per minute to account for
the variability in participants’ daily activities. Specifically, we
computed and stored the duration of each continuous segment
with and without steps in minutes. We then computed
information entropy for the stationary and active segments. A
higher entropy corresponded to more variability in participants’
moving or nonmoving behaviors. Finally, we retrieved
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information about the main sleep period with the longest
duration from raw sleep data.

Survey Data
Participants received a morning survey and an evening survey
every day with questions about their daily behaviors and
well-being. Features were then extracted from their answers.

Morning Survey

Features from the morning surveys were divided into 3
categories—sleep, well-being, and miscellany.

Sleep

In the morning surveys, participants indicated whether they had
slept in the previous 24 hours and provided the number of naps
between 8 AM and 8 AM on the following day. They also
described how they woke up (naturally, via an alarm, or via
other means) and reported the time it took for them to fall asleep,
the duration of their phone use before sleep, the brightness level
of their sleep environment, and sleep quality. Specifically, sleep
quality was quantified through the answers to the following
statements using 5-point Likert scales (strongly disagree=1;
strongly agree=5): (1) I slept soundly, (2) I fell asleep
immediately, (3) I was able to recover from fatigue, (4) I didn’t
wake up in the middle of sleep, and (5) I was satisfied with sleep.

In addition to the aforementioned features retrieved directly
from surveys, we constructed some sleep features using available
survey data. In the surveys, participants reported the start time
and end time of their main sleep and nap periods. According to
the time entries, we constructed a binary sequence with 1-minute
resolution for every day, in which a bit of 1 meant that the
participants were sleeping or napping at that minute of the day.
If time entries of the main sleep periods were missing from the
surveys, the entries from Fitbit were used. From the binary
sequences, we computed the duration of the main sleep and nap
periods. We also calculated the sleep regularity index (SRI)
with sliding windows of 3, 5, and 7 days. The SRI represents
the probability of any 2 time points that are 24 hours apart
having the same sleep or awake state averaged over a specified
time window and is scaled to range from −100 to 100, where a
value of 100 indicates the same sleep schedule across all days
and a value of −100 means that an individual has completely
flipped their sleep schedule between any 2 consecutive days
[40]. Previous studies have shown that the SRI is positively
correlated with the academic performance of college students
[40] and a lower SRI is associated with increased stress,
depression, and risk of cardiovascular diseases in older adults
[41].

Well-Being

Participants reported 6 well-being metrics in the morning
surveys. A total of 5 metrics—alertness, happiness, energy,
health, and calmness—were reported using a continuous scale
from 1 to 100, with 100 as the most positive. The sixth metric,
current sleepiness, was reported via a 9-point Likert scale from
strongly awake (1) to strongly sleepy (9).

Behavior

The morning surveys also recorded participants’daily behaviors,
including the amount of caffeine intake and last intake time,
amount of alcohol intake, and bath time. From the time entries,
we computed the durations between their last caffeine intake
and sleep and between bath and sleep.

Evening Survey

Features from the evening surveys were divided into 2
categories—work and well-being.

Work

In the evening surveys, participants reported their work
schedules for the current day, the day before, and the day before
the day before in binary sequences with 30-minute resolution,
where a bit of 1 meant work during that 30-minute interval.
From the binary sequences, we computed work hours for the
entire day as well as for 3 different periods of the day (1:
midnight-8 AM, 2: 8 AM-4 PM, and 3: 4 PM-midnight). The
periods corresponded to midnight shifts, day shifts, and
afternoon shifts of the participants. Moreover, by comparing
the binary work sequences and binary sleep sequences
constructed from the morning surveys, we calculated
participants’nap durations during work and minimum durations
between the last sleep periods and the start of shifts and between
the end of shifts and following sleep periods. A binary indicator
of whether participants did any activities other than work outside
their homes was also retrieved from the surveys.

Well-Being

Similarly, as in the morning surveys, participants also answered
several questions about their well-being in the evening surveys.
In addition to the 6 metrics reported in the morning surveys
(alertness, happiness, energy, health, calmness, and current
sleepiness), they provided 3 other metrics: sleepiness during
the day, stress, and tiredness, which were all reported via 5-point
Likert scales (5=strongly awake, stressful, or tired).

Sleep Advice
Starting from the second week of enrollment, physicians
reviewed Fitbit and survey data to provide sleep advice. One
physician provided advice once a week to all participants, and
2 physicians gave advice 2 to 3 times a week to participants
from each of the 2 hospitals. Over the 4 weeks with
interventions, participants received advice approximately 13
times, and a total of 786 pieces of advice were sent to the 61
participants who completed their 5 weeks of the study. Every
time physicians provided sleep advice, they chose 1 to 5
messages from 23 options, listed in Table 1. To better
summarize the options, we divided them into 6 categories
according to their descriptions: (1) dietary intake (messages 1,
2, and 3), (2) activity (messages 4, 5, 6, 16, 17, and 18), (3)
sleep (messages 7, 8, 9, 10, 20, 21, and 22), (4) shift (message
11), (5) nap (messages 12, 13, 14, 15, and 23), and (6) mentality
(messages 19). After participants received the sleep advice, they
were able to respond to the advice as eager to follow or difficult
to follow.
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Table 1. Content of the 23 sleep advice messages that physicians sent to the participants.

Message contentMessage category
and ID

Dietary intake

“Refrain from consuming alcohol before sleep.”1

“Stop consuming caffeine 3 hours before lights-out.”2

“Refrain from eating midnight snacks.”3

Activity

“Refrain from using a smartphone in the bedroom.”4

“Take a bath a little earlier than usual.”5

“Refrain from exercising 3 hours before lights-out.”6

“Relax. 1) Make a habit of relaxing before sleep, including taking a bath in warm water, light stretching, using aroma, and drinking
herbal tea.”

16

“Relax. 2) Use the Fitbit breathing program called Relax.”17

“Do moderate exercise regularly.”18

Sleep

“Darken the bedroom when you go to bed.”7

“When you do not fall asleep within 15 minutes, leave the bedroom and stay out of the bedroom until you get sleepy.”8

“Set your wake-up time according to each work shift.”9

“Do not try too hard to fall asleep quickly.”10

“Continue current sleep habits.”20

“Try to make enough time for sleep.”21

“Get up at the same time, whether you are working or on holiday.”22

Shift

“Management of work shift: Consult with your superior so that shift rotation will be clockwise in general.”11

Nap

“Take a nap. 1) If possible, take a nap for approximately 90 minutes before the night shift.”12

“Take a nap. 2) If possible, take a nap for 15–20 minutes during rest time while you are working.”13

“Take a nap. 3) If possible, take a nap earlier after a late-night shift to refresh.”14

“Create an environment for taking a nap: Ask your family for cooperation to create a quiet environment during a nap in the daytime
or evening at home. Sharing your work shift schedule with your family by placing it where every member of your family can see
it might be a good idea. Avoid strong lights for several hours before a nap and darken the room during a nap.”

15

“Do not nap for too long.”23

Mentality

“Be broad-minded and try to approach things positively.”19

Participant Characteristic Analyses
We investigated the characteristics of the participants’ daily
activities to find participant subgroups who had similar
behaviors and understand the relationship between their
behaviors and well-being. We used agglomerative hierarchical
clustering to find the groupings. The algorithm initiates all
samples as individual clusters and merges clusters using Ward
linkage to minimize the within-cluster variances at every step
[42,43]. After all the samples are merged, a dendrogram is
constructed to show the merged path for each sample. By setting
thresholds on the height of the dendrogram, clusters and their
samples can be identified.

We used daily features from Fitbit and the surveys, except for
the participants’ well-being and sleep quality metrics, to find
the clusters. To include as many samples as possible during
clustering, we did not use the following features as they were
not available for some days: SRI; nap duration during work;
and the time between caffeine intake and sleep, between bath
and sleep, between last sleep and the start of shift, and between
the end of shift and following sleep (eg, participants did not
work or take a bath). All features were standardized across all
participants for clustering.

We then performed principal-component analysis on the
standardized features and overlaid the cluster assignments on
a 2D t-distributed stochastic neighbor embedding (t-SNE) plot
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generated from the principal components that explain 95% of
the total variance to observe how clusters interacted with each
other. t-SNE creates a low-dimensional mapping of
high-dimensional data by matching the conditional probabilities
in both spaces that are proportional to the similarity of the data
points [44]. To characterize participants’ behaviors and
well-being, we summarized the clusters’ profiles by observing
feature averages and examined distributions of the well-being
metrics for each cluster.

Advice Prediction Models
As mentioned in the Sleep Advice section, physicians reviewed
the Fitbit and survey data to provide sleep advice to participants.
We developed machine learning models to predict their message
selections and evaluated the performance of the advice
prediction models.

Prediction Approach
The advice prediction task can be formulated as a binary
classification, with the positive class representing the selection
of an advice message. We found substantial class imbalances
for the selected messages. Specifically, of 786 advice pieces,
the number of selections ranged from 64 (8.1%) to 390 (49.6%)
for the 7 most frequent advice messages (messages 4, 7, 12, 14,
15, 20, and 21). Consequently, we decided to build individual
binary classifiers only for these messages as there would be too
few positive samples to develop models for less frequent advice.

To construct samples for the machine learning models, we
computed the average and SD of daily Fitbit and survey features
across the previous 4 days for each date on which physicians
provided advice. Samples with missing values were excluded.
According to the physicians, they often considered the
participants’ responses to previous advice, especially when they
found it difficult to choose the messages. Therefore, we
incorporated advice responses into our models and enabled the
models to output class probabilities to indicate certainty about
a message selection. We used 12 Fitbit features (steps, sleep,
and heart rate), 53 morning survey features, 50 evening survey
features, and 23 advice response features. Table S1 in
Multimedia Appendix 1 summarizes the features used by the
classifier.

Dataset Split
To evaluate the advice prediction models, the data needed to
be split into a training set and a test set. We designed 2 ways
to split the data: a user-dependent split and a user-independent
split. Under the user-dependent setting, the data were split
chronologically, where the training set contained the first 70%
of each participant’s data and the testing set had the remaining
30%. Under the user-independent setting, we split the data
according to the order of participant enrollment such that the
models were trained on data from the first 70% of participants
enrolled and tested on the 30% of participants who enrolled
later in the study. We chose these train-test split methods to
ensure that, when predicting sleep advice for a date of a
participant, no data from later days of this participant’s
enrollment would be used in dependent models and only data
from participants enrolled earlier would be used in independent
models. In particular, the dependent split examined the effects

of personalization by leveraging participants’past data to predict
their future sleep advice, whereas the independent split assessed
model generalizability by predicting sleep messages for unseen
participants.

Classifiers
Considering the abundant features but relatively small size of
our data, we focused on ensemble classifiers for their feature
selection capabilities and robustness to overfitting. In particular,
we chose random forest (RF), a bagging-based model, and 2
gradient-boosting models, namely, light gradient-boosting
machine (LGBM) [45] and CatBoost [46], as our candidates.
To find the optimal sets of model hyperparameters, we tuned
the classifiers on the training set using 5-fold stratified
cross-validation and 100 iterations of random search over a grid
of parameters. Random search was used instead of grid search
because it can span a larger parameter space and find models
as good as or better than those found using grid search under
the same computation budget [47]. When tuning the classifiers
under the user-independent setting, we made sure that the
training data were divided into subsets with nonoverlapping
participants. Finally, classifiers with optimal hyperparameters
were fitted on the entire training set.

Data Balancing
To address class imbalances that could hinder the development
of effective advice prediction models, we experimented with 2
data-balancing methods: random oversampling and synthetic
minority oversampling technique (SMOTE) [48]. Random
oversampling increases the representation of the minority class
by duplicating existing samples through sampling with
replacement. In contrast, SMOTE enhances the minority class
by generating synthetic data points through interpolation
between existing samples and their nearest neighbors. Data
balancing was only applied to the training data during classifier
tuning and training. To better understand the effectiveness of
data balancing, we also trained models on the original
imbalanced data for comparison.

Prediction Evaluation
By combining 3 classifiers with 3 data-balancing approaches,
we trained 9 model configurations to predict the selection of a
particular advice message under user-dependent and
user-independent settings. On the basis of 2 key considerations,
we chose the area under the precision-recall curve (AUPRC)
as the main metric to evaluate and compare the performance of
the different models. First, given the relatively few occurrences
of sleep advice, it was crucial for the model to provide advice
when a participant needed it. The precision-recall curve is
particularly well suited for this scenario because it focuses on
the model’s ability to correctly predict the positive class, which
is actionable sleep advice. Second, due to class imbalances, the
default decision threshold of 0.5 may not be optimal for
converting the model’s probability outputs into predicted classes.
As the precision-recall curve reflects the trade-off between false
alarms and missed advice predictions across all decision
thresholds, the AUPRC provides a comprehensive evaluation
of the model’s ability to predict sleep advice without requiring
a specific decision threshold.
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For each model configuration, we repeated the tuning and
training process 10 times with different random seeds and
computed the average AUPRC on the test set. To ensure a fair
comparison, the same set of seeds was used across all
configurations. In addition, we performed 10 random guessing
trials by sampling probability predictions from a standard
uniform distribution and used a 1-sided Welch t test to assess
whether the model performance significantly exceeded random
guessing. This procedure was repeated for each of the 7 most
frequent advice messages.

Feature Importance
After training the advice prediction models, we analyzed feature
importance using 2 approaches to identify the key contributors
to predictions on the test set. The first approach was permutation
importance, which evaluates feature importance by measuring
the decrease in prediction performance after randomly permuting
a specific feature [49]. Greater performance degradation
indicates higher feature importance. Using the AUPRC as the
performance metric, we permuted each feature 10 times per
classifier run and summarized the results on the test set. The
second method was Shapley additive explanations (SHAP)
[50,51], which leverages game theory to explain outputs of
machine learning models at both local and global levels. In
particular, we computed the mean absolute SHAP values across
all test samples per classifier run to determine global feature
importance. Both permutation and SHAP importance values
were reported as averages across all repeated runs of each model
configuration.

Results

Participant Characteristics
Tables 2 and 3 summarize the participants’ daily features and
well-being scores, respectively. Their average step count was

7545 (SD 4419), their average sleep duration was 6.77 (SD
2.87) hours, their average nap duration was 53 (SD 108.2)
minutes, their average sleep regularity was 52 (SD 19.3), and
their average work duration was 5.62 (SD 4.19) hours.

We used 77.01% (1635/2123) of the samples with all selected
features available for hierarchical clustering. Figure 1 shows
the resulting dendrogram. The default distance threshold of
52.24 (purple dashed line) identified 6 clusters color coded and
labeled with numbers from 0 to 5 in the dendrogram. In addition,
a few smaller clusters merged at approximately 30, so we used
a lower threshold of 31 (red dashed line) to divide the 6 clusters
into 13 subclusters (a-m) and further investigated the behavior
variability within each larger cluster. Specifically, cluster 0 had
5 subclusters: c, f, g, e, and m. Cluster 1 had 2 subclusters: a
and b. Cluster 2 had 2 subclusters: k and d. Clusters 3 and 4 did
not have any subclusters and themselves were labeled as j and
h, respectively. Cluster 5 had 2 subclusters: l and i. Figure S1
in Multimedia Appendix 1 illustrates the clusters and subclusters
overlaid on t-SNE plots obtained from the same data used for
clustering. Cluster and subcluster structures were clearly
observable in both plots. For example, cluster 0 in the plot of
6 clusters has an upper branch and a lower branch on either side
of cluster 1, which are further divided into subclusters c and g,
respectively, in the plot of 13 subclusters.

Table S2 in Multimedia Appendix 1 summarizes cluster and
subcluster profiles for different aspects of participants’behaviors
and well-being. Major differences among the 6 clusters were
observed in the well-being metrics, whereas subclusters can
also be distinguished by work duration and shift types. The
profiles will be discussed in detail later in the Discussion section.
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Table 2. Participants’ daily physiological and behavioral features.

ValuesFeature

74.87 (8.6)hrmeana (bpm), mean (SD)

13.42 (3.45)hrstdb (bpm), mean (SD)

0.63 (0.21)hrentropyc, mean (SD)

7545 (4419.36)steps, mean (SD)

2.34 (0.34)duration_entropy_non_step, mean (SD)

1.69 (0.32)duration_entropy_step, mean (SD)

0.56 (0.69)nap_count, mean (SD)

18.63 (23.09)brightness_sleep (scale of 1-100), mean (SD)

406.46 (172.01)sleep_duration (min), mean (SD)

52.99 (108.23)nap_duration (min), mean (SD)

52.25 (28.3)sleep_regularity_3 days (scale of –100 to 100), mean (SD)

52.1 (22.6)sleep_regularity_5 days (scale of –100 to 100), mean (SD)

52.02 (19.26)sleep_regularity_7 days (scale of –100 to 100), mean (SD)

3.2 (1.14)deep_sleep (scale of 1-5), mean (SD)

3.55 (1.14)immediate_sleep (scale of 1-5), mean (SD)

2.84 (1.05)fatigue_recover (scale of 1-5), mean (SD)

3.2 (1.31)mid_awake (scale of 1-5), mean (SD)

2.85 (1.02)sleep_satisfy (scale of 1-5), mean (SD)

0.3 (0.63)alcohol_amount (cups), mean (SD)

1.53 (1.46)caffeine_amount (cups), mean (SD)

5.62 (4.19)worktime_today_duration (h), mean (SD)

1.52 (2.85)worktime_today_duration (1: midnight-8 AM; h), mean (SD)

2.15 (3.25)worktime_today_duration (2: 8 AM-4 PM; h), mean (SD)

1.96 (3.08)worktime_today_duration (3: 4 PM-midnight; h), mean (SD)

924 (49.54)extrawork_activities (n=1865), n (%)

2088 (99.81)sleep_prev_24d (n=2092), n (%)

793 (41.96)wake_natural (n=1890), n (%)

882 (46.67)wake_alarm (n=1890), n (%)

198 (10.48)wake_other (n=1890), n (%)

ahrmean: average daily heart rate.
bhrstd: SD of daily heart rate.
chrentropy: entropy of daily heart rate.
dsleep_prev_24: binary indicator of sleep in the previous 24 hours.
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Table 3. Mean and SD of participants’ daily well-being scores. Morn indicates morning and eve indicates evening.

Values, mean (SD)Well-being metric

5.49 (1.99)sleepiness_morn (scale of 1-9)

5.7 (1.78)sleepiness_now_eve (scale of 1-9)

2.59 (1.23)sleepiness_daytime (scale of 1-5)

2.93 (1.1)stress (scale of 1-5)

2.51 (1.01)tiredness (scale of 1-5)

41 (23.02)alertness_morn (scale of 1-100)

52.99 (17.34)happiness_morn (scale of 1-100)

44.02 (21.27)energy_morn (scale of 1-100)

51.71 (18.12)health_morn (scale of 1-100)

55.97 (18.1)calmness_morn (scale of 1-100)

41.08 (21.1)alertness_eve (scale of 1-100)

54.27 (18.18)happiness_eve (scale of 1-100)

45.88 (21.08)energy_eve (scale of 1-100)

52.4 (18.19)health_eve (scale of 1-100)

56.85 (19)calmness_eve (scale of 1-100)

Figure 1. Dendrogram from hierarchical clustering of daily features using Ward linkage. The purple dashed line corresponds to a distance threshold
of 52.24 (0.7 times the maximum cluster distance as implemented by SciPy [52]) and identifies 6 clusters labeled and color coded (cluster 0=blue,
cluster 1=orange, cluster 2=green, cluster 3=red, cluster 4=purple, and cluster 5=brown). The red dashed line represents a distance threshold of 31 and
identifies 13 subclusters (a-m).

Advice Statistics
Figure 2 shows the frequency of advice provided as well as the
message categories in a pie chart. As physicians often selected
multiple messages for each day, 1332 advice messages were
selected in 786 advice pieces. The outer ring of the pie chart
indicates the proportions of each category with respect to the
1332 total occurrences of all message options, and the numbers
in parentheses after each category name correspond to the
frequency of the category. The inner ring shows the proportion
of each message with respect to the total occurrences. The
legend lists the corresponding color of each message, and each
parenthesis includes the proportion of all advice pieces
containing that message, which is computed by dividing the
frequency of the message by 786 total advice counts. Messages

in the sleep and nap categories were selected more frequently
than messages from other categories. Messages in the sleep
category were selected the greatest number of times (817/1332,
61.34%), and messages in the nap category were selected 21.7%
(289/1332) of the time. Moreover, only a few messages were
frequently selected by physicians. For example, message 20
(continue current sleep habits) was selected in 49.6% (390/786)
of advice pieces, and message 21 (try to make enough time for
sleep) was selected in 28.1% (221/786) of advice pieces. On
the other hand, 70% (16/23) of the messages were selected in
<50 advice pieces (50/786, 6.4%), and 7 messages were selected
<10 times (10/786, 1.3%).

Figure 3 summarizes the frequency and proportion of responses
to advice pieces containing each message. Sometimes,
participants did not respond to the advice. Although multiple
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messages might be selected for 1 advice piece, participants
responded to the advice but not to individual messages.
Participants showed different preferences for messages. For
example, participants expressed difficulty following message
20 (continue current sleep habits) only 0.5% (2/390) of the
time, whereas they experienced difficulty following message 4
(refrain from using a smartphone in the bedroom) 20% (15/76)
of the time and following message 2 (stop consuming caffeine
3 hours before lights-out) 26% (10/38) of the time. The
discrepancies might be explained by the message design.
Message 20 suggests that participants continue their current
sleep habits, which participants might feel is easier to follow
as it would not change their current lifestyle greatly. On the
other hand, message 2 and message 4 address caffeine
consumption and phone use, which might be challenging to
follow as it is suggested that participants change some essential
aspects of their routine.

Table S3 in Multimedia Appendix 1 summarizes the
distributions of positive and negative advice labels for both the

training and test data under user-dependent and user-independent
settings. In addition, it includes the ratios of negative-to-positive
sample counts. Class imbalances were evident for all messages
except message 20 (continue current sleep habits). In both data
split settings, messages 21 (try to make enough time for sleep)
and 7 (darken the bedroom when you go to bed) showed
moderate imbalances, with negative-to-positive ratios of <5.
For the remaining 4 messages, class imbalances were more
pronounced, with negative-to-positive ratios mostly ranging
from 5 to 10. Furthermore, we observed substantial
discrepancies in class imbalance between the user-independent
training and test sets of messages 12 (take a nap for
approximately 90 minutes before the night shift), 14 (take a nap
earlier after a late-night shift to refresh), and 15 (create an
environment for taking a nap). While negative-to-positive ratios
remained <10 in the training sets, the ratios exceeded 15 in the
test sets, indicating distinct preferences among physicians when
providing sleep advice to different shift workers.

Figure 2. The pie chart shows the selection frequency of each sleep advice message. All 23 message options are divided into 6 categories: dietary
intake (messages 1, 2, and 3), activity (messages 4, 5, 6, 16, 17, and 18), sleep (messages 7, 8, 9, 10, 20, 21, and 22), shift (message 11), nap (messages
12, 13, 14, 15, and 23), and mentality (message 19). Message 11 is excluded from the chart because of zero frequency.
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Figure 3. Frequency and proportion of message responses in a stacked bar plot. Each bar includes the frequency and proportion of participants’ responses
(no response, eager to follow, and difficult to follow) to advice pieces containing each message. Although multiple messages might be selected for 1
advice piece, participants responded to the advice but not to individual messages.

Advice Prediction Results
Following the approach described in the Methods section, we
obtained the AUPRC of 9 different configurations of classifiers
and data-balancing methods on the test set under dependent and
independent settings. Table 4 summarizes the performance of
the proposed models, where each model configuration was tuned
and trained 10 times with different random seeds, as well as
results from 10 random-guessing trials. The model performance
was compared with random guessing using a 1-sided Welch t
test.

As shown in Table 4, under the user-dependent setting, RF
performed the best for predicting 6 advice messages. The only
exception was advice message 7 (darken the bedroom when you
go to bed), where CatBoost achieved the highest AUPRC.
However, RF’s AUPRC was only 0.02 lower than that of
CatBoost. Under the user-independent setting, RF remained

competitive, achieving the best performance for predicting 3
advice messages. Its performance on other messages was also
close to that of the top performers. LGBM yielded the highest
prediction AUPRC for messages 12 (take a nap for
approximately 90 minutes before the night shift) and 14 (take
a nap earlier after a late-night shift to refresh). CatBoost was
the top performer for messages 7 (darken the bedroom when
you go to bed) and 21 (try to make enough time for sleep). These
results highlight the effectiveness of RF in mitigating overfitting
when working with limited data. While models trained on
balanced data achieved the best performance on 4 advice
messages in both dependent and independent settings,
data-balancing techniques overall did not result in a substantial
improvement in AUPRC and even degraded the performance
for some advice labels. Statistical tests revealed that the best
prediction models for each advice message and data split setting
performed significantly better than random guessing, with
P<.001 for 13 models and P=.003 for the remaining one.
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Table 4. Advice prediction area under the precision-recall curve (AUPRC) of the proposed models (random forest [RF], light gradient-boosting machine
[LGBM], and CatBoost) and random guessing baseline obtained under different data-balancing approaches (none, random oversampling, and synthetic
minority oversampling technique [SMOTE]) and dataset split settings (user dependent and user independent). A 1-sided Welch t test was used to compare
the models to random guessing.

Random guess-
ing (AUPRC),
mean (SD)

CatBoost (AUPRC)LGBM (AUPRC)RF (AUPRC)Setting, message ID, and balancing method

P valueValues,
mean (SD)

P valueValues, mean
(SD)

P valueValues, mean
(SD)

Dependent

0.12 (0.02)4

<.0010.24 (0.04)<.0010.28 (0.06)<.0010.33 (0.07) aNone

<.0010.20 (0.03)<.0010.21 (0.04)<.0010.25 (0.05)Random oversampling

<.0010.18 (0.02)<.0010.18 (0.02)<.0010.24 (0.03)SMOTE

0.17 (0.02)7

<.0010.57 (0.02)<.0010.54 (0.01)<.0010.56 (0.04)None

<.0010.54 (0.03)<.0010.52 (0.03)<.0010.54 (0.03)Random oversampling

<.0010.58 (0.02)<.0010.56 (0.02)<.0010.52 (0.03)SMOTE

0.12 (0.02)12

<.0010.27 (0.06)<.0010.23 (0.03)<.0010.32 (0.03)None

<.0010.26 (0.07)<.0010.21 (0.04)<.0010.31 (0.04)Random oversampling

<.0010.22 (0.05)<.0010.17 (0.01)<.0010.19 (0.03)SMOTE

0.10 (0.02)14

<.0010.23 (0.05)<.0010.24 (0.04)<.0010.26 (0.05)None

<.0010.23 (0.05)<.0010.22 (0.04)<.0010.25 (0.04)Random oversampling

<.0010.22 (0.04)<.0010.22 (0.05)<.0010.29 (0.05)SMOTE

0.19 (0.03)15

.0070.25 (0.05).0010.26 (0.05)<.0010.31 (0.03)None

.060.22 (0.04)<.0010.27 (0.05)<.0010.28 (0.02)Random oversampling

.0020.24 (0.02)<.0010.24 (0.02)<.0010.25 (0.01)SMOTE

0.57 (0.02)20

<.0010.79 (0.02)<.0010.76 (0.02)<.0010.80 (0.02)None

<.0010.80 (0.02)<.0010.77 (0.02)<.0010.80 (0.01)Random oversampling

<.0010.79 (0.01)<.0010.77 (0.02)<.0010.81 (0.02)SMOTE

0.23 (0.02)21

<.0010.41 (0.01)<.0010.38 (0.03)<.0010.38 (0.03)None

<.0010.40 (0.03)<.0010.36 (0.02)<.0010.38 (0.03)Random oversampling

<.0010.44 (0.06)<.0010.40 (0.04)<.0010.44 (0.04)SMOTE

Independent

0.11 (0.05)4

<.0010.20 (0.03).0050.17 (0.04)<.0010.25 (0.03)None

.020.15 (0.03).010.16 (0.04).0010.19 (0.04)Random oversampling

.580.11 (0.02).250.12 (0.04).0070.18 (0.06)SMOTE

0.16 (0.02)7

<.0010.66 (0.03)<.0010.61 (0.03)<.0010.67 (0.05)None

<.0010.62 (0.04)<.0010.58 (0.06)<.0010.60 (0.08)Random oversampling
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Random guess-
ing (AUPRC),
mean (SD)

CatBoost (AUPRC)LGBM (AUPRC)RF (AUPRC)Setting, message ID, and balancing method

P valueValues,
mean (SD)

P valueValues, mean
(SD)

P valueValues, mean
(SD)

<.0010.70 (0.04)<.0010.64 (0.04)<.0010.66 (0.06)SMOTE

0.03 (0.01)12

<.0010.06 (0.01)<.0010.09 (0.01)<.0010.07 (0.01)None

<.0010.07 (0.02)<.0010.08 (0.02)<.0010.06 (0.01)Random oversampling

<.0010.06 (0.01)<.0010.06 (0.01)<.0010.07 (0.01)SMOTE

0.06 (0.02)14

<.0010.10 (0.02).180.07 (0.01).0010.09 (0.01)None

.0010.09 (0.01).110.07 (0.02)<.0010.10 (0.01)Random oversampling

.0040.09 (0.03).0030.11 (0.04).0020.09 (0.02)SMOTE

0.06 (0.01)15

.0020.09 (0.02).0030.09 (0.03)<.0010.11 (0.02)None

<.0010.10 (0.02)<.0010.10 (0.02)<.0010.11 (0.03)Random oversampling

.030.08 (0.02).070.07 (0.01).040.08 (0.03)SMOTE

0.53 (0.02)20

<.0010.62 (0.01)<.0010.64 (0.01)<.0010.64 (0.01)None

<.0010.63 (0.01)<.0010.64 (0.02)<.0010.64 (0.01)Random oversampling

<.0010.63 (0.01)<.0010.64 (0.02)<.0010.64 (0.01)SMOTE

0.24 (0.03)21

<.0010.34 (0.02)<.0010.38 (0.02)<.0010.36 (0.01)None

<.0010.35 (0.03)<.0010.36 (0.03)<.0010.35 (0.02)Random oversampling

<.0010.39 (0.02)<.0010.36 (0.03)<.0010.38 (0.02)SMOTE

aThe best-performing configuration for each sleep advice message is italicized.

Important Features
We extracted permutation and SHAP feature importance for
the best model configuration when predicting each advice
message under both user-dependent and user-independent
settings. Table 5 shows the features that ranked among the top
5 most important using both permutation importance and SHAP,
with average AUPRC decrease and mean absolute SHAP values
of at least 0.01. All the features represented the average and SD
of daily Fitbit and survey features across the previous 4 days
for each date on which physicians provided advice. As expected,
several important features closely matched their corresponding
advice messages under both data split settings. The average
amount of phone use before sleep was a key factor in predicting
message 4 (refrain from using a smartphone in the bedroom).
Similarly, the average brightness of the sleep environment was

the most significant feature for predicting message 7 (darken
the bedroom when you go to bed). The model examined average
sleep duration for predictions of message 21 (try to make enough
time for sleep). When predicting message 12 (take a nap for
approximately 90 minutes before the night shift), the SD of work
hours between 4 PM and midnight on the current day across
the previous 4 days was an important factor. This suggests a
potential relationship between the frequency of night shifts and
the triggering of this sleep advice. In addition, the response to
the previous selection of message 20 (continue current sleep
habits) contributed to the prediction of messages 7, 20, and 21.
This aligns with physicians’ insights that they often considered
participants’ responses to previous advice when providing sleep
recommendations. These findings demonstrate the models’
ability to capture meaningful patterns that resonate with
physicians’ decision-making processes.
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Table 5. Important features identified using permutation importance and Shapley Additive Explanations (SHAP) for the best model configuration when
predicting each advice message under both user-dependent and user-independent settings. Features are listed if they ranked among the top 5 most
important using both permutation importance and SHAP, with average area under the precision-recall curve (AUPRC) decrease and mean absolute
SHAP values of at least 0.01.

Absolute SHAP value, mean (SD)AUPRC decrease, mean (SD)Setting, message ID, and feature

Dependent

4

0.05 (0.01)0.19 (0.06)Average amount of phone use before sleep

7

1.14 (0.25)0.33 (0.05)Average brightness of sleep environment

0.29 (0.06)0.04 (0.03)Response to previous selection of message 20

0.18 (0.06)0.03 (0.02)SD of brightness of sleep environment

0.09 (0.04)0.02 (0.01)SD of the binary indicator of activities other than work outside the
homes

12

0.02 (0.01)0.05 (0.07)SD of work hours on the current day for 4 PM-midnight

14

0.02 (0.01)0.03 (0.02)SD of daily caffeine intake

20

0.10 (0.04)0.12 (0.03)Response to previous selection of message 20

0.02 (0.01)0.01 (0.01)Average sleep satisfaction

0.03 (0.01)0.01 (0.01)Average fatigue recovery level

21

0.07 (0.03)0.11 (0.05)Response to previous selection of message 20

0.02 (0.005)0.03 (0.02)Average sleep duration

0.01 (0.01)0.03 (0.03)SD of work hours on the current day for midnight-8 AM

Independent

4

0.09 (0.02)0.13 (0.04)Average amount of phone use before sleep

7

1.35 (0.39)0.47 (0.05)Average brightness of sleep environment

0.18 (0.06)0.03 (0.02)Response to previous selection of message 20

12

0.28 (0.10)0.03 (0.02)SD of work hours on the current day for 4 PM-midnight

14

0.25 (0.10)0.03 (0.04)Response to previous selection of message 20

15

0.05 (0.04)0.02 (0.03)Average sleep satisfaction

0.02 (0.01)0.02 (0.02)Average fatigue recovery level

20

0.16 (0.03)0.11 (0.02)Response to previous selection of message 20

0.03 (0.01)0.02 (0.01)Average sleep satisfaction

21

0.45 (0.07)0.09 (0.04)Response to previous selection of message 20

0.17 (0.08)0.02 (0.03)Average sleep duration
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Discussion

Principal Findings
In this study, we used daily surveys and Fitbit to obtain
physiological and behavioral data of ICU shift workers.
Physicians reviewed the data to provide sleep advice from a list
of 23 messages to the workers. We extracted features from the
collected data and (1) conducted analyses to characterize
participants’ behaviors and advice and (2) constructed and
evaluated 3 models (RF, LGBM, and CatBoost) and 3
data-balancing approaches (no balancing, random oversampling,
and SMOTE) to predict sleep advice selections for the 7 most
frequent messages sent by the physicians. The advice prediction
models achieved higher AUPRC than the random guessing
baseline for predicting all the 7 advice messages under both
user-dependent and user-independent settings. The performance
differences were statistically significant, with P<.001 for 13
tests and P=.003 for 1 test. Feature importance analysis revealed
several important features that closely matched their
corresponding advice messages sent to participants. For instance,
for message 7 (darken the bedroom when you go to bed), the
models primarily examined the average brightness of the sleep
environment to make predictions. Similarly, the average amount
of phone use before sleep was a key factor in predicting message
4 (refrain from using a smartphone in the bedroom). The
analysis also supported physicians’ insights that they often
considered participants’ responses to previous advice when
providing sleep recommendations.

Participant Characteristics
Hierarchical clustering revealed different work shifts and
behavior patterns among clusters and subclusters, and we
investigated their relationships with their well-being scores.
First, work shifts on the current day contributed to low
well-being scores for clusters 3 and 5, and several well-being
metrics were further distinguished by their different shift
patterns. For example, cluster 3 had a much shorter average
sleep duration of approximately 220 minutes and the lowest
sleep quality. This was potentially caused by day shifts the day
before and midnight shifts on the current day for almost all
samples. In this cluster, participants finished their work at
approximately 4 PM the day before; they then started the next
shift period at approximately midnight and finished at
approximately 8 AM on the following day. After work, they
filled out the morning surveys and reported their well-being,
sleep duration, and sleep quality. Low scores on these metrics
reflected their tiredness shortly after work and lack of rest
between work shifts.

On the other hand, most samples in cluster 5 did not have shifts
the day before but had day shifts on the current day. As a result,
participants could have more time for sleep, reflected by a longer
average sleep duration of 400 minutes, better sleep quality, and
higher well-being scores in the morning compared with samples
in cluster 3. Such discrepancies in shift patterns and well-being
metrics could even be observed between subclusters d and k of
the same larger cluster 2. Although most samples of both
subclusters had midnight shifts the day before, subcluster d
majorly did not have shifts on the current day and achieved an

average level of well-being scores. The profile of subcluster k
was more similar to that of cluster 3, with midnight shifts on
the current day and much worse well-being and sleep quality
than in subcluster d, which is also supported by the t-SNE plot
(right plot in Figure S1 in Multimedia Appendix 1), where
subcluster k is closer to subcluster h (equivalence of cluster 3)
than to subcluster d. Furthermore, most of cluster 1 did not have
a work shift on the current day, which led to its high well-being
scores as 1 day off probably helped participants relax.
Nevertheless, shifts on the current day were not always
negatively correlated with well-being. Specifically, cluster 0
had above-average well-being scores although most samples
had work shifts on the current day.

Furthermore, several subclusters were characterized by some
distinct features of their profiles. For example, subclusters i and
l of cluster 5 had similar work patterns, but they differed
significantly in average daily step count, where subcluster i had
the highest count of >10,000 among all subclusters, whereas
subcluster l had the lowest count of <2000. Although multiple
clusters and subclusters contained samples with overtime shifts
of >8 hours, subcluster e was the only one with >9 hours of
average work duration for 3 consecutive days (10.6 hours the
day before the day before, 9.4 hours the day before, and 11.5
hours on the current day). The long work duration might also
contribute to other characteristics of this subcluster, including
the shortest time to fall asleep and the highest daily caffeine
consumption. Despite the existence of some outliers, the clusters
and subclusters generally grouped well, as shown in Figure S1
in Multimedia Appendix 1, and their profiles summarized from
average feature values provided many insights into participants’
daily behaviors, shifts, and well-being and their
interrelationships.

Advice Predictions
While we evaluated the advice prediction models using the
AUPRC computed from predicted class probabilities, it is also
important to understand the model performance in terms of
actual predicted classes. Given the class imbalances, adjusting
the decision thresholds was necessary to optimize prediction
performance. Specifically, for each classifier initialized with
its optimal hyperparameters, we performed 5-fold stratified
cross-validation on the training set to determine the optimal
threshold that maximized its F1-score. The F1-score was chosen
as the performance metric to obtain a balance between missed
advice predictions and false alarms. The optimal threshold was
then applied to convert prediction probabilities into class labels
on the test set. As we repeated the tuning and training process
10 times with different random seeds for each model
configuration, we created an ensemble of these classifiers to
mitigate potential overfitting. Final predictions were determined
through majority voting across the ensemble. To resolve ties
during voting, we used only 9 of the 10 classifiers generated
for each model configuration. We report the sensitivity,
specificity, precision, and F1-scores of the ensembles from the
RF, LGBM, and CatBoost classifiers with different
data-balancing approaches in Tables S4, S5, and S6 in
Multimedia Appendix 1, respectively.
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Table 6 presents the performance of the model configurations
with the highest F1-score for predicting each sleep advice
message under user-dependent and user-independent settings.
Baseline F1-scores, calculated by always predicting the positive
class, are also provided for comparison. All models
outperformed the baseline. Under the user-dependent setting,
the models achieved sensitivity and specificity within the range
of 0.5 to 0.9. Sensitivity tended to decrease for less frequent

advice messages, whereas specificity showed the opposite trend.
Under the user-independent setting, the models consistently
demonstrated decent sensitivity, exceeding 0.7 across all advice
messages, whereas specificity varied between 0.4 and 0.9. The
higher sensitivity observed in this setting may suggest that the
models were more effective at identifying universal decision
rules shared across participants than at accounting for individual
behavioral variability.

Table 6. Advice prediction sensitivity, specificity, precision, and F1-score of the best-performing ensemble classifier for each advice message under
both user-dependent and user-independent settings. Ensemble classifiers were constructed through majority voting across 9 random forest (RF), light
gradient-boosting machine (LGBM), or CatBoost classifiers trained using different random seeds. The decision threshold for each classifier was optimized
to maximize the F1-score. The baseline F1-score from always predicting the positive class is also listed.

Baseline F1-score (al-
ways positive)

F1-scorePrecisionSpecificitySensitivityBalancing methodModelSetting and
message ID

Dependent

0.200.420.340.860.56NoneLGBM4

0.280.590.520.880.69Random oversamplingCatBoost7

0.190.350.270.830.50NoneRF12

0.190.370.270.810.58Random oversamplingRF14

0.300.380.290.720.55Random oversamplingRF15

0.710.750.670.500.84SMOTEaRF20

0.350.480.340.580.81NoneCatBoost21

Independent

0.170.290.170.540.95NoneRF4

0.250.680.630.930.73SMOTECatBoost7

0.060.140.070.601.00Random oversamplingLGBM12

0.090.220.120.680.91NoneCatBoost14

0.110.150.080.480.77SMOTERF15

0.670.700.610.460.82SMOTERF20

0.380.450.310.440.81Random oversamplingRF21

aSMOTE: synthetic minority oversampling technique.

Single-Label Versus Multilabel Classification
As physicians could select multiple messages when providing
sleep advice, it is feasible to formulate sleep advice prediction
as a multilabel classification task, which outputs predictions for
all message selections simultaneously. Compared to the current
approach of training separate single-label classifiers for each
message, multilabel classification has the advantage of
leveraging information about message coselections during
training, potentially improving prediction performance.
However, this approach presents several challenges. First, some
models do not inherently support multilabel classification and,
instead, combine separate single-label classifiers for multilabel
outputs. This strategy fails to capture and use the coselection
information effectively. Second, the multilabel setting requires
careful handling of data imbalances both within individual labels
and across their co-occurrence patterns. Finally, multilabel
classification complicates feature importance analysis, which
aims to identify key contributors for predicting individual
message selections. In fact, we trained a user-dependent

multilabel RF classifier without any data balancing and did not
observe substantial performance improvement compared to the
single-label counterparts.

Comparison With Prior Work
Our system provided sleep and behavior recommendations for
shift workers with poor sleep quality. Although our system did
not follow the CBTI protocol, we borrowed elements from it,
such as sleep hygiene advice and relaxation. We designed sleep
recommendations specifically targeted for shift workers,
including strategic napping and clockwise shift rotation. Our
system offered several advantages over existing CBTI and sleep
RSs. First, while most mobile and web-based CBTI systems
require users to review sleep-related learning modules, our
system reduced users’ time commitment by sending them simple
pieces of advice to follow, which could be beneficial as shift
workers often have a poor work-life balance [53]. Consequently,
our study yielded a low dropout rate of 5% (3/64), as opposed
to the rates of other CBTI systems that range from 4% to 61%
[15,16,18-23,26,29,54].
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Moreover, our system received the most support from sleep
specialists compared to existing sleep RSs, which only have
limited or even no clinician support. For example, clinicians
only provided recommendation templates for further
customization by the automated SleepCoacher system [30]. The
cohort-based sleep recommender by Daskalova et al [31] relied
on profiles of similar users as the only recommendation source.
The system developed by Pandey et al [32] constructed its
recommendations based on discovered relationships between
the user’s lifestyle and sleep. The lack of clinician support could
impair the credibility of the provided sleep recommendations
among users. For instance, users of SleepCoacher suggested
adding justifications for the advice [30], and several users of
the cohort-based sleep recommender by Daskalova et al [31]
thought that the recommendations were implausible and even
untrustworthy as they contradicted the users’ own beliefs.
However, our system only delivered clinician-reviewed
recommendations, which greatly enhanced their trustworthiness.

Furthermore, only our study has evaluated the accuracy of an
algorithm for automatic sleep advice provision. Many existing
CBTI systems have been able to provide sleep restriction and
sleep hygiene recommendations automatically, but no analysis
is available of how close these generated recommendations are
to actual clinicians’ advice. Similarly, sleep RSs have not
compared their recommendations with professionals’
suggestions. Specifically, clinicians prepared all the
recommendations in the preliminary study of SleepCoacher,
and the provisions were automated by a correlation-based
algorithm in the final study, but the study did not evaluate the
accuracy of the algorithm for substituting clinicians [30]. Despite
the effectiveness of these systems, an analysis of algorithm
accuracy could further justify provided recommendations and
resolve users’ doubts about their credibility. On the other hand,
although our system is not automated at its current stage, we
developed an algorithm and assessed its accuracy for automatic
advice provision, and it showed decent performance and great
potential in providing clinical-level sleep recommendations.

Limitations and Future Work

False Predictions
To investigate the possible causes of false-positive and
false-negative predictions, we examined the relationship between
feature values and advice predictions. Specifically, we chose
the feature brightness_sleep (brightness level of the sleep
environment) and 1 repetition of the dependent advice prediction
model for message 7 (darken the bedroom when you go to bed).
We selected this combination because the feature had a dominant
effect on predictions of the message label, as shown in the
Important Features section, and could demonstrate the
limitations of the models more clearly with the existence of an
explicit decision rule.

For each participant, we plotted the trend of the feature across
all days of their enrollment and marked each predicted and the
actual selection of the message separately. Figure S2 in
Multimedia Appendix 1 includes such plots for 6 participants
to illustrate incorrect predictions and limitations of the advice
prediction models. First, the models did not have memories
about previous message selections and might produce false

positives as duplicate responses to previous feature values. For
example, the model made 3 positive predictions on days 29, 31,
and 33 in response to a peak of brightness on day 29 for
participant 1102, yet only the prediction on day 29 was an actual
positive. Similarly, 2 positive predictions were made for
participant 1154 on days 26 and 29 for a brightness surge on
day 26, but the latter was a false-positive. Shortening the feature
averaging window before each message selection might
eliminate some of these false positives, but it would increase
the risk of producing false negatives when a day with a favorable
value for message selection is excluded from the window.

Another scenario of false positives occurred for participants
1315 and 1181. Both participants received 4 false positives
although their brightness values only fluctuated within a small
range of approximately 30 (scale of 1-100). A closer look at
individual decision trees of the trained RF showed that some
trees considered SDs of brightness levels but most trees made
predictions by comparing average brightness with a threshold.
Thus, false-positive predictions were made because average
brightness exceeded the thresholds of most decision trees despite
the lack of brightness peaks. However, it could be tricky to
make correct predictions under such a scenario. For example,
physicians selected the message twice on days 9 and 16 for
participant 1315 although brightness remained stable. A
plausible explanation could be that physicians initially suggested
that the participant lower the brightness because it was
constantly above the threshold, but later, they stopped as neither
lower levels nor high peaks of brightness were observed after
the suggestions. Nevertheless, it would be very difficult for the
model to capture such change.

Unlike false positives, most false negatives occurred only under
1 scenario: when brightness peaks were not high enough and
adjacent days had very low feature values, which caused
averages to fall below the threshold, for example, on day 33 for
participant 1164 and on days 29, 31, and 33 for participant 1167.
Measuring the relative height of a peak (difference between
maximum and minimum values of the feature averaging
window) instead of averaging might be helpful to eliminate
these false negatives, but it may produce other false negatives
when feature values remain high and stable. From illustrative
plots of feature values and advice predictions, we demonstrated
several causes of false-positive and false-negative predictions,
but further investigations and experiments were necessary to
properly improve the advice prediction models as some false
positives might benefit participants and strategies to eliminate
certain false predictions might introduce others.

System Usability
Although our developed algorithm achieved a decent
performance in predicting sleep advice under both dependent
and independent settings, the algorithm is limited to the 7 most
popular advice messages among 23 choices due to infrequent
occurrences of the remaining options. Therefore, further studies
are necessary to gather enough data to enable predictions for
less frequent advice labels.

We gathered feedback on the sleep advice models from
clinicians (n=2) through questionnaires. They commented that
they decided their suggestions mainly based on morning survey,
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work shift, and wearable data. After they selected the
suggestions, they referred to the output of the models and made
the final decisions.

Future studies can compare the intervention effects of a
clinician-only input system, an algorithm-assisted system, and
a fully automated system to demonstrate the usefulness of the
machine learning algorithm. It will also be beneficial to validate
the generalizability of our advice prediction models with more
diverse participant populations.

Given the effectiveness of existing sleep RSs with limited
clinical support, we believe that our automated system has the
advantage of being built on the knowledge of sleep specialists
even if our algorithm still requires improvement to further boost
performance. We chose to evaluate our models in
user-dependent and user-independent settings instead of using
leave-one-out cross-validation because the advice frequencies
were extremely imbalanced across participants. However, such
a scheme will fit real-world scenarios the best when models use
all available data from current users to predict sleep advice for
a new user. It is also worth experimenting with personalization
beyond leave-one-out cross-validation by continuously
incorporating data accumulated from new users as they progress
to better adapt models to specific user characteristics.

Conclusions
We developed a web- and app-based system to provide
individualized sleep and behavior advice with CBTI elements

for shift workers. We collected data from shift workers (N=61)
in the ICU at 2 hospitals in Japan for 5 weeks, which included
Fitbit, survey, and sleep advice data. We used hierarchical
clustering to characterize shift workers’ physiological and
behavioral features and identified clusters with distinct patterns.
For example, days with low sleep duration and the lowest sleep
quality were associated with a day shift on the day before and
a midnight shift on the current day. Furthermore, we constructed
and evaluated 3 machine learning models (RF, LGBM, and
CatBoost) and 3 data-balancing approaches (no balancing,
random oversampling, and SMOTE) to predict sleep advice
selections for the 7 most frequent advice messages sent by the
physicians. Our advice prediction models achieved higher
AUPRC and F1-scores compared to the baseline. The analysis
of the feature importance of our models found several important
features that closely matched their corresponding advice
messages sent to participants. Although our current system
requires physician input, an accurate machine learning algorithm
would be promising for automation without hurting the
trustworthiness of the selected recommendations. Despite a
decent performance, the algorithms developed in this study are
limited to the 7 most popular advice messages among 23 choices
due to infrequent occurrences of the remaining advice options.
Therefore, further studies are necessary to gather enough data
to enable predictions for less frequent advice labels.

Acknowledgments
This research was funded by the Japan Agency for Medical Research and Development (19217687) and the National Science
Foundation (1840167).

Data Availability
The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions
AIM, RS, MS, and AS contributed to the conceptualization and methodology of the study. Data curation was performed by AIM,
RS, and MS. YS, ACO, and HY conducted formal analyses. YS developed the software and performed validation and visualization.
YS and ACO wrote the original draft, whereas AS reviewed and edited the manuscript. AS provided supervision and project
administration. Both MS and AS were responsible for funding acquisition.

Conflicts of Interest
AS provided consulting services for Suntory Global Innovation Center and received honoraria from Oak Ridge Associated
Universities, the Nara Institute of Science and Technology, the Taiwanese Society for Nutritional Psychiatry Research, the Korea
Advanced Institute of Science and Technology, Amrita Vishwa Vidyapeetham, the European Science Foundation, and the National
Science Foundation. AS also received travel support from Apple and the Taiwanese Society for Nutritional Psychiatry Research,
as well as research funding from Meta Platforms, General Motors Company, POLA, and Nippon Electric Company.

Multimedia Appendix 1
Additional tables and figures for participant characteristic clustering and advice prediction models.
[DOCX File , 2765 KB-Multimedia Appendix 1]

References

JMIR Form Res 2025 | vol. 9 | e65000 | p. 18https://formative.jmir.org/2025/1/e65000
(page number not for citation purposes)

Shen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v9i1e65000_app1.docx&filename=cfbf639564c5fe010a32ba4f7c586ab8.docx
https://jmir.org/api/download?alt_name=formative_v9i1e65000_app1.docx&filename=cfbf639564c5fe010a32ba4f7c586ab8.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Alterman T, Luckhaupt SE, Dahlhamer JM, Ward BW, Calvert GM. Prevalence rates of work organization characteristics
among workers in the U.S.: data from the 2010 National Health Interview Survey. Am J Ind Med. Jun 2013;56(6):647-659.
[FREE Full text] [doi: 10.1002/ajim.22108] [Medline: 22911666]

2. Wickwire EM, Geiger-Brown J, Scharf SM, Drake CL. Shift work and shift work sleep disorder: clinical and organizational
perspectives. Chest. May 2017;151(5):1156-1172. [FREE Full text] [doi: 10.1016/j.chest.2016.12.007] [Medline: 28012806]

3. Haile KK, Asnakew S, Waja T, Kerbih HB. Shift work sleep disorders and associated factors among nurses at federal
government hospitals in Ethiopia: a cross-sectional study. BMJ Open. Aug 27, 2019;9(8):e029802. [FREE Full text] [doi:
10.1136/bmjopen-2019-029802] [Medline: 31462478]

4. Flo E, Pallesen S, Magerøy N, Moen BE, Grønli J, Hilde Nordhus I, et al. Shift work disorder in nurses--assessment,
prevalence and related health problems. PLoS One. Apr 2, 2012;7(4):e33981. [FREE Full text] [doi:
10.1371/journal.pone.0033981] [Medline: 22485153]

5. Di Milia L, Waage S, Pallesen S, Bjorvatn B. Shift work disorder in a random population sample--prevalence and
comorbidities. PLoS One. 2013;8(1):e55306. [FREE Full text] [doi: 10.1371/journal.pone.0055306] [Medline: 23372847]

6. Cheng WJ, Cheng Y. Night shift and rotating shift in association with sleep problems, burnout and minor mental disorder
in male and female employees. Occup Environ Med. Jul 2017;74(7):483-488. [doi: 10.1136/oemed-2016-103898] [Medline:
27810939]

7. Khan WA, Jackson ML, Kennedy GA, Conduit R. A field investigation of the relationship between rotating shifts, sleep,
mental health and physical activity of Australian paramedics. Sci Rep. Jan 13, 2021;11(1):866. [FREE Full text] [doi:
10.1038/s41598-020-79093-5] [Medline: 33441601]

8. Saleh AM, Awadalla NJ, El-masri YM, Sleem WF. Impacts of nurses’ circadian rhythm sleep disorders, fatigue, and
depression on medication administration errors. Egypt J Chest Dis Tuberc. Jan 2014;63(1):145-153. [doi:
10.1016/j.ejcdt.2013.10.001]

9. Blytt KM, Bjorvatn B, Moen BE, Pallesen S, Harris A, Waage S. The association between shift work disorder and turnover
intention among nurses. BMC Nurs. Jun 06, 2022;21(1):143. [FREE Full text] [doi: 10.1186/s12912-022-00928-9] [Medline:
35668393]

10. Wright KP, Bogan RK, Wyatt JK. Shift work and the assessment and management of shift work disorder (SWD). Sleep
Med Rev. Feb 2013;17(1):41-54. [doi: 10.1016/j.smrv.2012.02.002] [Medline: 22560640]

11. Qaseem A, Kansagara D, Forciea MA, Cooke M, Denberg TD, Clinical Guidelines Committee of the American College
of Physicians. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College
of Physicians. Ann Intern Med. Jul 19, 2016;165(2):125-133. [FREE Full text] [doi: 10.7326/M15-2175] [Medline: 27136449]

12. Williams J, Roth A, Vatthauer K, McCrae CS. Cognitive behavioral treatment of insomnia. Chest. Feb 01,
2013;143(2):554-565. [FREE Full text] [doi: 10.1378/chest.12-0731] [Medline: 23381322]

13. Järnefelt H, Lagerstedt R, Kajaste S, Sallinen M, Savolainen A, Hublin C. Cognitive behavioral therapy for shift workers
with chronic insomnia. Sleep Med. Dec 2012;13(10):1238-1246. [doi: 10.1016/j.sleep.2012.10.003] [Medline: 23168269]

14. Järnefelt H, Sallinen M, Luukkonen R, Kajaste S, Savolainen A, Hublin C. Cognitive behavioral therapy for chronic
insomnia in occupational health services: analyses of outcomes up to 24 months post-treatment. Behav Res Ther. May
2014;56:16-21. [doi: 10.1016/j.brat.2014.02.007] [Medline: 24632111]

15. Järnefelt H, Härmä M, Sallinen M, Virkkala J, Paajanen T, Martimo KP, et al. Cognitive behavioural therapy interventions
for insomnia among shift workers: RCT in an occupational health setting. Int Arch Occup Environ Health. Jul 18,
2020;93(5):535-550. [FREE Full text] [doi: 10.1007/s00420-019-01504-6] [Medline: 31853633]

16. Peter L, Reindl R, Zauter S, Hillemacher T, Richter K. Effectiveness of an online CBT-I intervention and a face-to-face
treatment for shift work sleep disorder: a comparison of sleep diary data. Int J Environ Res Public Health. Aug 24,
2019;16(17):3081. [FREE Full text] [doi: 10.3390/ijerph16173081] [Medline: 31450619]

17. Retzer L, Feil M, Reindl R, Richter K, Lehmann R, Stemmler M, et al. Anonymous online cognitive behavioral therapy
for sleep disorders in shift workers-a study protocol for a randomized controlled trial. Trials. Aug 16, 2021;22(1):539.
[FREE Full text] [doi: 10.1186/s13063-021-05437-9] [Medline: 34399824]

18. Ritterband LM, Thorndike FP, Gonder-Frederick LA, Magee JC, Bailey ET, Saylor DK, et al. Efficacy of an internet-based
behavioral intervention for adults with insomnia. Arch Gen Psychiatry. Jul 2009;66(7):692-698. [FREE Full text] [doi:
10.1001/archgenpsychiatry.2009.66] [Medline: 19581560]

19. Espie CA, Kyle SD, Williams C, Ong JC, Douglas NJ, Hames P, et al. A randomized, placebo-controlled trial of online
cognitive behavioral therapy for chronic insomnia disorder delivered via an automated media-rich web application. Sleep.
Jun 01, 2012;35(6):769-781. [FREE Full text] [doi: 10.5665/sleep.1872] [Medline: 22654196]

20. Batterham PJ, Christensen H, Mackinnon AJ, Gosling JA, Thorndike FP, Ritterband LM, et al. Trajectories of change and
long-term outcomes in a randomised controlled trial of internet-based insomnia treatment to prevent depression. BJPsych
Open. Sep 2017;3(5):228-235. [FREE Full text] [doi: 10.1192/bjpo.bp.117.005231] [Medline: 28959453]

21. Hagatun S, Vedaa Ø, Nordgreen T, Smith OR, Pallesen S, Havik OE, et al. The short-term efficacy of an unguided
internet-based cognitive-behavioral therapy for insomnia: a randomized controlled trial with a six-month nonrandomized
follow-up. Behav Sleep Med. 2019;17(2):137-155. [doi: 10.1080/15402002.2017.1301941] [Medline: 28345961]

JMIR Form Res 2025 | vol. 9 | e65000 | p. 19https://formative.jmir.org/2025/1/e65000
(page number not for citation purposes)

Shen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/22911666
http://dx.doi.org/10.1002/ajim.22108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22911666&dopt=Abstract
https://europepmc.org/abstract/MED/28012806
http://dx.doi.org/10.1016/j.chest.2016.12.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28012806&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=31462478
http://dx.doi.org/10.1136/bmjopen-2019-029802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31462478&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0033981
http://dx.doi.org/10.1371/journal.pone.0033981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22485153&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0055306
http://dx.doi.org/10.1371/journal.pone.0055306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23372847&dopt=Abstract
http://dx.doi.org/10.1136/oemed-2016-103898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27810939&dopt=Abstract
https://doi.org/10.1038/s41598-020-79093-5
http://dx.doi.org/10.1038/s41598-020-79093-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33441601&dopt=Abstract
http://dx.doi.org/10.1016/j.ejcdt.2013.10.001
https://bmcnurs.biomedcentral.com/articles/10.1186/s12912-022-00928-9
http://dx.doi.org/10.1186/s12912-022-00928-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35668393&dopt=Abstract
http://dx.doi.org/10.1016/j.smrv.2012.02.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22560640&dopt=Abstract
https://www.acpjournals.org/doi/abs/10.7326/M15-2175?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/M15-2175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27136449&dopt=Abstract
https://europepmc.org/abstract/MED/23381322
http://dx.doi.org/10.1378/chest.12-0731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23381322&dopt=Abstract
http://dx.doi.org/10.1016/j.sleep.2012.10.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23168269&dopt=Abstract
http://dx.doi.org/10.1016/j.brat.2014.02.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24632111&dopt=Abstract
https://europepmc.org/abstract/MED/31853633
http://dx.doi.org/10.1007/s00420-019-01504-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31853633&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph16173081
http://dx.doi.org/10.3390/ijerph16173081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31450619&dopt=Abstract
https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-021-05437-9
http://dx.doi.org/10.1186/s13063-021-05437-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34399824&dopt=Abstract
https://europepmc.org/abstract/MED/19581560
http://dx.doi.org/10.1001/archgenpsychiatry.2009.66
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19581560&dopt=Abstract
https://europepmc.org/abstract/MED/22654196
http://dx.doi.org/10.5665/sleep.1872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22654196&dopt=Abstract
https://europepmc.org/abstract/MED/28959453
http://dx.doi.org/10.1192/bjpo.bp.117.005231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28959453&dopt=Abstract
http://dx.doi.org/10.1080/15402002.2017.1301941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28345961&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


22. Cheng P, Luik AI, Fellman-Couture C, Peterson E, Joseph CL, Tallent G, et al. Efficacy of digital CBT for insomnia to
reduce depression across demographic groups: a randomized trial. Psychol Med. Feb 24, 2019;49(3):491-500. [FREE Full
text] [doi: 10.1017/S0033291718001113] [Medline: 29792241]

23. Freeman D, Sheaves B, Goodwin GM, Yu LM, Nickless A, Harrison PJ, et al. The effects of improving sleep on mental
health (OASIS): a randomised controlled trial with mediation analysis. Lancet Psychiatry. Oct 2017;4(10):749-758. [FREE
Full text] [doi: 10.1016/S2215-0366(17)30328-0] [Medline: 28888927]

24. Beun RJ, Brinkman WP, Fitrianie S, Griffioen-Both F, Horsch C, Lancee J, et al. Improving adherence in automated
e-coaching. In: Proceedings of the 11th International Conference on Persuasive Technology. 2016. Presented at:
PERSUASIVE '16; April 5-7, 2016:276-287; Salzburg, Austria. URL: https://link.springer.com/chapter/10.1007/
978-3-319-31510-2_24 [doi: 10.1007/978-3-319-31510-2_24]

25. Beun RJ, Fitrianie S, Griffioen-Both F, Spruit S, Horsch C, Lancee J, et al. Talk and Tools: the best of both worlds in mobile
user interfaces for e-coaching. Pers Ubiquit Comput. May 19, 2017;21(4):661-674. [doi: 10.1007/S00779-017-1021-5]

26. Horsch CH, Lancee J, Griffioen-Both F, Spruit S, Fitrianie S, Neerincx MA, et al. Mobile phone-delivered cognitive
behavioral therapy for insomnia: a randomized waitlist controlled trial. J Med Internet Res. Apr 11, 2017;19(4):e70. [FREE
Full text] [doi: 10.2196/jmir.6524] [Medline: 28400355]

27. Kuhn E, Weiss BJ, Taylor KL, Hoffman JE, Ramsey KM, Manber R, et al. CBT-I coach: a description and clinician
perceptions of a mobile app for cognitive behavioral therapy for insomnia. J Clin Sleep Med. Apr 15, 2016;12(4):597-606.
[FREE Full text] [doi: 10.5664/jcsm.5700] [Medline: 26888586]

28. Koffel E, Kuhn E, Petsoulis N, Erbes CR, Anders S, Hoffman JE, et al. A randomized controlled pilot study of CBT-I
coach: feasibility, acceptability, and potential impact of a mobile phone application for patients in cognitive behavioral
therapy for insomnia. Health Informatics J. Mar 2018;24(1):3-13. [FREE Full text] [doi: 10.1177/1460458216656472]
[Medline: 27354394]

29. Kuhn E, Miller KE, Puran D, Wielgosz J, YorkWilliams SL, Owen JE, et al. A pilot randomized controlled trial of the
insomnia coach mobile app to assess its feasibility, acceptability, and potential efficacy. Behav Ther. May 2022;53(3):440-457.
[doi: 10.1016/j.beth.2021.11.003] [Medline: 35473648]

30. Daskalova N, Metaxa-Kakavouli D, Tran A, Nugent N, Boergers J, McGeary J, et al. SleepCoacher: a personalized automated
self-experimentation system for sleep recommendations. In: Proceedings of the 29th Annual Symposium on User Interface
Software and Technology. 2016. Presented at: UIST '16; October 16-19, 2016:347-358; Tokyo, Japan. URL: https://dl.
acm.org/doi/10.1145/2984511.2984534 [doi: 10.1145/2984511.2984534]

31. Daskalova N, Lee B, Huang J, Ni C, Lundin J. Investigating the effectiveness of cohort-based sleep recommendations. Proc
ACM Interact Mob Wearable Ubiquitous Technol. Sep 18, 2018;2(3):1-19. [doi: 10.1145/3264911]

32. Pandey V, Upadhyay D, Nag N, Jain R. Personalized user modelling for context-aware lifestyle recommendations to improve
sleep. In: Proceedings of the 5th International Workshop on Health Recommender Systems. 2020. Presented at: HealthRecSys
’20; September 26, 2020:2020; Virtual Event. URL: https://www.researchgate.net/publication/
344345398_Personalized_User_Modelling_for_Context-Aware_Lifestyle_Recommendations_to_Improve_Sleep

33. Kay M, Choe EK, Shepherd J, Greenstein B, Watson N, Consolvo S, et al. Lullaby: a capture and access system for
understanding the sleep environment. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. 2012.
Presented at: UbiComp '12; September 5-8, 2012:226-234; Pittsburgh, PA. URL: https://dl.acm.org/doi/10.1145/2370216.
2370253 [doi: 10.1145/2370216.2370253]

34. Bauer J, Consolvo S, Greenstein B, Schooler J, Wu E, Watson N, et al. ShutEye: encouraging awareness of healthy sleep
recommendations with a mobile, peripheral display. In: Proceedings of the 2012 SIGCHI Conference on Human Factors
in Computing Systems. 2012. Presented at: CHI '12; May 5-10, 2012:1401-1410; Austin, TX. URL: https://dl.acm.org/doi/
10.1145/2207676.2208600 [doi: 10.1145/2207676.2208600]

35. Daskalova N, Yoon J, Wang Y, Araujo C, Beltran G, Nugent N, et al. SleepBandits: guided flexible self-experiments for
sleep. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020. Presented at: CHI '20;
April 25-30, 2020:1-13; Honolulu, HI. URL: https://dl.acm.org/doi/10.1145/3313831.3376584 [doi:
10.1145/3313831.3376584]

36. Ito-Masui A, Kawamoto E, Sakamoto R, Yu H, Sano A, Motomura E, et al. Internet-based individualized cognitive behavioral
therapy for shift work sleep disorder empowered by well-being prediction: protocol for a pilot study. JMIR Res Protoc.
Mar 18, 2021;10(3):e24799. [FREE Full text] [doi: 10.2196/24799] [Medline: 33626497]

37. Ito-Masui A, Sakamoto R, Matsuo E, Kawamoto E, Motomura E, Tanii H, et al. Effect of an internet-delivered cognitive
behavioral therapy-based sleep improvement app for shift workers at high risk of sleep disorder: single-arm, nonrandomized
trial. J Med Internet Res. Aug 22, 2023;25:e45834. [FREE Full text] [doi: 10.2196/45834] [Medline: 37606971]

38. Yu H, Itoh A, Sakamoto R, Shimaoka M, Sano A. Forecasting health and wellbeing for shift workers using job-role based
deep neural network. In: Proceedings of the 9th EAI International Conference on Wireless Mobile Communication and
Healthcare. 2020. Presented at: MobiHealth' 20; November 19, 2020:89-103; Virtual Event. URL: https://link.springer.com/
chapter/10.1007/978-3-030-70569-5_6 [doi: 10.1007/978-3-030-70569-5_6]

JMIR Form Res 2025 | vol. 9 | e65000 | p. 20https://formative.jmir.org/2025/1/e65000
(page number not for citation purposes)

Shen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/29792241
https://europepmc.org/abstract/MED/29792241
http://dx.doi.org/10.1017/S0033291718001113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29792241&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2215-0366(17)30328-0
https://linkinghub.elsevier.com/retrieve/pii/S2215-0366(17)30328-0
http://dx.doi.org/10.1016/S2215-0366(17)30328-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28888927&dopt=Abstract
https://link.springer.com/chapter/10.1007/978-3-319-31510-2_24
https://link.springer.com/chapter/10.1007/978-3-319-31510-2_24
http://dx.doi.org/10.1007/978-3-319-31510-2_24
http://dx.doi.org/10.1007/S00779-017-1021-5
https://www.jmir.org/2017/4/e70/
https://www.jmir.org/2017/4/e70/
http://dx.doi.org/10.2196/jmir.6524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28400355&dopt=Abstract
https://europepmc.org/abstract/MED/26888586
http://dx.doi.org/10.5664/jcsm.5700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26888586&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/1460458216656472?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/1460458216656472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27354394&dopt=Abstract
http://dx.doi.org/10.1016/j.beth.2021.11.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35473648&dopt=Abstract
https://dl.acm.org/doi/10.1145/2984511.2984534
https://dl.acm.org/doi/10.1145/2984511.2984534
http://dx.doi.org/10.1145/2984511.2984534
http://dx.doi.org/10.1145/3264911
https://www.researchgate.net/publication/344345398_Personalized_User_Modelling_for_Context-Aware_Lifestyle_Recommendations_to_Improve_Sleep
https://www.researchgate.net/publication/344345398_Personalized_User_Modelling_for_Context-Aware_Lifestyle_Recommendations_to_Improve_Sleep
https://dl.acm.org/doi/10.1145/2370216.2370253
https://dl.acm.org/doi/10.1145/2370216.2370253
http://dx.doi.org/10.1145/2370216.2370253
https://dl.acm.org/doi/10.1145/2207676.2208600
https://dl.acm.org/doi/10.1145/2207676.2208600
http://dx.doi.org/10.1145/2207676.2208600
https://dl.acm.org/doi/10.1145/3313831.3376584
http://dx.doi.org/10.1145/3313831.3376584
https://www.researchprotocols.org/2021/3/e24799/
http://dx.doi.org/10.2196/24799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33626497&dopt=Abstract
https://www.jmir.org/2023//e45834/
http://dx.doi.org/10.2196/45834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37606971&dopt=Abstract
https://link.springer.com/chapter/10.1007/978-3-030-70569-5_6
https://link.springer.com/chapter/10.1007/978-3-030-70569-5_6
http://dx.doi.org/10.1007/978-3-030-70569-5_6
http://www.w3.org/Style/XSL
http://www.renderx.com/


39. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol
Heart Circ Physiol. Jun 2000;278(6):H2039-H2049. [FREE Full text] [doi: 10.1152/ajpheart.2000.278.6.H2039] [Medline:
10843903]

40. Phillips AJ, Clerx WM, O'Brien CS, Sano A, Barger LK, Picard RW, et al. Irregular sleep/wake patterns are associated
with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep. Jun 12, 2017;7(1):3216. [FREE
Full text] [doi: 10.1038/s41598-017-03171-4] [Medline: 28607474]

41. Lunsford-Avery JR, Engelhard MM, Navar AM, Kollins SH. Validation of the sleep regularity index in older adults and
associations with cardiometabolic risk. Sci Rep. Sep 21, 2018;8(1):14158. [FREE Full text] [doi:
10.1038/s41598-018-32402-5] [Medline: 30242174]

42. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion?
J Classif. Oct 18, 2014;31(3):274-295. [doi: 10.1007/s00357-014-9161-z]

43. Nielsen F. Hierarchical clustering. In: Nielsen F, editor. Introduction to HPC with MPI for Data Science. Cham, Switzerland.
Springer; 2016:195-211. [doi: 10.1007/978-3-319-21903-5]

44. van der Maaten L, Hinton G. Viualizing data using t-SNE. J Mach Learn Res. 2008:2579-2605. [FREE Full text]
45. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision tree. In:

Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017. Presented at: NIPS '17;
December 4-9, 2017:3149-3157; Long Beach, CA. URL: https://dl.acm.org/doi/10.5555/3294996.3295074

46. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical features.
In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018. Presented at: NIPS
'18; December 3-8, 2018:6639-6649; Montréal, QC. URL: https://dl.acm.org/doi/abs/10.5555/3327757.3327770

47. Bergstra J, Bengio Y. Random Search for Hyper-Parameter Optimization. J Mach Learn Res. 2012;13:281-305. [FREE
Full text]

48. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell.
Jun 01, 2002;16:321-357. [doi: 10.1613/jair.953]

49. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
50. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Proceedings of the 31st International

Conference on Neural Information Processing Systems. 2017. Presented at: NIPS '17; December 4-9, 2017:4768-4777;
Long Beach, CA. URL: https://dl.acm.org/doi/10.5555/3295222.3295230

51. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding
with explainable AI for trees. Nat Mach Intell. Jan 17, 2020;2(1):56-67. [FREE Full text] [doi: 10.1038/s42256-019-0138-9]
[Medline: 32607472]

52. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat Methods. Mar 2020;17(3):261-272. [FREE Full text] [doi:
10.1038/s41592-019-0686-2] [Medline: 32015543]

53. Puttonen S, Härmä M, Hublin C. Shift work and cardiovascular disease - pathways from circadian stress to morbidity.
Scand J Work Environ Health. Mar 20, 2010;36(2):96-108. [FREE Full text] [doi: 10.5271/sjweh.2894] [Medline: 20087536]

54. Ritterband LM, Thorndike FP, Ingersoll KS, Lord HR, Gonder-Frederick L, Frederick C, et al. Effect of a web-based
cognitive behavior therapy for insomnia intervention with 1-year follow-up: a randomized clinical trial. JAMA Psychiatry.
Jan 01, 2017;74(1):68-75. [doi: 10.1001/jamapsychiatry.2016.3249] [Medline: 27902836]

Abbreviations
AUPRC: area under the precision-recall curve
CBTI: cognitive behavioral therapy for insomnia
ICU: intensive care unit
LGBM: light gradient-boosting machine
RF: random forest
RS: recommender system
SHAP: Shapley additive explanations
SMOTE: synthetic minority oversampling technique
SRI: sleep regularity index
SWSD: shift work sleep disorder
t-SNE: t-distributed stochastic neighbor embedding

JMIR Form Res 2025 | vol. 9 | e65000 | p. 21https://formative.jmir.org/2025/1/e65000
(page number not for citation purposes)

Shen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://journals.physiology.org/doi/10.1152/ajpheart.2000.278.6.H2039?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10843903&dopt=Abstract
https://doi.org/10.1038/s41598-017-03171-4
https://doi.org/10.1038/s41598-017-03171-4
http://dx.doi.org/10.1038/s41598-017-03171-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28607474&dopt=Abstract
https://doi.org/10.1038/s41598-018-32402-5
http://dx.doi.org/10.1038/s41598-018-32402-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30242174&dopt=Abstract
http://dx.doi.org/10.1007/s00357-014-9161-z
http://dx.doi.org/10.1007/978-3-319-21903-5
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://dl.acm.org/doi/10.5555/3294996.3295074
https://dl.acm.org/doi/abs/10.5555/3327757.3327770
https://dl.acm.org/doi/10.5555/2188385.2188395
https://dl.acm.org/doi/10.5555/2188385.2188395
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1023/A:1010933404324
https://dl.acm.org/doi/10.5555/3295222.3295230
https://europepmc.org/abstract/MED/32607472
http://dx.doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32607472&dopt=Abstract
https://air.unimi.it/handle/2434/848184
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32015543&dopt=Abstract
https://www.sjweh.fi/article/2894
http://dx.doi.org/10.5271/sjweh.2894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20087536&dopt=Abstract
http://dx.doi.org/10.1001/jamapsychiatry.2016.3249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27902836&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by A Mavragani; submitted 02.08.24; peer-reviewed by A Kalluchi, Y Chen, D Wang; comments to author 07.10.24; revised
version received 15.01.25; accepted 12.02.25; published 01.04.25

Please cite as:
Shen Y, Choto Olivier A, Yu H, Ito-Masui A, Sakamoto R, Shimaoka M, Sano A
Personalized Physician-Assisted Sleep Advice for Shift Workers: Algorithm Development and Validation Study
JMIR Form Res 2025;9:e65000
URL: https://formative.jmir.org/2025/1/e65000
doi: 10.2196/65000
PMID:

©Yufei Shen, Alicia Choto Olivier, Han Yu, Asami Ito-Masui, Ryota Sakamoto, Motomu Shimaoka, Akane Sano. Originally
published in JMIR Formative Research (https://formative.jmir.org), 01.04.2025. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is
properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well
as this copyright and license information must be included.

JMIR Form Res 2025 | vol. 9 | e65000 | p. 22https://formative.jmir.org/2025/1/e65000
(page number not for citation purposes)

Shen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://formative.jmir.org/2025/1/e65000
http://dx.doi.org/10.2196/65000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

