
Original Paper

Improving Suicidal Ideation Detection in Social Media Posts: Topic
Modeling and Synthetic Data Augmentation Approach

Hamideh Ghanadian1, BSc, MSc, PhD; Isar Nejadgholi2, BSc, MSc, PhD; Hussein Al Osman1, BSc, MSc, PhD
1School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
2National Research Council Canada, Ottawa, ON, Canada

Corresponding Author:
Hamideh Ghanadian, BSc, MSc, PhD
School of Electrical Engineering and Computer Science
University of Ottawa
75 Laurier Ave E
Ottawa, ON, K1N 6N5
Canada
Phone: 1 6134000702
Email: hghanadian36@gmail.com

Abstract

Background: In an era dominated by social media conversations, it is pivotal to comprehend how suicide, a critical public
health issue, is discussed online. Discussions around suicide often highlight a range of topics, such as mental health challenges,
relationship conflicts, and financial distress. However, certain sensitive issues, like those affecting marginalized communities,
may be underrepresented in these discussions. This underrepresentation is a critical issue to investigate because it is mainly
associated with underserved demographics (eg, racial and sexual minorities), and models trained on such data will underperform
on such topics.

Objective: The objective of this study was to bridge the gap between established psychology literature on suicidal ideation and
social media data by analyzing the topics discussed online. Additionally, by generating synthetic data, we aimed to ensure that
datasets used for training classifiers have high coverage of critical risk factors to address and adequately represent underrepresented
or misrepresented topics. This approach enhances both the quality and diversity of the data used for detecting suicidal ideation
in social media conversations.

Methods: We first performed unsupervised topic modeling to analyze suicide-related data from social media and identify the
most frequently discussed topics within the dataset. Next, we conducted a scoping review of established psychology literature to
identify core risk factors associated with suicide. Using these identified risk factors, we then performed guided topic modeling
on the social media dataset to evaluate the presence and coverage of these factors. After identifying topic biases and gaps in the
dataset, we explored the use of generative large language models to create topic-diverse synthetic data for augmentation. Finally,
the synthetic dataset was evaluated for readability, complexity, topic diversity, and utility in training machine learning classifiers
compared to real-world datasets.

Results: Our study found that several critical suicide-related topics, particularly those concerning marginalized communities
and racism, were significantly underrepresented in the real-world social media data. The introduction of synthetic data, generated
using GPT-3.5 Turbo, and the augmented dataset improved topic diversity. The synthetic dataset showed levels of readability
and complexity comparable to those of real data. Furthermore, the incorporation of the augmented dataset in fine-tuning classifiers
enhanced their ability to detect suicidal ideation, with the F1-score improving from 0.87 to 0.91 on the University of Maryland
Reddit Suicidality Dataset test subset and from 0.70 to 0.90 on the synthetic test subset, demonstrating its utility in improving
model accuracy for suicidal narrative detection.

Conclusions: Our results demonstrate that synthetic datasets can be useful to obtain an enriched understanding of online suicide
discussions as well as build more accurate machine learning models for suicidal narrative detection on social media.

(JMIR Form Res 2025;9:e63272) doi: 10.2196/63272
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Introduction

Suicide is a pressing global public health issue with far-reaching
consequences for individuals, families, and communities. The
World Health Organization [1] has highlighted the alarming
increase in suicide rates in recent years, emphasizing the urgent
need for effective prevention strategies [2]. Traditionally,
identifying individuals at risk of suicide has relied on clinical
assessments and crisis hotlines. However, the widespread
adoption of social media has opened new avenues for early
detection and intervention [3].

Natural language processing (NLP) techniques have emerged
as a promising tool for suicide detection, leveraging machine
learning to analyze textual data shared on social media platforms
[4-6]. Social media datasets have become invaluable in the study
of suicidal ideation. As more people express their thoughts and
emotions online, these datasets offer a unique glimpse into
individuals’ digital lives, providing rich data for research and
mental health support [7]. Researchers use these datasets to
analyze text, identifying patterns and linguistic cues associated
with suicidal ideation [8-10].

However, while social media provides a wealth of information,
it is not without its limitations. For instance, social media
platforms tend to attract a younger demographic, which may
skew the data and make them less representative of older
populations. Additionally, the open nature of social media may
encourage users to share certain aspects of their experiences
while discouraging the disclosure of more personal or sensitive
factors [11]. These biases can have significant implications for
machine learning models trained on social media data. If the
data are not representative of all demographics or fail to capture
less frequently discussed factors, the models may struggle to
generalize effectively. For example, a model trained on data
that overrepresent certain themes or demographics may perform
poorly when encountering posts from underrepresented groups
or those addressing less common topics. This could lead to false
negatives, where the model fails to identify at-risk individuals,
or biased outputs, where the model perpetuates stereotypes or
stigmatization present in the training data.

To address these limitations, it is crucial to complement social
media datasets with information from other reliable sources.
Within psychology, extensive research has been conducted to
understand the underlying psychological, social, and
environmental factors contributing to suicidal thoughts and
behaviors. Several investigations have explored how
psychological factors, including depression, anxiety, a sense of
hopelessness, and feelings of low self-worth, influence the
emergence of suicidal thoughts [12-14]. These studies have
investigated the strong association between suicidal thoughts
and conditions like depression [15,16], bipolar disorder [17],
borderline personality disorder [18], and substance abuse
[19,20]. The studies used a combination of quantitative and

qualitative methods to explore the factors contributing to suicide
[21-24].

Our objective in this study is to identify gaps between the risk
factors represented in social media data and those established
in psychology literature. We hypothesize that social media data
do not fully capture empirically established factors related to
suicidal ideation, particularly those that may be underrepresented
due to demographic or disclosure biases. To examine this, we
conducted a comprehensive analysis of suicide-related social
media datasets using topic modeling techniques to identify
themes and topics [25]. We then compared the extracted themes
with factors outlined in psychology literature to locate any
significant gaps. When such gaps were identified, we explored
the potential of augmenting real-world data with synthetic data
generated by advanced language models like GPT-3.5 Turbo
to improve the representation of underreported factors. The use
of synthetic data has gained traction in recent years, particularly
with the advent of generative models that can produce
high-quality, realistic data [26,27]. This study presents a novel
approach for identifying and mitigating topic gaps in suicidal
ideation detection models, aiming to improve their
generalizability and fairness.

Methods

Study Methodology
In this subsection, we elaborate on our study methodology.
Figure 1 illustrates how the study methodology was developed.
Our approach included the following steps:

• Step 1 (unsupervised topic modeling): We performed
unsupervised topic modeling to discover the topics and risk
factors mostly discussed on social media.

• Step 2 (domain knowledge extraction): We extracted
relevant social risk factors from psychology literature to
ground the content assessment of datasets in these factors.

• Step 3 (guided topic modeling): We compared topics
extracted from social media and the literature. We shifted
toward supervised guided topic modeling on social media
using discovered topics from the literature to identify
underrepresented and missing risk factors.

• Step 4 (synthetic and augmented dataset): We extended and
annotated the existing synthetic datasets by incorporating
additional risk factors that were missing from existing
datasets. Moreover, we created an augmented dataset by
combining synthetic data with real social media data to
enhance its generalizability and topic coverage.

• Step 5 (dataset evaluation): To evaluate the utility of
synthetic data, we analyzed both real and synthetic datasets
by assessing the complexity, readability, and diversity of
the text within each dataset. Additionally, we trained
state-of-the-art classifiers using real-world, synthetic, and
augmented datasets. Subsequently, the performance of these
classifiers was evaluated by testing them on both real-world
and synthetic test sets.
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Figure 1. Overview of the multistep methodology used in this study to assess topic gaps in suicidal ideation detection from Reddit social media posts.

Unsupervised BERTopic
In this subsection, we present the methodology for conducting
topic modeling using BERTopic [28], a state-of-the-art deep
learning approach for discovering topics in text data. Our
objective was to assess the quality, diversity, and coverage of
datasets collected from social media in relation to suicidal
ideation.

BERTopic leverages transformer-based language models as
embedding models, combined with clustering methods for topic
extraction [29]. BERTopic integrates transformer-based
techniques with term frequency–inverse document frequency
(TF-IDF) to create compact, interpretable clusters, preserving
the most relevant terms in topic descriptions. This approach
leverages deep learning and is mostly used with the sentence
transformers embedding model, which supports document
embedding extraction in more than 50 languages [30].
BERTopic’s topic modeling procedure involves 3 main stages:
document embeddings, document clustering, and topic
representation.

Text Embedding
Text embedding refers to the vector representation of text within
a multidimensional space where textual contents conveying
similar meanings exhibit similar embeddings. In this project,
we used the “SentenceTransformers” Python framework for
state-of-the-art sentence and text embeddings [31]. Although
there are many models for text embeddings, we used the
sentence transformers “all-MiniLM-L6-v2” model as it has been
shown to be one of the best-performing models within the
BERTopic framework [32].

Topic Extraction
In this step, similar documents or sentences are grouped based
on their content. It is a method of organizing large amounts of
textual information into meaningful categories or clusters,
providing a high-level overview of the information contained
within. Before clustering the embeddings, a dimensionality
reduction is implemented, as embeddings are often high in
dimensionality. In this work, we used the UMAP (Uniform
Manifold Approximation and Projection) algorithm to reduce

the dimensionality of the embeddings because it can capture
both the local and global structures of high-dimensional data
in lower-dimensional space [33]. It has also been proven that
for short text clustering, UMAP demonstrates superior results
[34,35]. The hyperparameter space involved in UMAP is
manually inspected, and based on the performance of the model
and presented topics, the best parameters are selected. The
number of neighbors, the number of components, and the
minimum distance of each component were selected as 15, 5,
and 0, respectively.

Following the dimensionality reduction of our input embeddings,
we needed to cluster them into groups of similar embeddings
to extract our topics. The method used in this paper is
HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise), introduced by Campello et al [36].
This method is based on the density clustering method that finds
clusters of different shapes and identifies outliers where possible.
Similar to UMAP, the parameters of this model are manually
inspected, and the proper parameters are chosen. There is no
automated method for determining values for HDBSCAN. The
parameters should be set manually based on domain knowledge
and understanding of the dataset. Hence, we selected 10 and 5
as the minimum cluster size and sample number in each cluster,
respectively.

Keyword Extraction for Topics
In this step, class-based term frequency–inverse document
frequency (C-TF-IDF) scores are used to identify a set of
keywords that represent the topic for a better interpretation of
the topic’s content. TF-IDF is a technique used to extract
features from text documents, which is achieved by combining
2 components: term frequency and inverse document frequency.
Term frequency represents the simple word count within a
document, treating each word count as a feature, and it is
calculated by dividing the number of times the term occurs in
the document by the total number of terms in the document.
Inverse document frequency gauges the informativeness of
specific words by measuring their frequency within a document
relative to their frequency across all other documents. C-TF-IDF
is similar to TF-IDF but is adopted for multiple classes by
joining all documents per class. Thus, each class is converted
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to a single document instead of a set of documents. After
calculating the C-TF-IDF scores for all words in each topic,
words with the highest scores are chosen as keywords associated
with that topic.

Social and Psychological Knowledge Extraction
We conducted a scoping review to offer a current and thorough
synthesis of psychology studies, aiming to identify topics,
themes, and risk factors related to the sensitive and complex
issue of suicidal ideation. Scoping reviews serve as a method
to assess the scope of literature on a particular subject, providing
insights into the available research and offering a broad
overview of its focus [37]. Additionally, they highlight the types
of evidence that guide practice in the field and examine how
the research has been conducted [38]. Our protocol was
developed using the scoping review methodological framework
proposed by Arksey and O’Malley [39] and further refined by
Peters et al [40].

Research Question
The central research question guiding this review was as follows:
“What are the most frequently reported risk factors associated
with suicidal ideation in the psychology and mental health
literature?” By answering this question, the review seeks to
provide a clearer understanding of the key factors that contribute
to the emergence of suicidal thoughts, ultimately informing
future research and interventions aimed at preventing suicide
and supporting individuals at risk.

Search Strategy
We scoured prominent academic databases, such as PubMed,
PsycArticles, ScienceDirect, and Google Scholar, employing a
systematic approach. Our search strategy involved using
identical keywords across all databases: “suicidal ideation” and
“suicide risk factors.”

Eligibility Criteria
To be eligible for inclusion, studies were required to be
peer-reviewed review or systematic review publications that
investigated risk factors associated with suicidal ideation.
Eligible studies had to be published between January 2014 and
August 2024, address all forms of suicidal behavior including
ideation and attempts, and focus on the general population.

Studies were excluded if they focused on specific groups that
could introduce additional factors into the analysis, were
published in a language other than English, or were not
peer-reviewed publications, such as book chapters.

Study Selection
All identified publications were initially screened for relevance
based on abstract and title. Subsequently, the full text of selected
publications was assessed for eligibility. Furthermore, the
reference lists of eligible papers were used to identify additional
studies.

This exploration allowed us to identify a wide array of relevant
review papers, forming the foundation of our research.
Subsequently, we reported the most common topics among all
the selected research articles. Based on our analysis of the
literature, several social and psychological factors were

consistently reported in relation to suicidal ideation in
psychology. These topics have not been listed in a specific order
of importance but represent the consistently reported themes in
the literature reviewed.

Mental Health Disorders and Personality Traits
“Depression” is a well-documented and significant risk factor
for suicide. The persistent feelings of sadness and emotional
pain that characterize depression can lead individuals to
contemplate or attempt suicide as a means of escape from their
suffering. It is vital to recognize the signs of depression, offer
support, and connect individuals to mental health professionals
and resources for effective treatment and intervention [41-43].

“Anxiety” disorders are commonly associated with suicidal
ideation. The chronic emotional distress and physical symptoms
associated with severe anxiety can contribute to the development
of suicidal thoughts [44].

“Posttraumatic stress disorder” (PTSD) is strongly associated
with an increased risk of suicidal ideation. Individuals who have
experienced traumatic events may struggle with the emotional
aftermath, including intrusive memories, hyperarousal, and
avoidance of reminders, which can lead to constant emotional
distress and a sense of being overwhelmed. These constant
feelings of traumatic memories can contribute to thoughts of
suicide [45,46].

“Bipolar disorder,” formerly called manic depression, is a mental
health condition that causes extreme mood swings. These
include emotional highs (also known as mania) and lows (also
known as depression) [47]. Suicide attempts and completed
suicide are significantly more common in patients with bipolar
disorder when compared with the general population [47,48].

“Schizophrenia” is a severe mental disorder that disrupts both
cognitive and social functioning, often resulting in the onset of
additional health conditions [49]. Schizophrenia is strongly
linked to an increased risk of suicidal ideation. The distress
caused by its symptoms, feelings of isolation, and perceived
loss of control over one’s mind can contribute to a deep sense
of hopelessness. Additionally, the stigma and social withdrawal
often associated with schizophrenia may exacerbate these
feelings, further increasing the risk of suicide [50,51].

“Borderline personality disorder” is a prevalent mental health
condition linked to elevated suicide rates, significant functional
impairment, frequent co-occurrence with other mental disorders,
and extensive treatment needs. Long-term outcome studies of
patients with borderline personality disorder have documented
a high rate of suicide completion [52,53].

The expression and experience of “anger” have been reported
as influential factors in suicidal ideation. Unresolved anger and
intense emotional turmoil can drive individuals toward suicidal
thoughts and actions. Anger, when left unmanaged, can escalate
distress and lead to impulsive decisions with dire consequences.
Recognizing and managing anger are crucial facets of suicide
detection [41,54].

“Perfectionism,” marked by excessively high standards and
self-criticism, has been identified as a psychological factor
related to suicidal ideation. The relentless pursuit of unattainable
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standards can lead to feelings of inadequacy and despair,
increasing the risk of suicidal ideation. Recognizing the need
for balance and self-compassion is pivotal in addressing this
risk factor [41].

Feelings of “hopelessness,” characterized by a pervasive sense
of despair and an inability to envision a better future, can be a
potent predictor of suicidal behavior. Those burdened by
overwhelming hopelessness may see suicide as the only means
of escape from their emotional suffering [41,42,55].

Substance Abuse
Alcohol and drug misuse is a significant risk factor for suicidal
ideation and behavior [56]. The connection between substance
abuse and suicide is complex, as substances like drugs and
alcohol can impair judgment and exacerbate underlying
emotional distress. Individuals who struggle with addiction may
turn to substances as a means of coping with psychological pain,
and when combined with impaired decision-making, this can
increase the likelihood of suicidal thoughts and actions [57-59].

Sociodemographic Status
Prolonged “unemployment” can erode self-esteem, create
financial difficulties, and contribute to feelings of hopelessness,
increasing the risk of suicide. Government support and job
assistance programs can help mitigate this risk [55]. “Financial
hardships” can trigger intense stress, making individuals
vulnerable to suicide. Economic support and resources are
instrumental in addressing this risk factor [44,60].

“Education pressure,” including exams and expectations, can
lead to emotional turmoil and an increased risk of suicidal
ideation, particularly among students. Educational institutions
must provide resources for coping with academic stress [61,62].

“Sexual minority” individuals, such as those who identify as
lesbian, gay, bisexual, transgender, queer (LGBTQ+), often
face unique stressors related to their sexual orientation or gender
identity [63]. Discrimination, prejudice, and stigma can lead to
feelings of isolation, rejection, and psychological distress.
Research consistently shows that sexual minority individuals
are at a higher risk for suicidal ideation and attempts compared
to their heterosexual counterparts [64-67].

Abuse
“Bullying,” including physical, verbal, or cyber bullying, has
consistently emerged as a significant topic related to suicidal
ideation. The experience of bullying can lead to social isolation,
low self-esteem, and emotional distress, contributing to the
development of suicidal thoughts [44,68-70].

“Sexual abuse” is a recognized risk factor for suicide, which
includes any sexual activity that occurs without consent, also
referred to as sexual assault or sexual violence [71]. Dissociation
is a common response to sexual abuse, and higher levels of
dissociation have been associated with self-harm, suicidal
thoughts, and suicide attempts [72,73].

Family-Related Issues
“Family-related stressors,” such as conflict, dysfunctional
dynamics, and poor communication, can significantly impact
an individual’s emotional well-being and contribute to suicidal

thoughts. Strengthening family relationships and providing
support to those affected are essential in mitigating this risk
factor [43,55].

Difficulties in “relationships,” including conflicts, breakups,
and marital dissatisfaction, have been reported as significant
topics in relation to suicidal ideation. Relationship problems
can contribute to emotional distress and feelings of hopelessness,
leading to thoughts of suicide [55].

The death of family members or friends has been reported as a
risk factor associated with suicidal ideation. Grief, feelings of
loneliness, and a sense of being unable to cope with the loss
can increase the risk of suicidal thoughts [74].

Racism
Studies have consistently highlighted the significant impact of
racial discrimination on suicidal ideation. Experiencing racism
and racial prejudice can increase the risk of suicidal thoughts
[75-77].

Immigration
The process of immigration, with its cultural adjustments,
isolation, and uncertainty, can intensify stress and emotional
distress, increasing the risk of suicide among immigrants.
Providing support and resources tailored to the immigrant
experience is essential [78,79].

Dementia
Dementia, particularly in its advanced stages, can lead to
significant cognitive and emotional challenges. Individuals with
dementia may experience confusion, memory loss, and
personality changes, which can be distressing for both them and
their caregivers. The experience of losing one’s cognitive
abilities and identity can contribute to feelings of hopelessness
and despair, leading to thoughts of suicide [80-82].

Chronic Physical Problems
Living with chronic physical health conditions can be
emotionally taxing, and individuals facing such challenges may
be more susceptible to suicidal ideation. Chronic pain, disability,
and limitations in physical functioning can erode one’s quality
of life and lead to a sense of hopelessness [83]. Coping with
the constant demands of managing a chronic condition can also
contribute to emotional distress [84,85].

Guided BERTopic
In this research, we began by applying unsupervised BERTopic
to the social media datasets to identify key topics discussed
within them. Next, we conducted a scoping review to examine
established suicidal risk factors. We then compared the topics
from the social media analysis with risk factors extracted from
psychology literature. During this process, we observed that the
effectiveness of topic modeling techniques in capturing
domain-specific terms may be limited. To address this, we used
guided topic modeling to ensure that certain specialized terms
are detected and appropriately represented in the topics.

Guided topic modeling (supervised topic modeling) is an
extension of traditional topic modeling that incorporates external
information or guidance to influence the topic discovery process.
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In this project, we employed guided BERTopic [86], which
introduces external information in the form of seed words to
guide the algorithm in discovering topics that align with the
specified guidance. This guidance helps to improve the relevance
and coherence of the identified topics. Here, we used discovered
suicidal risk factors from psychology literature in the Social
and Psychological Knowledge Extraction section as categories
to guide the topic modeling process. Each category comes with
sets of seed words that are suggested using “Meriam-Webster
Dictionary” [87] as the most related keywords for each category.
This deliberate approach allowed us to align the resulting topics
with known psychological factors that contribute to suicide risk,
creating a more focused and domain-informed representation.

Guided BERTopic involves 2 primary steps. First, the BERTopic
algorithm generates embeddings for each seeded topic by
concatenating them and passing them through the document
embedder. As shown in Figure 2, these embeddings are
compared to the existing document embeddings using cosine

similarity and are then assigned a label. If a document is most
similar to a seeded topic, it receives that topic’s label; otherwise,
if it is most similar to the average document embedding, it will
be categorized as an outlier (–1 label). UMAP then applies these
labels in a semisupervised manner, guiding the dimensionality
reduction process to emphasize the distinctions between seeded
topics and potentially identify outliers, thereby steering the topic
creation more effectively toward the seeded topics. Second, all
words in the seed topic list are assigned to a multiplier with a
value greater than 1. These multipliers are applied to increase
the inverse document frequency values of the words across all
topics by boosting the likelihood of a seeded topic word
appearing in a topic. After having generated our topics using
C-TF-IDF, we employed the KeyBERTInspired extraction
technique that leverages BERT embeddings and simple cosine
similarity to find keywords and key phrases that are most similar
to a document. Then, we selected keywords with the highest
C-TF-IDF score as representative seed topics for the guided
topic modeling.

Figure 2. Architecture of guided BERTopic using seed terms derived from psychology literature. Illustration of how seed words based on established
suicide risk factors from the literature were incorporated into the guided BERTopic algorithm to steer topic discovery in Reddit social media posts for
suicidal ideation detection. IDF: inverse document frequency.

Synthetic Data Generation
Synthetic data generation provides a practical solution for
addressing data availability limitations by creating artificially
generated data that closely resemble real-world data. Ghanadian
et al [26] employed 3 generative large language models, namely
GPT-3.5 Turbo, Flan-T5, and Llama2, to generate a synthetic
dataset related to suicide. Their findings indicated that GPT-3.5
Turbo outperformed other generative models in creating
synthetic data, that is, a classifier trained on a dataset generated
by GPT-3.5 Turbo achieved higher F-scores when tested on the
real-world and synthetic test sets. In our research, we used the
dataset presented in the study by Ghanadian et al [26], along
with domain knowledge–based risk factors we extracted, to
generate a new dataset using GPT-3.5 Turbo. Moreover, we
augmented 30% of the real dataset with a new synthetic dataset

to report the practicality of the generated data for suicidal
ideation detection.

Dataset Analysis
For textual datasets, assessing the diversity of semantics and
the sentence structure of textual content is crucial, even more
so when dealing with synthetic datasets. To measure these
qualities, we used 3 sets of metrics: complexity, readability,
and entropy. Complexity refers to the intricacy and
sophistication of the language used in a text, encompassing
factors such as sentence structure, vocabulary richness, and
syntactic intricacies. Readability pertains to the ease with which
a text can be comprehended by its intended audience,
considering elements such as sentence length, word difficulty,
and overall coherence. Understanding complexity and readability
in synthetic datasets aids in ensuring that the generated text
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aligns with linguistic patterns observed in real-world data.
Moreover, these parameters facilitate an assessment of the
synthetic dataset, specifically regarding the incorporation of
suitable language complexities. This evaluation allows us to
examine if synthetic data replicate language patterns akin to
those found in genuine, human-generated content. Furthermore,
entropy is a metric that measures the unpredictability of a text.
It assesses the information content or disorder present in the
dataset. In simpler terms, entropy in text datasets gauges how
diverse or varied the words or characters are within the dataset.
High entropy indicates a higher degree of unpredictability,

suggesting a wider range of different words or characters used
in the text. Conversely, low entropy implies a more predictable
or ordered text with fewer variations in the words or characters
used.

To measure the readability of text, we used the Flesch reading
ease test [88], which quantifies readability based on sentence
length and the number of syllables per word. As a benchmark,
a high score indicates that the text is easily understood by an
average 11-year-old, while a low score indicates that the text is
best understood by university graduates. Table 1 presents the
definition criteria for the Flesch reading ease test score.

Table 1. Flesch reading ease test score definition criteria.

DifficultyScore

Very easy90-100

Easy80-89

Fairly easy70-79

Standard60-69

Fairly difficult50-59

Difficult30-49

Very confusing0-29

Additionally, we used the type-token ratio [89] to assess the
complexity of a text using lexical diversity measures. The basic
idea behind that measure is that if the text is more complex, the
author uses a more varied vocabulary, so there is a larger number
of unique words [90].

Another selected metric was Shannon entropy [91], which is
calculated based on the frequency of occurrence of different
characters, words, or other linguistic units within the text. In
word-based analysis, higher entropy suggests a wider range of
vocabulary, showing greater linguistic diversity [92]. Calculation
of Shannon entropy involves summing the probabilities of each
word occurrence in the text, weighted by the logarithm of the
inverse of these probabilities. The Shannon entropy H for a set
of words with probabilities p1, p2, ..., pn is calculated as follows:

In this equation, H represents the calculated entropy value for
the given set of words, and pi represents the probability of the
ith word occurring in the text. The sum extends over all unique
words. By computing Shannon entropy in text analysis, one can
gain insights into the richness, diversity, and complexity of the
language used within the text dataset.

Datasets
In this section, we review the specifications of the datasets
assessed in this work.

University of Maryland Reddit Suicidality Dataset
We used the University of Maryland Reddit Suicidality Dataset
(UMD) [93,94] collected from Reddit. Reddit is an online
website and forum for anonymous discussion on a wide variety
of topics. The UMD is a collection of Reddit posts and

comments created by individuals who expressed suicidal
thoughts or behaviors. The dataset contains over 100,000 posts
and comments collected from various subreddits, including
those related to mental health and suicide prevention, such as
Depression [95] and SucideWatch [96] subreddits. The data
were collected over a period of several years and include the
content of posts and comments, as well as the location and
timing of the posts. This dataset contains annotations at the user
level, using a 4-point scale to indicate the severity of suicide
risk: (1) no risk, (2) low risk, (3) moderate risk, and (4) high
risk. The goal of this annotation is to assess the risk level of
individuals through an examination of their online activities.
This task necessitates minimal data, with users generally
contributing only a limited number of posts on SuicideWatch.
Among the 993 labeled users, 496 made at least one post on the
SuicideWatch subreddit. The remaining 497 users served as
control subjects. Since the provided labels were user-level labels,
we aggregated all the posts of each user into a single data point,
through the concatenation of all the posts made by a particular
user. Using a binary classification approach similar to that by
Ghanadian et al [26], we applied binarization to the UMD. In
accordance with the 4 class definitions, the categories labeled
as “no risk” and “low risk” were categorized as nonsuicidal,
while those labeled as “moderate risk” and “high risk” were
considered suicidal. A total of 490 anonymous posts with binary
labels were employed in this paper.

The UMD has been repeatedly used by researchers to develop
and test NLP algorithms and machine learning models in order
to identify and analyze patterns in online communication related
to suicide risk [97]. Ji et al [98] proposed a method for
improving text representation by incorporating sentiment scores
based on lexicon analysis and latent topics. Additionally, they
introduced the use of relation networks for the detection of
suicidal ideation and mental disorders, leveraging relevant risk
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indicators. In another paper, Ji et al [99] used 2 pretrained
masked language models, MentalBERT and MentalRoBERTa,
specifically designed to support machine learning in the mental
health care research field. The authors assessed these
domain-specific models along with various pretrained language
models on multiple mental disorder detection benchmarks. The
results showed that using language representations pretrained
in the mental health domain can enhance the performance of
mental health detection tasks, highlighting the potential benefits
of these models for the mental health care research community.

Knowledge Aware Assessment Dataset
Gaur et al [100] developed an annotated gold standard dataset
of 500 Reddit users out of 2181 potentially suicidal users, using
their content from mental health–related subreddits within the
time frame of 2005 to 2016. The dataset consists of 5 different
categories of suicidality, including suicidal ideation, suicidal
behavior, actual attempt, suicide indicator, and supportive.

Suicidal ideation refers to thoughts of suicide, which may
involve concerns related to suicide risk factors, such as job loss
or the end of a significant relationship. Suicidal behavior is
defined as actions that carry a higher risk, such as self-harm
(either current or historical), active planning to commit suicide,
or a history of institutionalization for mental health reasons. An
actual attempt encompasses any deliberate action that could
potentially lead to intentional death. This includes, but is not
limited to, instances where an individual sought help,
reconsidered their decision, or publicly expressed thoughts of
suicide. The suicide indicator category serves as a classification
method to distinguish individuals who use at-risk language from
those who are actively experiencing general or acute symptoms.
Often, users converse in supportive conversations and share
their personal histories while using language from the clinical
lexicon. The supportive category pertains to individuals
engaging in discussions without expressing any history of being
at risk, either in the past or at present.

2021 Reddit Dataset
In addition to the existing datasets, we collected a new dataset
of suicidal social media posts from the Reddit platform using
the Reddit application programming interface [101].
Specifically, we focused on the “SuicideWatch” subreddit to
gather posts related to suicide and analyzed the topics discussed
within this subreddit.

The initial data collection was conducted on September 11,
2021, with the goal of gathering 2500 posts published between
May 1, 2021, and September 1, 2021. Subsequently, we
conducted extensive text preprocessing, which included
removing links, eliminating duplicates, handling special
characters, removing stop words, filtering out irrelevant and
noninformative posts, performing lemmatization, and conducting
spellchecking. After these preprocessing steps, our dataset
consisted of 2052 unlabeled posts from the “SuicideWatch”
subreddit, which we used for the purpose of topic modeling in
this study.

Synthetic Dataset
Ghanadian et al [26] generated a synthetic dataset to enhance
the performance of state-of-the-art suicide detection approaches
by augmenting real-world datasets. They harnessed the
capabilities of 3 generative large language models, namely,
GPT-3.5 Turbo, Flan-T5, and Llama 2, to generate synthetic
data for the detection of suicidal ideation.

In this paper, we generated a dataset comprising 748
suicide-related posts. As discussed in the Social and
Psychological Knowledge Extraction section, our updated
suicidal risk factors and topics, derived from an exhaustive
literature search, have led to an extension of the synthetic dataset
initially created by Ghanadian et al [26]. We found 5 more risk
factors associated with suicidal ideation in the literature. We
prompted GPT-3.5 Turbo to generate both suicidal and
nonsuicidal instances to add to the existing dataset. This dataset
is binary, categorized into suicidal and nonsuicidal classes, with
annotations independently provided by 2 expert human
annotators. A notable 90% of the labels, initially generated by
GPT-3.5, were agreed upon by the human annotators. However,
for the remaining 10% of the data, the labels were altered based
on the decision of the annotators. In cases where both annotators
agreed on a label, that label was retained. Conversely, when
disagreements arose, the annotators engaged in discussions to
ultimately reach a consensus on the appropriate label.

Augmented Dataset
Data augmentation involves enriching a dataset by introducing
variations to its existing instances or generating entirely new
instances. This process is designed to enhance the diversity and
quality of the dataset, which, in turn, can lead to improved model
performance and generalization. Ghanadian et al [26] reported
that when synthetic data were augmented with 30% of the UMD
training set, the fine-tuned model outperformed the model
trained with the full UMD. This ratio represents the minimum
amount of augmentation required for the ALBERT model to
surpass the performance results of the model trained solely on
the UMD. Hence, we augmented 30% of the synthetic dataset
with the UMD to achieve a balance between diversity and
quality in the training dataset.

The augmented dataset was used to fine-tune the pretrained
state-of-the-art models and then was evaluated on 2 separate
testing sets. The first testing set was 20% of the UMD before
any training. The second testing set was generated and annotated
by Ghanadian et al [26]. They used several synthetic datasets
to create the testing set for their evaluation.

Ethical Considerations
This study involved the analysis of suicidal posts from social
media, which is a sensitive and ethically complex task. We
obtained ethics approval for the secondary use of data from the
Research Ethics Board at the University of Ottawa (approval
number: H-02-23-8967). This approval confirms that our
research complies with the ethical guidelines for working with
human-derived data and protects the identity of individuals
whose posts are analyzed. The data used in this study are from
the UMD, which was accessed with authorization from its
creators. This dataset was approved by the University of

JMIR Form Res 2025 | vol. 9 | e63272 | p. 8https://formative.jmir.org/2025/1/e63272
(page number not for citation purposes)

Ghanadian et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Maryland’s Institutional Review Board. The dataset consists of
publicly available social media posts collected from Reddit,
where users are anonymous by default. To further protect user
privacy, Reddit usernames in the dataset have been replaced
with numeric identifiers [102]. Since this study involves the
secondary analysis of publicly available and anonymized social
media data, informed consent from individual users was not
required.

Results

Overview
We present the results according to this project’s main research
questions. First, we present the discovered topics in 3 real

datasets collected from social media, including the UMD,
Knowledge Aware Assessment dataset, and 2021 Reddit dataset
uncovered by unsupervised BERTopic. Second, we present the
results of a scoping review and the reference table for each risk
factor. Figure 3 presents the details of our scoping review
process. Third, we present the results of topic discovery using
guided BERTopic and a comparison between unsupervised and
guided BERTopic. Finally, we provide an insightful breakdown,
demonstrating the distribution of each topic within our synthetic
dataset and the augmented dataset.

Figure 3. Scoping review workflow for extracting suicide risk factors from psychology literature.

To delve deeper into our investigation, we report the
performance of the fine-tuned model on these synthetic and
augmented datasets, offering a comprehensive comparison
between the topic-diverse synthetic dataset and real dataset.

Unsupervised Topic Modeling
In this section, we assess the topic diversity in all datasets using
basic BERTopic. Table 2 reports the most occurring topics and
keywords in the selected datasets using basic BERTopic. Some

topics are common across all 3 datasets, while others are not
discussed. For example, the topic of education pressure is
discussed in the UMD and 2021 SuicideWatch datasets but is
not found in the Knowledge Aware Assessment dataset. The
output of topic modeling consisted of clusters of keywords,
each associated with a probability of their relevance to the
cluster. The title of each topic was chosen based on the highest
probability keywords within the cluster.
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Table 2. Distribution of suicide-related psychological and social risk factors identified through unsupervised BERTopic modeling in Reddit datasets.

DatasetTopics and risk factors extracted from psychology

2021 SW dataset
(n=2050), n

Knowledge Aware Assess-
ment dataset (n=500), n

UMDa (SWb subreddit)
(n=490), n

Mental health disorders

7567898Depression

2447345Anxiety

400PTSDc

Sociodemographic status

0518Unemployment

0210Financial crisis

28015Education pressure

Abuse

605Being bullied

Family domain

341450Family issues

302117Relationship problems

Personality and psychological traits

809Hopelessness

1700Racism

004Substance abuse

310Chronic physical problems

aUMD: University of Maryland Reddit Suicidality Dataset.
bSW: SuicideWatch.
cPTSD: posttraumatic stress disorder.

Scoping Review Knowledge Extraction
In our scoping review of psychology literature, we initially
identified 1042 articles related to suicide. After applying the
inclusion and exclusion criteria outlined in Figure 3, a total of
51 studies were retained for analysis. Table 3 provides a list of
references we investigated to extract underlying risk factors of

suicidal ideation. This table organizes all the studies reporting
the identified risk factors. Some of these risk factors fall under
broader categories, allowing for a more structured
understanding. In the Social and Psychological Knowledge
Extraction section, we have provided a description of each
extracted risk factor and how it plays a role in suicidal ideation.
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Table 3. List of risk factors for suicidal ideation extracted through a scoping review of 51 psychology and mental health studies.

StudiesCategory

Mental health disorders

[12,41-43,103-111]Depression

[44,106-108,110,112-114]Anxiety

[12,17,103,109-111]Bipolar

[12,103,105,107,109,110,113]Schizophrenia

[12,106,110,115,116]Borderline

[45,46,107]PTSDa

Sociodemographic status

[12,55,107-109]Unemployment

[61,62,109,111]Education pressure

[44,60,107,108,111,114]Financial crisis

[63-67,107,111]Sexual minority stigma

Abuse

[44,68-70]Being bullied

[107,109,111,117,118]Sexual abuse

Family domain

[74,108,109]Death of loved ones

[43,55,110]Family conflicts

[55,109,110]Relationship problems

Personality and psychological traits

[12,41,42,55,108,119]Hopelessness

[41,54,107,108]Anger

[41,107,109]Perfectionism

[83-85]Chronic physical pain

[80-82]Dementia

[75-77]Racism

[12,78,79,109,111]Immigration

[56-59,110,111,114]Substance abuse

aPTSD: posttraumatic stress disorder.

Guided Topic Modeling
In unsupervised topic modeling, we investigated the underlying
topics within each social media dataset. A comparison between
the extracted topics in the Unsupervised Topic Modeling and
Scoping Review Knowledge Extraction sections revealed that
many topics reported in psychology literature were not
discovered in social media using unsupervised BERTopic. The
absence of these topics was evident only when compared to the
risk factors in psychology literature, and without this
comparison, these important gaps in the discussion might have
been overlooked.

To address this, we employed guided topic modeling, which
focuses on specific risk factors of interest. This approach ensures
that important but less frequently mentioned topics are identified
and included in the analysis. Hence, the topics from psychology
were used as seed topics for the discovery of the topics in these
datasets. Table 4 presents the list of seed words used in guided
topic modeling to extract topics from the UMD. We conducted
seed topic extractions separately for each of the 3 social media
datasets. It is important to note that this list of words does not
need to be exhaustive and only serves as a hint about the topic
for the topic modeling algorithm.
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Table 4. List of manually curated seed words representing 23 risk factor categories used to guide topic modeling of suicide-related Reddit posts,
grounded in terms extracted from psychology studies and verified using the Merriam-Webster Dictionary.

Seed wordsCategory

Depressed, sadness, and mentally illDepression

Anxious, phobia, and stressAnxiety

DelusionSchizophrenia

Manic and temperamentalBipolar

Petulant and impulsiveBorderline

War, memory, and accidentPTSDa

Assault and rapeSexual abuse

Bullying, oppress, and aloneBeing bullied

Family, parents, mom, and dadFamily issues

Wife, husband, partner, girlfriend, and boyfriendRelationship problems

Loss, grief, and mournDeath of loved ones

Outrage and annoyedAnger

Perfection and expectationsPerfectionism

DespairHopelessness

Job, work, and povertyUnemployment

Money and incomeFinancial crisis

College, school, and overwhelmedEducation pressure

LGBTQ+b and identitySexual minority stigma

Discrimination, justice, bias, and hateRacism

Alcohol, drug, and opioidSubstance abuse

Constant, hurt, and escapeChronic physical pain

Moving, loneliness, and cultureImmigration

AlzheimerDementia

aPTSD: posttraumatic stress disorder.
bLGBTQ+: lesbian, gay, bisexual, transgender, queer.

Real Dataset Topic Verification
Here, we aim to understand the distribution of topics in real
data using guided topic modeling. Three real datasets collected
from social media were investigated for suicide-related risk
factors and topics. Table 5 presents the suicide topics in each
real dataset along with the number of posts for each topic. Since
we were interested in the distribution of these topics in relation
to suicidal thoughts in labeled datasets (UMD and Knowledge
Aware suicidality), we only considered the suicidal classes for

topic modeling and evaluation. The results in Table 5 show that
while social media provides a vast and dynamic platform for
individuals to express their thoughts and experiences, it may
not always comprehensively reflect the nuanced and
scientifically established suicide-related topics discussed in
academic psychology literature. The conversational nature of
social media often includes a wide range of personal narratives,
opinions, and language that may or may not align with the
structured and research-driven topics found in psychology
literature.
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Table 5. Distribution of suicidal risk factors extracted using guided BERTopic in real datasets.

DatasetTopics and risk factors extracted from psychology

2021 SW dataset
(n=2050), n

Knowledge Aware Assessment
dataset (n=500), n

UMDa (SWb subreddit)
(n=490), n

Mental health disorders

80679115Depression

2978052Anxiety

225Bipolar

000Schizophrenia

020Borderline

405PTSDc

Sociodemographic status

02530Unemployment

0300Financial crisis

33030Education pressure

000Sexual minority stigma

Abuse

1308Being bullied

702Sexual abuse

Family domain

000Death of loved ones

551455Family issues

382625Relationship problems

Personality and psychological traits

000Anger

000Perfectionism

1709Hopelessness

3600Racism

007Substance abuse

000Immigration

320Chronic physical problems

000Dementia

aUMD: University of Maryland Reddit Suicidality Dataset.
bSW: SuicideWatch.
cPTSD: posttraumatic stress disorder.

Although social media can offer valuable insights into real-world
expressions of mental health concerns, researchers need to
carefully interpret and validate social media data to ensure their
reliability and relevance to the broader body of psychology
literature on suicide. Underrepresentation of certain topics in
social media data, specifically stigmatized topics, such as
conversations around sexual minorities and racism, can lead to
models that underperform in cases where users break the stigma
and talk about these issues.

Topic Verification on Synthetic and Augmented Datasets
We employed guided topic modeling to verify if this method
reveals the suicide topics and risk factors in the synthetic and
augmented datasets. Note that these topics were used to generate
the synthetic data. However, the number of topics discovered
by the guided topic modeling did not sum up to the total number
of posts, which was 908 for the synthetic dataset and 1055 for
the augmented dataset. This discrepancy arose because some
posts were associated with multiple topics and represented more
than one risk factor. Table 6 displays the suicide topics within
each synthetic and augmented dataset, along with the respective
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number of posts for each topic. We observed that topic modeling
showed a relatively equal distribution of topics in the synthetic
dataset. Table 6 illustrates how effectively guided BERTopic
extracted the topics within the documents. Furthermore, these

results demonstrate the significance of the generation of
topic-diverse synthetic and augmented datasets for various
research and applications within the domain of suicide-related
studies.

Table 6. Topic coverage in synthetic and augmented suicidal ideation datasets using guided BERTopic.

DatasetTopics and risk factors extracted from psychology

Augmented dataset (n=1055), nSynthetic dataset (n=908), n

Mental health disorders

17362Depression

6846Anxiety

2019Bipolar

2323Schizophrenia

2323Borderline

2122PTSDa

Sociodemographic status

3520Unemployment

3921Financial crisis

2021Education pressure

4241Sexual minority stigma

Abuse

3939Being bullied

2018Sexual abuse

Family domain

4140Death of loved ones

2019Family issues

4340Relationship problems

Personality and psychological traits

3839Anger

4848Perfectionism

4436Hopelessness

3939Racism

1820Immigration

4640Substance abuse

6156Chronic physical problems

4839Dementia

aPTSD: posttraumatic stress disorder.

Dataset Analysis and Evaluation
In this subsection, we first analyze the quality of each dataset
based on 3 indicators introduced in the Dataset Analysis section.
The comparison between synthetic and nonsynthetic datasets
(UMD, Knowledge Aware, and 2021 Reddit) presented in Table
7 reveals distinct patterns in terms of complexity, readability,
and Shannon entropy. The synthetic dataset and augmented
dataset exhibited relatively high complexity values of 72.77
and 70.27, respectively, which were comparable to that of the

2021 Reddit dataset (72.87) but surpassed those of the UMD
and Knowledge Aware dataset, indicating that synthetic data
are linguistically or structurally more complex. In terms of
content diversity, measured by Shannon entropy, all datasets
showed similar means, but the synthetic dataset was significantly
more uniform, with very low deviation (σ=0.05), compared to
the nonsynthetic datasets. Based on the results presented in
Table 7, synthetic datasets tend to be more complex and are
more controlled and consistent, whereas nonsynthetic datasets
provide a broader range of readability and content diversity.
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Table 7. Linguistic characteristics of real, synthetic, and augmented datasets for suicidal ideation detection.

Shannon entropyReadability (Flesch score)Complexity (type-token ratio)Dataset

σµσµσµ

0.174.3110.8782.4916.1561.18UMDa

0.754.1715.2782.5119.5349.04Knowledge Aware dataset

0.304.2748.0275.7620.1372.872021 Reddit dataset

0.054.2710.3475.8018.4072.69Synthetic dataset

0.054.2810.8077.3817.1870.26Augmented dataset

aUMD: University of Maryland Reddit Suicidality Dataset.

Moreover, Table 8 indicates that the readability of the synthetic
and augmented datasets was more challenging than that of the
real datasets. Specifically, 36% of the synthetic dataset fell into
the “easy” and “very easy” categories, while 67% of the UMD
fell into these categories. In contrast, 33% of the UMD and 64%
of the synthetic dataset fell into the “fairly easy,” “standard,”
“fairly difficult,” and “difficult” categories. Furthermore, we

conducted a statistical t test with a significance level of .05 on
the readability, complexity, and entropy metrics, comparing the
synthetic dataset with each of the real datasets. Our findings
indicated a significant difference in Shannon entropy between
the synthetic and real datasets. However, no significant
differences were observed in terms of readability and complexity
between the real and synthetic datasets.

Table 8. Distribution of Flesch reading ease scores across all datasets.

Augmented dataset, nSynthetic dataset, n
2021 Reddit dataset,
n

Knowledge Aware
dataset, nUMDa, nFlesch reading ease interval

001002Very confusing

503031Difficult

50505055Fairly difficult

1401302002530Standard

300270400140100Fairly easy

270170600240200Easy

1208035050100Very easy

aUMD: University of Maryland Reddit Suicidality Dataset.

Additionally, we created a binary classifier for detecting suicidal
ideation using different datasets. For that, we fine-tuned
ALBERT [120], a transformer-based model optimized for
performance and speed, using the UMD and our synthetic and
augmented datasets, to evaluate the effect of topics and risk
factor inclusion on the performance of a pretrained model. To
fine-tune these models, we used the Huggingface library [121].
The Huggingface library is an open-source library and data
science platform that provides tools to build, train, and deploy
machine learning models. We compared our classification results
with a baseline ALBERT model fine-tuned on the UMD by
Ghanadian et al [10]. We used the Trainer [122] class from
Huggingface transformers for feature-complete training in
PyTorch. The hyperparameters were selected based on the
default values commonly used in similar studies. The final
hyperparameters used in our experiments were as follows:

learning rate, 2e−5; batch size, 4; dropout rate, 0.1; and
maximum sequence length, 512.

Table 9 presents the performance results of fine-tuning the
ALBERT model using the synthetic and augmented training
datasets. The model fine-tuned on the augmented dataset
outperformed the other 2 models, achieving F1-scores of 0.91
and 0.90 on the UMD and synthetic testing subsets, respectively.
Achieving a high F1-score is important when evaluating
classifiers, especially with imbalanced datasets. A high F1-score
indicates that the model is both precise and effective at
identifying at-risk cases. This is critical in sensitive domains
like mental health, where failing to detect or incorrectly
identifying individuals at risk can have serious real-world
consequences.
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Table 9. Performance metrics of suicidal ideation classifiers trained on real, synthetic, and augmented data.

SyntheticNonsyntheticTest set metrics

Augmented datasetChatGPT datasetUMDa dataset

UMD test subset

0.880.720.87Accuracy

0.910.810.87F1-score

Synthetic test subset

0.900.870.67Accuracy

0.900.860.70F1-score

aUMD: University of Maryland Reddit Suicidality Dataset.

Discussion

This study investigated whether social media data adequately
capture empirically established risk factors associated with
suicidal ideation and whether synthetic data augmentation can
improve the representation of underrepresented risk factors in
suicide detection models. Our findings reveal that real-world
social media datasets lack coverage of several critical risk
factors, particularly those related to marginalized communities,
financial crises, racism, and chronic health conditions. By
incorporating insights from psychology literature and leveraging
guided topic modeling, we identified these gaps and generated
synthetic data to enhance topic diversity. Our results demonstrate
that augmenting real-world datasets with topic-diverse synthetic
data improves the performance of machine learning models in
detecting suicidal ideation, as evidenced by an increase in the
F1-score from 0.87 to 0.91 on the UMD test subset and from
0.70 to 0.90 on the synthetic test subset. These findings support
our hypothesis that social media data alone do not fully represent
the nuances of suicide risk factors and that synthetic data
augmentation can lead to more accurate and fair suicidal ideation
detection models.

Traditional data collection methods, specifically self-reports,
are subject to various kinds of biases, including social
desirability, recall, and self-perception biases. While the use of
naturalistic data collected from social media mitigates some of
the self-report biases and incorporates contextual information,
it, unfortunately, introduces other types of biases, mainly
selection bias, platform-induced behavior, and public image
curation bias. Many demographics are underrepresented on
social media, and even if present, they might shy away from
expressing their real self. On the other hand, traditional methods
are more controlled, and as we have shown in our literature
review, larger numbers of topics and demographics have been
covered under those studies. For that reason, we compared the
social media datasets to risk factors collected in traditional
studies to identify underrepresented risk factors.

This study assessed real-world datasets from social media for
their coverage of suicidal ideation topics and risk factors.
Additionally, it reviewed psychology literature to identify
expert-validated risk factors, suicidal language, and terminology.
Integrating this knowledge into NLP models can enhance their
contextual awareness in identifying and understanding suicidal

ideation in social media posts. Leveraging insights from
psychology also supports the development of ethically
responsible artificial intelligence systems for addressing
sensitive mental health issues.

Unsupervised topic modeling and a scoping review of
psychology literature provided 2 sets of suicide topics and risk
factors. Table 2 summarizes 13 suicide topics identified across
3 social media datasets, while Table 3 lists 23 risk factors
extracted from the literature review. These findings offer
valuable insights into the context of suicidal ideation. However,
the comparison reveals a significant limitation in social media
datasets, which is the absence of critical topics essential for
addressing suicidal ideation. This gap could create a barrier to
the development of robust NLP models for analyzing
suicide-related content.

To address the limitations of unsupervised topic modeling, given
the risk factors discovered in our scoping review, we performed
guided topic modeling on 3 social media datasets (Table 5) for
providing a more comprehensive overview of the suicide topics
and risk factors present in the data. The results indicate that
certain topics missed during unsupervised topic modeling were
identified through guided topic modeling. This issue arises when
less frequently discussed topics are overshadowed by more
dominant ones, causing them to be overlooked by unsupervised
methods. In contrast, guided topic modeling can specifically
target and extract these less prominent yet critical topics.

Furthermore, we observed that there was a discrepancy in the
distribution of topic representations across the datasets. As an
example, let us consider the UMD in Table 5, where the topic
“anxiety” appears 10.4 times more than the topic “PTSD.” Such
disparities in topic representations could lead to an inherent bias
within the models. Biases can occur when certain topics are
overrepresented or underrepresented. These biases will
potentially impact the effectiveness and fairness of NLP models,
as they may disproportionately emphasize or neglect certain
aspects of suicidal ideation. Therefore, addressing these data
limitations and imbalances is crucial to ensure the development
of NLP models that provide accurate and equitable insights into
this critical issue.

Moreover, we observed that suicidal narratives related to
dementia, sexual minority stigmas, immigration, death of loved
ones, perfectionism, and anger were never discussed in these
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datasets, and topics of being bullied, PTSD, substance abuse,
and chronic physical problems were rarely mentioned. Financial
crises and racism, which are 2 common and important risk
factors of suicide, were only discussed in 1 of the datasets, with
a relatively low number of examples. The most represented
topics in these datasets were depression and anxiety. This
observation is not surprising since many other risk factors lead
to mental pressure. In social media conversations, users mostly
talk about depression and anxiety, which are surface-level
symptoms of what they are experiencing and not the root causes
that led to these feelings.

In this study, we harnessed the innovative approach of synthetic
dataset creation as a means to enhance the fairness and accuracy
of NLP models in the context of detecting suicidal ideation.
Using the extracted risk factors from psychology, we constructed
a synthetic dataset that comprehensively represents the entire
spectrum of risk factors associated with suicidal ideation. To
leverage the strengths of both real and synthetic data, we
augmented 30% of the UMD by incorporating our synthetic
dataset. Table 6 reports the distribution of psychological topics
within our synthetic and augmented datasets. We applied guided
topic modeling on the synthetic and augmented datasets
primarily as a sanity check to show that guided topic modeling
performs as expected and, therefore, to analyze the content of
datasets according to expected topics. In other words, our goal
was to verify whether all relevant topics and risk factors were
included in the dataset and could be identified by a cluster- and
transformer-based model.

Understanding complexity and readability in synthetic datasets
helps in ensuring that the generated text aligns with linguistic
patterns observed in real-world data. Moreover, these parameters
facilitate an assessment of the synthetic dataset, specifically
regarding the incorporation of suitable language complexities.
This evaluation allows us to examine whether synthetic data
replicates language patterns akin to those found in genuine,
human-generated content.

Shannon entropy serves as a quantitative measure of diversity,
reflecting the range of vocabulary in a dataset. Our study’s
finding of a lower Shannon entropy in synthetic datasets despite
higher complexity prompts a nuanced discussion. This
discrepancy indicates that, despite intricate language patterns,
synthetic datasets might lack the diverse lexical richness found
in real datasets. Thus, the relationship between diversity and
Shannon entropy suggests that achieving linguistic complexity
does not guarantee a broad vocabulary range. Hence,
augmenting a real dataset with synthetic data can leverage the
advantages of both datasets, incorporating the linguistic
complexity characteristic of synthetic datasets and the broad
range of diversity inherent in real datasets. Moreover, the
relationship between diversity and complexity in datasets reveals
a fascinating interplay. While complexity often indicates
intricate language structures, the presence of a diverse range of
expressions and ideas enhances the overall diversity of the
dataset. However, as seen in Table 7, a higher complexity in
synthetic datasets does not necessarily translate to a higher
diversity, as reflected by a lower Shannon entropy. This suggests
that complexity might be influenced more by the intricacy of
language patterns than by a broad lexical spectrum.

In order to guarantee the quality of the augmented and synthetic
datasets, we fine-tuned the ALBERT model, as a binary
classifier, using the aforementioned datasets. Following this
fine-tuning, we proceeded to rigorously evaluate the model’s
performance on 2 distinct testing subsets. As depicted in Table
9, the results underscore an interesting trend. The model
fine-tuned on the UMD exhibited a higher performance when
evaluated on an in-domain testing subset but showed a lower
performance when tested on an out-of-domain testing subset.
A similar pattern emerged when the model was fine-tuned on
the ChatGPT synthetic dataset. However, an intriguing twist
arose with the augmented dataset. This dataset notably enhanced
the model’s performance across both the in-domain and
out-of-domain testing subsets. This observation implies that the
synergistic inclusion of both real-world and synthetically
generated data can yield a more diverse NLP model. This
research insight illuminates the potential advantages of a hybrid
approach, emphasizing the importance of leveraging the
complementary strengths of both real and synthetic datasets to
improve the overall performance and adaptability of NLP
models in the critical domain of suicidal ideation detection.

Our study has some limitations that should be acknowledged.
First, high-quality annotated datasets collected from social media
are scarce, so this work exclusively used the Reddit dataset.
While valuable information on this topic is shared on other
social media platforms, such as X and Facebook, to the best of
our knowledge, there is no publicly available large annotated
dataset that includes such data. Creating new datasets involves
both data collection and a careful annotation process performed
by multiple experts, making it an expensive undertaking.
Second, due to the limitation of data availability and the fact
that the classifier was trained solely on Reddit data, it may not
perform as effectively on datasets from other social media
platforms. Future work should incorporate data from platforms
like X to provide broader insights and improve generalizability.

This study highlights the value of integrating domain knowledge
from psychology with computational techniques to improve
suicidal ideation detection in social media. By examining 3
real-world datasets, we observed that several well-established
risk factors, such as chronic illness, racism, immigration stress,
and identity-based stigma, were either absent or rarely discussed.
To address these topic gaps, we applied guided topic modeling
informed by psychology literature and constructed a synthetic
dataset with broader thematic representation. Our evaluations
showed that this synthetic data, when combined with real data,
enhanced topic diversity and preserved linguistic quality. The
classifier fine-tuned on the augmented dataset significantly
outperformed models trained solely on real or synthetic data,
improving the F1-score to 0.91 on the UMD and 0.90 on the
synthetic test set. These results suggest that synthetic
augmentation not only fills in content gaps but also leads to
more effective and inclusive detection models.

The findings of this study underscore the importance of
integrating psychological insights into NLP models to improve
the detection of suicidal ideation on social media. By addressing
gaps in topic coverage and leveraging synthetic data
augmentation, this work contributes to the development of more
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robust and ethical artificial intelligence tools for mental health
applications. Future research should continue refining these
approaches by expanding dataset sources and enhancing model

interpretability to ensure that technology is both effective and
fair in handling sensitive mental health issues.
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