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Abstract
Background: Popularized by ChatGPT, large language models (LLMs) are poised to transform the scalability of clinical
natural language processing (NLP) downstream tasks such as medical question answering (MQA) and automated data
extraction from clinical narrative reports. However, the use of LLMs in the health care setting is limited by cost, computing
power, and patient privacy concerns. Specifically, as interest in LLM-based clinical applications grows, regulatory safeguards
must be established to avoid exposure of patient data through the public domain. The use of open-source LLMs deployed
behind institutional firewalls may ensure the protection of private patient data. In this study, we evaluated the extraction
performance of a locally deployed LLM for automated MQA from surgical pathology reports.
Objective: We compared the performance of human reviewers and a locally deployed LLM tasked with extracting key
histologic and staging information from surgical pathology reports.
Methods: A total of 84 thyroid cancer surgical pathology reports were assessed by two independent reviewers and the
open-source FastChat-T5 3B-parameter LLM using institutional computing resources. Longer text reports were split into
1200-character-long segments, followed by conversion to embeddings. Three segments with the highest similarity scores
were integrated to create the final context for the LLM. The context was then made part of the question it was directed to
answer. Twelve medical questions for staging and thyroid cancer recurrence risk data extraction were formulated and answered
for each report. The time to respond and concordance of answers were evaluated. The concordance rate for each pairwise
comparison (human-LLM and human-human) was calculated as the total number of concordant answers divided by the total
number of answers for each of the 12 questions. The average concordance rate and associated error of all questions were
tabulated for each pairwise comparison and evaluated with two-sided t tests.
Results: Out of a total of 1008 questions answered, reviewers 1 and 2 had an average (SD) concordance rate of responses of
99% (1%; 999/1008 responses). The LLM was concordant with reviewers 1 and 2 at an overall average (SD) rate of 89% (7%;
896/1008 responses) and 89% (7.2%; 903/1008 responses). The overall time to review and answer questions for all reports was
170.7, 115, and 19.56 minutes for Reviewers 1, 2, and the LLM, respectively.
Conclusions: The locally deployed LLM can be used for MQA with considerable time-saving and acceptable accuracy in
responses. Prompt engineering and fine-tuning may further augment automated data extraction from clinical narratives for the
provision of real-time, essential clinical insights.
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Introduction
Surgical pathology reports contain narrative data essential for
hospital-based comprehensive cancer surveillance databases
and the real-time understanding of patient staging, recur-
rence risk, clinical trial eligibility, and personalized treatment
options. Large-scale national databases such as the Surveil-
lance, Epidemiology, and End Results (SEER) program and
the National Cancer Database (NCDB) include population-
level histologic data necessary to study rare cancers and
underrepresented patient subpopulations [1,2]. However, the
large-scale extraction of key surgical oncologic insights
contained within unstructured free pathology text is limited
by the need for labor-intensive, manual review by human
reviewers [3]. The maintenance of comprehensive cancer
databases often requires skilled registrars who are trained
to synthesize and extract information from patient narrative
reports according to established data collection standards [4].
However, constantly updated guidelines, time-intensive labor
for data extraction, and inevitable human error are challenges
to coordinate cancer data collection.

Advances in natural language processing (NLP) techni-
ques have sought to address challenges in the efficiency and
accuracy of data abstraction. Efforts have included applying
NLP methods to extract pain scores in patients with can-
cer undergoing radiation [5], classify metastatic phenotypes
from radiology reports of patients with colorectal cancer [6],
and identify recurrence status in patients with hepatocellular
carcinoma [7]. Traditional NLP methods, however, require
specific domain expertise and may be error-prone based
on statistical or rule-based approaches [8]. Large language
models (LLMs) power a new generation of natural language
processing (NLP) whereby deep neural networks are trained
on a massive corpus of human text that are then decon-
structed into vectorized embeddings that depict linguistic
relationships in a numerical format appropriate for easy
analysis [9]. Popularized by ChatGPT and its user-friendly
question-and-answer interface, LLMs are poised to transform

the scalability of clinical NLP downstream tasks such as
medical question answering (MQA) and data mining. LLMs
may also enhance the ability to rapidly and accurately extract
key information from surgical pathology reports [10].

However, as new LLM-based clinical applications are
being increasingly explored, there is a substantial risk
of protected health information (PHI) breaches without
regulatory safeguards in place [11]. Ethical, privacy, and
regulatory constraints preclude the transfer of PHI across
the public domain through widely used proprietary LLM
services (eg, ChatGPT, Gemini, and Claude) that can generate
automated responses for MQA. However, significant health
care resources (ie, utilization fees and institutional agree-
ments) would be required to ensure the protection of PHI
while accessing the largest state-of-the-art models such as
GPT4 via a private cloud service provider (eg, Microsoft
Azure OpenAI). Such considerable upfront costs and service
agreements may preclude hospital systems without financial
and IT resources from utilizing the largest and most state-of-
the-art LLMs.

The rapid development in LLM technology has led to
the development of many open-source models (eg, Llama
3.1 and Google Gemini) both comparable in performance to
GPT4 and deployable on an institution’s existing computing
clusters. The use of a smaller, locally deployed LLM may
help ensure that protected health information is maintained
and democratize access to LLM technologies at medical
centers where larger, private LLMs are inaccessible. In this
study, we investigated the use of a locally deployed, open-
source LLM to extract key staging and recurrence risk
information from thyroid surgical pathology reports. We
compared its performance to the gold standard of medically
trained human reviewers. Although we utilize this for a
single-use case, our work serves as a practical pathway to
enable individual medical centers to utilize current LLM
technology for clinical NLP tasks in a privacy-protecting
manner (Figure 1).
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Figure 1. Overview of medical data extraction workflows: (A) Pathology chart review: The traditional approach of manual data extraction from
publicly available databases or private electronic health records (EHRs) to obtain predetermined oncologic insights. (B) Enterprise large language
model (LLM, such as ChatGPT): Due to regulatory constraints, only publicly available data may be shared with enterprise LLMs. Prompt entry and
question curation are used to gain oncologic insights. (C) Private LLMs: EHR data can be shared with a local hospital LLM, and prompt entry with
question curation can be used to gain oncologic insights. EHR: electronic health record.

Methods
Ethical Considerations
This study was approved by the Institutional Review Board of
the Icahn School of Medicine at Mount Sinai (no. 22‐00347).
Informed consent was waived given the retrospective nature
of the study. To ensure confidentiality of patient data, only
authorized research study personnel were permitted access to
patient data. Study identification numbers were assigned to
patients included in the study for deidentification.

Study Population
We queried the Mount Sinai Data Warehouse for a cohort
of adult patients (>18 years old) with ICD-9 (International
Classification of Diseases, 9th revision) and ICD-10
(International Classification of Diseases, 10th revision)
diagnosis codes for thyroid cancer and who underwent
thyroid surgery between 2010 and 2022. We reviewed 102
surgical pathology reports from 102 patients and excluded
reports if they were from other organ sites (n=10), benign
(n=2), cytopathology (n=5), or outside review (n=1). We
included 84 reports for analysis. The study flowchart is shown
in Figure 2.
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Figure 2. Flowchart of the study design and analysis. *The concordance rate was calculated as the total number of concordant answers/total number
of answers for each of the 12 medical question answering (MQA).

Large Language Model
We used the publicly available, open-source, and parameter-
efficient FastChat-T5 3B-parameter LLM for our analysis.
FastChat-T5 is a smaller model that requires significantly
less computing, making it accessible in resource-constrained
environments. This characteristic was essential for our study,
as we wanted our findings to be easily replicable across
institutions with varying levels of computational resources.
In many real-world scenarios, particularly in health care or
academic settings, access to high-end hardware or expensive
cloud services is limited, and the need for locally deploy-
able solutions behind firewalls is critical due to privacy
concerns. FastChat-T5 provides a balance between perform-
ance and resource efficiency, making it a practical choice
in these contexts. This LLM was deployed on existing
hospital servers, which avoided the utilization of expensive
cloud services and external transfer of patient data. The
ready availability of such software has increased the use of
open-source LLMs. The practice of deploying smaller models
on local hardware aligns with the latest trends from leading
LLM providers that are exploring the deployment of models
on mobile devices.

In addition, our goal was to evaluate how a smaller,
open-source model performs in comparison to human
reviewers, who are generally considered the gold stand-
ard in tasks such as document review and content evalua-
tion. We selected FastChat-T5 to explore whether such a
parameter-efficient model could offer comparable perform-
ance to humans, without requiring highly specialized code
or expensive infrastructure for running more recent and

resource-intensive models, such as those in the LLaMA (large
language Meta AI) family.

A limitation all LLMs have is the amount of context
they may process at once, and for FastChat-T5, this limit
is 2048 tokens. For reports of lengths greater than what
the model could accommodate, we split the report text into
1200-character-long segments, followed by converting each
of these segments into machine-readable numerical represen-
tations called embeddings. As embeddings encode meaning,
calculating similarity scores using the cosine similarity metric
between segment embeddings and posed questions allowed
us to retrieve the pieces of text most directly related to the
content of the question. As such, three segments with the
highest similarity scores were integrated to create the final
context for the LLM. This context was made part of a plain
language question for the LLM, alongside a question it was
directed to answer.

We selected the top three segments with the highest
similarity scores for several key reasons. First, using multiple
segments allows us to enrich the context provided to the
LLM, ensuring that it has access to a broader and more
diverse set of relevant information. By incorporating three
segments, we increase the likelihood that important details
from different parts of the document are included, without
overwhelming the model’s context window.

Additionally, focusing on the top three ensures that we
strike a balance between the relevance and the diversity
of information. Using just one segment might omit crucial
context, while using too many could dilute the focus on
the most pertinent details. The number three was chosen
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empirically, as it allowed for a good compromise between
feeding the LLM with enough useful content and avoiding
the risk of both exceeding usable context and introducing
unrelated or redundant information that could confound the
model’s operation. We did experiment with other segmen-
tation strategies, including combining two or four closest
segments, but the performance gains were inferior to those
of the three-segment approach. In our preliminary trials, while
combining more distinct segments could introduce variety,
this approach led to a slight reduction in overall accuracy due
to the introduction of less relevant or tangential information.

Finally, embedding models with cosine similarity offers
an efficient and robust way to evaluate how closely each
segment relates to the posed question, ensuring that the
selected segments are not just textually similar but semanti-
cally aligned with the user’s query. This method enhances the
precision of the context provided to the LLM, resulting in
more accurate and relevant answers. The source code can be
found at [12] under a GPLv3 license.

The prompt template is available in Multimedia Appendix
1.

Development of MQA and the Evaluation
of Concordance
We formulated 12 questions with expert clinical input that
extracted key information for the assessment of the thyroid
cancer staging and recurrence risk on the AJCC-TNM staging
system (American Joint Committee on Cancer Tumor-Node-
Metastasis, 8th edition) according to the American Thyroid
Association Recurrence Risk Stratification System [13,14].
Two study authors (DL and KMM) reviewed 84 thyroid
surgical pathology reports and recorded answers to each of
the 12 questions and the time taken to complete the answers
for each report. Then, we used the LLM to answer the same
questions. For every question, we determined if the answers

were concordant between Reviewer 1 and the LLM, between
Reviewer 2 and the LLM, and between the two reviewers.
The concordance rate for each pairwise comparison (human-
LLM and human-human) was then calculated as the total
number of concordant answers divided by the total number of
answers for each of the 12 questions (Figure 2). The average
concordance rate and associated error (calculated here as
the SD) for all questions were tabulated for each pairwise
comparison and evaluated with two-sided t tests.

Results
We report the sample LLM responses and the concordance
rates between reviewers and the LLM for each question in
Table 1. A total of 1008 questions were answered for the
84 thyroid surgical pathology reports. Reviewers 1 and 2
were concordant at an average (SD) overall rate of 99%
(1%; 999 out of 1008 questions) with disagreement on 9
answers. Reviewers 1 and 2 took an average (SD) of 2 (0.6)
minutes and 1.4 (0.4) minutes to respond to each pathol-
ogy report and a total of 170.7 minutes and 115 minutes
for all reports, respectively. The LLM was concordant with
reviewers 1 and 2 at an average (SD) overall rate of 89%
(7%; 896 out of 1008 questions) and 89 (7.2%; 903 out of
1008 questions), respectively. The LLM was significantly
less accurate than both reviewer 1 (P<.001) and reviewer
2 (P<.001), but performed at the same level between both
reviewers (P=.82). The average time to review each report
for the LLM was 13.97 seconds/report and 19.56 minutes
for all reports. The questions with the highest overall rates
of concordant responses were questions requiring binary
or categorical data extraction (eg, “Is lymphatic invasion
present?”, 100%; “Is vascular invasion present?”, 98.81%;
and “Where is the primary cancer located?”, 98.1%). The
question with the lowest overall concordance was, “Were
cervical lymph nodes present?” at 75%.

Table 1. Twelve medical questions and sample large language model (LLM) answers with the rates of concordance between the reviewers and the
LLM.

Medical question Sample LLM answer
Concordance (%)
R1,a LLM R2,b LLM R1, R2 All 3

Staging tumor (T)
  What is the size of the primary

tumor?
The size of the primary tumor was 5.5 cm. 82 84 98 82

  Does the tumor extend beyond the
capsule of the thyroid?

No, the tumor does not extend beyond the
capsule of the thyroid.

90 93 97 90

  Where is the primary cancer located
(right thyroid lobe, left thyroid lobe,
or isthmus)?

The primary cancer is located in the right
thyroid lobe.

99 100 99 99

Node (N)
  Were any cervical lymph nodes

present?
Yes, cervical lymph nodes were present. 76 100 99 75

  If cervical lymph nodes are present,
how many lymph nodes were
positive for malignancy?

Three lymph nodes were positive for
malignancy.

88 88 100 88

Stage (TNM)c
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Medical question Sample LLM answer
Concordance (%)
R1,a LLM R2,b LLM R1, R2 All 3

  What is the final pathology TNM
stage of the thyroid cancer?

The final pathology TNM stage of the thyroid
cancer is pT3a.

85 85 100 85

Recurrence risk factor
  Is vascular invasion present? Yes, vascular invasion is present. 99 99 100 99
  Is lymphatic invasion present? No, lymphatic invasion is not present. 100 100 100 100
  What was the histology of the

primary cancer?
The histology of the primary thyroid cancer
was papillary carcinoma.

87 87 100 87

  Was there a variant of thyroid cancer
such as tall cell, hobnail variant, or
columnar cell variant present,
indicative of a more aggressive
histology?

No, a variant of thyroid cancer such as tall cell,
hobnail variant, or columnar cell variant was
not present indicative of a more aggressive
histology.

89 92 97 89

  Was there a second thyroid cancer
present?

No, there was no second thyroid cancer
present.

82 83 99 82

  If there was a second thyroid cancer
present, what was the histology?

The histology of the second thyroid cancer was
classical variant papillary thyroid carcinoma.

88 88 99 88

Overall questions, % (SD) 89 (7) 89 (7) 99 (1) 89 (7.2)
aR1: Reviewer 1.
bR2: Reviewer 2.
cTNM: Tumor-Node-Metastasis.

Discussion
We demonstrated and evaluated the extraction performance of
a locally deployed, open-source LLM for a specific clini-
cal NLP task. To our knowledge, this is the first study
to compare an LLM’s ability to extract key thyroid cancer
recurrence and staging information accurately and efficiently
from surgical pathology reports using a conversational MQA
format. The LLM took 19.56 minutes to evaluate and respond
to all pathology reports, whereas it required an additional
187 minutes and 105 minutes for the reviewers to complete
the same task—demonstrating a considerable reduction in
time. Regarding the accuracy of the responses, we found
that the rates of response concordance were higher among
questions tasked with simpler binary or categorical responses.
The increase in task complexity requiring textual interpre-
tation and inconsistent word prompting, such as asking
whether there was “cervical” lymph nodes present, resulted
in the lowest rate of concordance. Furthermore, the question
regarding the size of the primary tumor also seemed to be
relatively straightforward but had an overall concordance rate
of only 82%.

The augmentation of poorer-performing MQA may lie
in the improvement of prompt engineering—an emerging
subfield where domain-specific knowledge and linguistics are
optimized to design questions that yield the best-performing
response to a task. In addition, more expressive embeddings
may help localize relevant text [15]. For example, “cervi-
cal” does not appear in most pathological reports verbatim,
possibly limiting the model’s ability to respond appropriately
to the question regarding the presence of cervical lymph
nodes. Moreover, the LLM often incorrectly identified the
size of the “primary tumor” and would instead provide a

dimension from another specimen in the report, such as the
overall thyroid lobe. This response accuracy may also be
improved by modifying the question prompt and will be the
focus of future work.

Overall, the use of LLMs may be an advancement from
early NLP methods that faced limitations such as restric-
tive data preprocessing and the inability to handle multiple
positive diagnoses [16-18]. Studies exploring the ability of
LLMs to handle real clinical data have been rapidly grow-
ing. Examples include the investigation of the use of LLMs
for multiple clinical NLP tasks such as the summarization
of magnetic resonance imaging and radiology reports of the
knee [19], the simplification of anatomic pathology reports
for patient interpretation [20], and data extraction from breast
cancer pathology and radiology reports [21]. However, the
protection of private patient information must be prioritized
with the use of any emerging technology. Safeguards should
be established to ensure data breaches can be avoided with
the use of LLMs for clinical tasks. The approach of deploying
smaller, open-source LLMs behind a health care institution’s
own computing resources ensures that researchers across all
centers may use this emerging technology while maintaining
patient privacy. Additionally, the increased language capacity
of the latest generation of LLMs allows institutions to deploy
their own data for in-context learning only while potentially
achieving a reasonable performance.

The limitations of this study include the use of a single
institutional dataset without comparison with an external
dataset to evaluate the generalizability of the LLM perform-
ance. Differences in language, reporting style, and descrip-
tion length of surgical pathology reports of different cancer
types may also affect the ability of a smaller LLM such as
the open-source FastChat-T5 used in this study to accurately
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extract the requested data using prompts. Additionally, while
the intention of the study was to compare the performance
of a smaller, open-source LLM to the gold standard of
human reviewers, a comparison of its performance with
larger, private LLMs such as GPT should be explored in
future studies, after data have been confirmed to be entirely
deidentified.

This study demonstrated that a locally deployed, open-
source LLM is capable of automating data extraction faster
than human reviewers who need to perform a manual
review of surgical pathology reports. However, although the
responses between the LLM and expert reviewers reached
concordance rates of 88‐89%, the degree of error by the

LLM precludes its exclusive use to populate cancer statistics
databases. Until LLMs demonstrate comparable performance
to humans, the use of LLMs for clinical NLP tasks still
requires considerable oversight by human reviewers. As a
human-assistance tool, the role of LLMs may lie in improv-
ing the time efficiency of populating clinical databases. As
methods of prompt engineering and fine-tuning improve, we
envision that LLMs will eventually allow medical institu-
tions to harness cutting-edge advances in NLP for timely
and privacy-preserving MQA data extraction from pathology
reports and other clinical narratives for the provision of
real-time, essential oncologic insights.
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