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Abstract
Background: Geospatial data science can be a powerful tool to aid the design, reach, efficiency, and impact of community-
based intervention trials. The project titled Take Care Texas aims to develop and test an adaptive, multilevel, community-based
intervention to increase COVID-19 testing and vaccination uptake among vulnerable populations in 3 Texas regions: Harris
County, Cameron County, and Northeast Texas.
Objective: We aimed to develop a novel procedure for adaptive selections of census block groups (CBGs) to include in the
community-based randomized trial for the Take Care Texas project.
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Methods: CBG selection was conducted across 3 Texas regions over a 17-month period (May 2021 to October 2022). We
developed persistent and recent COVID-19 burden metrics, using real-time SARS-CoV-2 monitoring data to capture dynamic
infection patterns. To identify vulnerable populations, we also developed a CBG-level community disparity index, using 12
contextual social determinants of health (SDOH) measures from US census data. In each adaptive round, we determined the
priority CBGs based on their COVID-19 burden and disparity index, ensuring geographic separation to minimize intervention
“spillover.” Community input and feedback from local partners and health workers further refined the selection. The selected
CBGs were then randomized into 2 intervention arms—multilevel intervention and just-in-time adaptive intervention—and
1 control arm, using covariate adaptive randomization, at a 1:1:1 ratio. We developed interactive data dashboards, which
included maps displaying the locations of selected CBGs and community-level information, to inform the selection process and
guide intervention delivery. Selection and randomization occurred across 10 adaptive rounds.
Results: A total of 120 CBGs were selected and followed the stepped planning and interventions, with 60 in Harris County,
30 in Cameron County, and 30 in Northeast Texas counties. COVID-19 burden presented substantial temporal changes and
local variations across CBGs. COVID-19 burden and community disparity exhibited some common geographical patterns but
also displayed distinct variations, particularly at different time points throughout this study. This underscores the importance of
incorporating both real-time monitoring data and contextual SDOH in the selection process.
Conclusions: The novel procedure integrated real-time monitoring data and geospatial data science to enhance the design
and adaptive delivery of a community-based randomized trial. Adaptive selection effectively prioritized the most in-need
communities and allowed for a rigorous evaluation of community-based interventions in a multilevel trial. This methodology
has broad applicability and can be adapted to other public health intervention and prevention programs, providing a powerful
tool for improving population health and addressing health disparities.
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Introduction
The COVID-19 pandemic created a public health crisis,
prompting discussions on how to best mitigate its far-reach-
ing effects in a timely and efficient manner. From the
start of the pandemic (March 2020) to May 2021 (the
beginning of this study), there were over 30 million cumu-
lative COVID-19 cases [1], over 2 million hospitalizations,
and over half a million deaths in the United States alone
[2]. During natural and health-related disasters (eg, pandem-
ics and epidemics), vulnerable populations have historically
endured a disproportionate level of negative health outcomes
[3-7]. Extensive research has revealed similar impacts of the
COVID-19 pandemic on vulnerable populations, particularly
older adults, racial and ethnic minority groups, individuals
who are immunocompromised, those with chronic condi-
tions, and individuals with lower socioeconomic status and
education attainment [8-17]. For example, a higher risk of
severe COVID-19 symptoms, hospitalization, and mortality is
associated with the presence of underlying medical condi-
tions and older age [8,9]. Further, multiple studies have
assessed population vulnerability through the Centers for
Disease Control and Prevention (CDC) Social Vulnerability
Index (SVI). For example, COVID-19 risk increases with the
overall SVI score and the scores for specific SVI domains,
notably those for the minority status and language domains
[10,11,16]. Specifically, Hispanic and Black individuals have
experienced higher rates of infection, hospitalization, and
mortality when compared to non-Hispanic White individu-
als [12-14,18]. Racial and ethnic minority groups tend to
be more susceptible to COVID-19, partially due to eco-
nomic and social factors such as limited financial resour-
ces; insecure housing; higher housing density; reliance on

public transportation; and additional inequities in nutrition,
jobs, environments, and access to health care and health-rela-
ted resources [13,14,19,20]. These findings underscore the
importance and complex interplay of social determinants of
health (SDOH) with respect to COVID-19 outcomes.

Health disparities research has consistently shown that
geography—where individuals live, work, and play—matters,
and it can greatly influence mortality, morbidity, life
expectancy, and various aspects of health [21]. Geographic
disparities in COVID-19 health outcomes have also been well
documented. Previous studies have demonstrated county-level
disparities in SARS-CoV-2 testing, infection, and fatality
rates [22-24]. Research conducted by Das et al [25] repor-
ted geographic disparities in COVID-19 incidence across
various zip code tabulation areas (ZCTAs) in the greater
St. Louis area, Missouri. Das et al [25] also reported that
the strength of the associations between the area proportion
of the population working in agriculture and COVID-19
incidence varied by different ZCTAs. In a separate study,
Bauer et al [26] developed a novel approach to identifying
testing disparities by census block groups (CBGs), revealing
significant geographical disparities in the context of smaller
areas. Further, geographical disparities may not be constant
and instead shift over time. For example, from 2019 to
2020, temporal trends in confirmed COVID-19 incidence
and mortality differed between the most and least vulnerable
counties in the United States [27]. Another study reported
significant changes in the spatial-temporal patterns of the
health care accessibility, test positivity rate of confirmed
COVID-19 cases, and case fatality ratio in Texas [28].

Effective and real-time identification of vulnerable, at-risk
populations that are characterized by diverse characteristics
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or reside within specific geographical regions is essential
to address and eliminate disparities in COVID-19 health
outcomes. In the context of health care, where resources are
often limited and must be efficiently and equitably alloca-
ted, questions regarding site or population selection become
paramount. Achieving this goal requires (1) the identification
of metrics to accurately measure the multifaceted nature of
disparities with available datasets and (2) a robust method to
summarize all metrics and provide a meaningful output with
practical use. The latter has been achieved through various
approaches, such as assigning weights to each metric, which
are often provided by domain experts, and constructing an
index from the weighted sum of all metrics.

This paper presents an innovative protocol for adap-
tive geospatial selections in a community-based interven-
tion program—the Take Care Texas project—funded by
the National Institutes of Health (NIH) Rapid Access
to Diagnostics for Underserved Populations (RADx-UP)
program. Our protocol leveraged a data-driven approach for
the rapid adaptation and deployment of multilevel, just-in-
time adaptive interventions to improve COVID-19 testing and
vaccination uptake in Texas. In the Methods section, we focus
on 2 key areas. First, we outline the criteria and metrics
for identifying the vulnerable populations via SDOH and
geographical measures. Second, we detail the methodology
for selecting the local communities based on CBGs, which
involved using a phased, multistage approach. Designed for
real-time prioritization, our protocol addresses the immedi-
ate needs of communities most affected by the changing
landscape of the COVID-19 crisis.

Methods
Study Region and Populations
Our Take Care Texas project includes 3 geographically
distinct sites within Texas, each with unique demographic
characteristics (Multimedia Appendix 1). Southeast Texas,
represented by the Houston area within Harris County, has
an ethnically diverse population (N=4.73 million), covering
both urban and suburban communities. This region serves
as a significant residence for various racial and ethnic
minority groups and is recognized for having one of the
largest metropolitan economies in the United States. The
South Texas site, represented by Cameron County (popula-
tion: N=423,029) in the Rio Grande Valley, is primarily
Hispanic, with a considerable proportion of the population
(22.6%) living below the federal poverty line, exceeding the
national average (11.5%) [29]. The Northeast Texas (NETX)
region covers an extensive area, including the Smith, Gregg,
Henderson, Van Zandt, Anderson, Wood, and Rains counties.
NETX is characterized by a mix of small cities and rural
communities, with a lower population density when compared
to other sites. Anderson County was excluded from this study
due to insufficient SARS-CoV-2 infection data coverage at
the time of analysis. The demographic distribution across
these regions reflects a wide socioeconomic and cultural
spectrum, offering a comprehensive understanding of the
diverse population within Texas. There are 2144 CBGs in

Harris County, 222 CBGs in Cameron County, and 349 CBGs
from the NETX region, according to the 2010 census data.
Overview of Priority CBG Selection
Process
The process for identifying priority CBGs (PBGs) in this
study is presented in Figure 1. The process began with the
identification of geographic areas experiencing significant
COVID-19 burden, using SARS-CoV-2 surveillance data and
population estimates at the ZCTA level. We then identified
CBGs within these areas that exhibited high socioeconomic
disparities, using the community disparity index we con-
structed to achieve the desired spatial granularity. Detailed
descriptions for determining disease burden and commun-
ity disparities are provided in the Persistent and Recent
COVID-19 Burdens and CBG-Level Community Disparity
Index sections.

In response to the dynamic nature of the COVID-19
pandemic, our identification and selection process was
conducted monthly with a near–real-time data feed from
the local public health department for timely and effective
intervention planning. Table 1 illustrates the stepped planning
and intervention calendar. Between May 2021 and October
2022, a total of 10 rounds of CBG selection were conducted
for each of the three study sites. In each round, among the
CBGs within the identified high–disease burden ZCTAs, we
selected the most vulnerable CBGs based on the community
disparity index (ie, CBGs in the top 25% for this metric). We
then excluded previously randomized CBGs, their neighbors
(ie, CBGs that share a common geographic boundary), and
any CBGs with small populations (total population<500) to
form the PBG list, which served as the sampling universe.
From the PBGs, we sampled geographically nonadjacent sets
of CBGs (3 CBGs as a set), ensuring suitable geographic
separation to mitigate potential intervention “spillover,” since
the study goal was to compare 2 distinct intervention
strategies to a control arm. We sought feedback from the
community health workers and staff in the three regions, to
determine if the potential CBGs presented safety, geography,
and access concerns, by showing maps of the areas and
then discussing the areas and documenting concerns. When
there was lack of clarity about an area, we reached out
via phone calls and emails to community experts in our
advisory groups (health department leaders, city leaders, and
local nonprofits serving the areas) to obtain their feedback
as well. CBGs that posed challenges in reaching community
members (such as CBGs with primarily gated communities
or business districts), which would prevent implementing the
intervention protocol (eg, door-to-door visits), were excluded
from the sampling frame. This collaborative approach ensured
that our selection process was informed by both data-driven
analysis and community and implementer insights. The final
selected CBGs within each set were then assigned to 1 of 2
intervention groups (multilevel intervention and just-in-time
adaptive intervention) or a control group through baseline
covariate adaptive randomization, balancing disparity index
and population size, as well as vaccination coverage when
such data were available. These CBGs then underwent a

JMIR FORMATIVE RESEARCH Zhang et al

https://formative.jmir.org/2025/1/e62802 JMIR Form Res 2025 | vol. 9 | e62802 | p. 3
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e62802


1-month planning phase, followed by a 2-month intervention
period. In each round, this study selected and randomized 6
CBGs (2 sets) for Harris County due to its larger geographic

area and population, 3 CBGs for Cameron County, and 3
CBGs for NETX counties.

Figure 1. Workflow of the adaptive geospatial selection of CBGs for intervention in the Take Care Texas study. The selection of CBGs for
intervention was conducted each round. CBG: census block group; NETX: Northeast Texas; PBG: priority census block group; ZCTA: zip code
tabulation area.
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Table 1. The stepped planning and intervention calendar by month. Each round, selected census block groups were randomized into 1 control arm
and 2 intervention arms—multilevel intervention (MILI) and just-in-time adaptive intervention (JITAI).

2021 2022
May June July August September October November December January February March April May June

Round 1
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 2
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 3
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 4
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 5
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 6
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 7
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 8
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 9
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b

Round 10
Control ✓a ✓b ✓b

MILI ✓a ✓b ✓b

JITAI ✓a ✓b ✓b
aPlanning months.
bIntervention months.
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Persistent and Recent COVID-19
Burdens
The persistent and recent high COVID-19 burdens were
quantified by using SARS-CoV-2 surveillance data obtained
from local public health departments. We computed a 7-day
moving average for infection rate, which was defined as the
daily new cases per 100,000 population. For each ZCTA, the
persistent disease burden was evaluated based on the number
of days on which ≥10 new cases per 100,000 population were
reported, as per the common COVID-19 risk level thresh-
old [30], starting from March 1, 2020, up to the respective
analysis date for each selection round. To evaluate the recent
disease burden, we first calculated the 80th percentile of
daily new cases per 100,000 population across all ZCTAs
within each study site, using data from the 30 days preceding
each analysis date. We then counted the number of days on
which the infection rate for each ZCTA exceeded this 80th
percentile threshold. In each selection round and for each site,
we ranked the ZCTAs, in descending order, based on their
number of days with (1) a persistent high burden and (2)
a recent high burden. The ranking was performed for each
metric separately, and the ZCTAs in the top 50% for either
metric were identified as high–disease burden ZCTAs.
CBG-Level Community Disparity Index
We developed the CBG-level community disparity index due
to the lack of spatial granularity in existing indices, such
as the SVI, which did not meet our study’s needs. Using
12 SDOH measures from the 2014‐2018 American Commun-
ity Survey 5-year estimates [31], our community disparity
index covered the socioeconomic, demographic, and housing
dimensions of SDOH (Multimedia Appendix 2). It integra-
ted economic stability factors (employment and poverty
rates, per capita income, education level, and health insur-
ance coverage), demographic characteristics (percentages of
individuals younger than 18 years, individuals older than
65 years, individuals in single-parent households, and racial
minority individuals), and housing factors (percentage of
renter-occupied units, rent burden, and crowded housing).

We used principal component analysis (PCA) to construct
the community disparity index, similar to the approach used
by Kolak et al [32]. PCA is a data-driven approach that
synthesizes multiple pieces of information into one combined
measure, while simultaneously handling high correlation and
minimizing information loss [32-35]. We kept the princi-
pal components with eigenvalues exceeding 1, following
the Kaiser criteria. The scores of these selected principal
components were weighted according to the variance they
accounted for and then summed, with higher scores repre-
senting a greater community disparity. The resulting indices
were then ranked and scaled from 0 to 1 within each study
region, providing a relative ranking of CBGs. All data were
processed and analyzed with R statistical software (v4.1.2; R
Foundation for Statistical Computing) [36].
Interactive Data Dashboards
We developed ArcGIS (Environmental Systems Research
Institute Inc) and R Shiny (Posit PBC) data dashboards that

provided key geospatial information and relevant COVID-19
data for this study. Feedback was received from the dash-
board’s end users, including community health workers. The
dashboards included maps that showed community dispar-
ity indices, PBGs, intervention-prioritized CBGs, COVID-19
testing sites, road maps, and SARS-CoV-2 infection and
testing rates at the CBG and ZCTA levels. These tools
enabled community health workers to identify the boundaries
of the priority areas and access the relevant COVID-19 data
for effective on-ground intervention messaging and referral
to needed services. Both dashboards were designed to be
interactive to facilitate strategic planning efforts and were
password protected for internal team use only. The dash-
board was especially useful during the planning phase and
facilitated the creation of a community profile document,
which community health workers used to share real-time data
and deliver messaging tailored to the communities.
Ethical Considerations
The research protocol was approved by the UTHealth
Committee for the Protection of Human Subjects (HSC-
SPH-20‐1372). Data user agreements were established
between UTHealth and the public health departments of
Harris County, Cameron County, and NETX counties. This
study did not involve direct contact with participants, as data
were aggregated at the CBG level, so no individual-level
informed consent was required. Data were deidentified, and
all analyses followed data privacy guidelines.

Results
Table 2 presents summary statistics of the population density
and 12 SDOH variables used to construct the community
disparity index for CBGs in Harris County, Cameron County,
and NETX counties, in comparison to the whole state of
Texas. Harris County, with the highest population density
(2600 per km2) and per capita income (US $33,500), also has
the highest percentage of renters (44.9%). Cameron County,
on the other hand, has a higher percentage of crowded
housing (11.2%), individuals without high school diplomas
(35.1%), uninsured individuals (28.0%), people living in
poverty (30.9%), and racial minority individuals (90.0%).
NETX has a higher percentage of people aged 65 years and
older (18.2%) but a much lower proportion of racial minority
individuals compared to Texas overall (35% vs 57.7%).

Between March 2021 and March 2023, we identified
5 distinct COVID-19 waves, with 3 occurring within the
intervention period of our study, specifically around August
2021, December 2021, and July 2022 (Multimedia Appendix
3). The overall infection rates varied across the three study
regions, highlighting the importance of site-specific burden
assessment. The temporal trends of SARS-CoV-2 infection
rates differed among the sites when the pandemic started but
became more similar during the intervention period, that is,
from May 2021 to October 2022. Harris County consistently
reported higher infection rates than those reported by the
other two regions throughout this study.
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Figure 2 displays maps of the CBG-level community
disparity index, highlighting substantial variations across and
within the study regions. The leading four PCA components
captured a significant portion of the variance in the 12 SDOH
measures. For instance, in Harris County, these components
explained 70.96% of the variance, with the first principal
component alone accounting for 43.45%, and were primarily
influenced by socioeconomic factors (percentage of individ-
uals with no high school diploma, percentage of individ-
uals living under poverty, per capita income, percentage
of uninsured individuals, and percentage of racial minority
individuals). Consequently, we derived the standardized index
scores by using the first four PCA components.

The maps of the COVID-19 burden and community
disparity index shared similar geographic patterns, with high
COVID-19 burdens often found in ZCTAs with elevated
community disparity (Multimedia Appendix 4). However,
distinctive patterns also existed. For instance, during the
first selection round for Harris County in May 2021, several
ZCTAs located in the western and eastern parts of the
county experienced high COVID-19 burden, despite their
low community disparity scores. This highlights the complex
interplay between the pandemic impact and SDOH, as
COVID-19 can affect diverse communities, including those
traditionally considered less socially vulnerable. Therefore,
it is crucial to leverage both SDOH data and COVID-19
surveillance data to dynamically identify and prioritize areas
for interventions.

Over the 17-month period from May 2021 to October
2022, we selected and randomized 120 CBGs for intervention
across 10 rounds, with 60 CBGs in Harris County, 30 in
Cameron County, and 30 in NETX counties (Table 1). The
population size of the randomized CBGs ranged from 615 to
11,321. The combination of the community disparity index
and real-time COVID-19 surveillance data allowed for the
identification and selection of areas—those with the highest
disease burden among the most vulnerable populations—for
the adaptive, multilevel, just-in-time intervention. This study
also observed substantial changes in the PBG list across
different rounds, with more CBGs identified in the later
rounds of selection, corresponding to increased infection rates
during the pandemic, as shown in Figure 3.

Multimedia Appendix 5 illustrates the R Shiny and
ArcGIS dashboards that we developed to provide a dynamic
visualization of the data from this study. These interactive
dashboards, along with the community profiles we devel-
oped, were used by the intervention team to tailor their
strategies. By leveraging these tools, the team was able to
adapt culturally relevant messages and materials, enhance
door-to-door education by community health workers in
selected CBGs, and better inform social marketing campaigns
to promote COVID-19 testing and vaccination efforts.

Table 2. Summary statistics of the American Community Survey variables (2014-2018 5-year estimates) [31] used in community disparity index
creation at the census block group (CBG) level for 3 regions in Texas and Texas overall.

Texas regions Texas overall
Cameron County (CBGs:
n=222)

Harris County (CBGs:
n=2144)

NETXa counties
(CBGs: n=349)

Population (n) 27,900,000
  Mean (CVb [%]) 1900 (83.7) 2150 (83.5) 1540 (48.6) —c

  Median (IQR) 1550 (967-2350) 1770 (1210-2470) 1370 (1060-1890) —
Population density (per km2) 43.1
  Mean (SD [%]) 1420 (86.5) 2600 (97.5) 546 (136.5) —
  Median (minimum, maximum) 1180 (345, 2130) 2020 (1180, 3090) 209 (41.4, 870) —
Crowded housing (%) 4.79
  Mean (CV [%]) 11.2 (74.0) 6.28 (123.8) 3.45 (141.4) —
  Median (IQR) 9.84 (4.82-16.3) 3.68 (0-9.46) 1.82 (0-5.24) —
Individuals without a high school diploma (%) 16.8
  Mean (CV [%]) 35.1 (45.1) 21.5 (84.1) 16.7 (74.3) —
  Median (IQR) 36.0 (23.2-47.8) 17.0 (5.65-34.5) 14.1 (7.93-21.5) —
Renters (%) 38.1
  Mean (CV [%]) 36.0 (56.4) 44.9 (65.1) 32.2 (64.9) —
  Median (IQR) 34.0 (20.9-46.1) 40.2 (20.5-66.5) 27.4 (17.2-43.7) —
Rent burden (%) 44.4
  Mean (CV [%]) 46.8 (45.9) 43.7 (52.2) 39.7 (61.6) —
  Median (IQR) 46.4 (33.3-60.9) 45.5 (29.0-58.2) 39.1 (22.2-56.3) —
Individuals younger than 18 years (%) 26.2
  Mean (CV [%]) 29.1 (29.6) 25.3 (36.2) 23.7 (36.4) —
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Texas regions Texas overall
Cameron County (CBGs:
n=222)

Harris County (CBGs:
n=2144)

NETXa counties
(CBGs: n=349)

  Median (IQR) 30.1 (23.6-35.4) 25.8 (19.5-31.5) 23.0 (18.2-29.0) —
Individuals older than 65 years (%) 12.0
  Mean (CV [%]) 15.5 (69.0) 11.3 (66.7) 18.2 (53.7) —
  Median (IQR) 13.2 (9.67-18.4) 9.99 (6.28-14.5) 17.2 (11.0-23.5) —
Individuals in single-parent households (%) 14.7
  Mean (CV [%]) 18.3 (62.5) 17.2 (83.3) 14.0 (92.8) —
  Median (IQR) 17.1 (9.94-25.8) 14.4 (6.23-25.3) 10.8 (4.72-20.9) —
Unemployed individuals (%) 5.41
  Mean (CV [%]) 7.05 (91.1) 6.45 (91.4) 5.65 (103.5) —
  Median (IQR) 5.85 (2.60-9.76) 5.16 (2.54-8.89) 4.39 (1.47-7.87) —
Per capita income (US $) 30,100
  Mean (CV [%]) 16,400 (45.3) 33,500 (78.2) 25,800 (41.8) —
  Median (IQR) 14,500 (10,700-20,200) 24,200 (16,700-40,700) 25,400 (17,600-30,700) —
Uninsured individuals (%) 17.1
  Mean (CV [%]) 28.0 (38.4) 20.9 (67.3) 17.6 (54.8) —
  Median (IQR) 28.4 (20.2-35.3) 19.5 (9.25-30.9) 16.0 (10.6-23.4) —
Individuals living in poverty (%) 14.3
  Mean (CV [%]) 30.9 (46.9) 16.2 (81.2) 16.6 (71.9) —
  Median (IQR) 31.1 (19.1-42.1) 13.2 (5.63-23.9) 14.5 (7.93-22.4) —
Racial minority individuals (%) 57.7
  Mean (CV [%]) 90.0 (15.6) 69.3 (40.0) 35.0 (77.2) —
  Median (IQR) 94.2 (87.3-98.4) 79.7 (46.5-94.0) 26.1 (14.4-50.9) —

aNETX: Northeast Texas.
bCV: coefficient of variation.
cNot applicable.

Figure 2. Census block group–level community disparity index developed for the community-based intervention by study region. The community
disparity index was constructed by using principal component analysis to combine 12 social determinants of health measures from the American
Community Survey 2014-2018 5-year estimates [31]. The index was scaled to range from 0 to 1 within each study area, with higher index values
indicating greater community disparity.
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Figure 3. Priority CBGs for the community-based intervention by study region and selection rounds: highlighted CBGs were identified as candidates
for inclusion in R1, R2, R4, and R7. CBG: census block group; NETX: Northeast Texas; R: round.

Discussion
Principal Findings
In this study, we used geospatial data science methods to
develop a protocol for the adaptive selection of 120 CBGs
in 3 regions of Texas, which occurred across 10 rounds
over a 17-month period (May 2021 to October 2022). This
protocol, which was developed for the Take Care Texas
project, integrated real-time dynamic data on SARS-CoV-2
infection rates and contextual SDOH to identify and prioritize
the CBGs most in need of tailored activities and resources
to improve COVID-19 testing and vaccination. The adaptive
selection of CBGs prioritized the most vulnerable commun-
ities and allowed for the rigorous evaluation of community-
based interventions in a multilevel trial.
Strengths and Limitations
Our protocol demonstrated several unique strengths in
integrating public health surveillance data and geospatial
data science. First, our study offered spatial granularity at
the level of CBGs, which has rarely been seen in other
studies [11,16,37]. Such granularity could potentially result
in more tailored interventions that are best suited to the
local communities for which they were developed. Second,
we incorporated both the reported SARS-CoV-2 infection
rates and the community SDOH, reflecting the socioeconomic
and housing conditions that contributed to health disparities.
This allowed us to prioritize communities experiencing not

only high disease burden but also high social vulnerability
that could potentially impact community resilience and the
ability to adapt to challenges presented by the pandemic.
Third, the dynamic nature of our protocol, particularly the
initial selection of high–disease burden ZCTAs, allowed for
real-time adaptation of the selection strategies in response
to the changing pandemic, thereby enabling us to prioritize
the most in-need and most vulnerable communities effec-
tively. Finally, the protocol was strengthened by the input
from and collaboration among community members and
frontline community health workers, which were critical in
designing and implementing interventions. The final CBG
selection was made by community partners considering
on-the-ground intervention feasibility. In the context of this
study and site selection, the input from our community
partners and community health workers supplemented the
data-driven approaches [38]. Although multicriteria decision-
making methods have been previously used for site selec-
tion problems [39-42], including the integration of objective
criteria with experts’ qualitative input to determine site
suitability, some multicriteria decision-making techniques
have been critiqued for arbitrary and irrational rankings of
alternatives [43] and questionable mathematical validity [44].
By contrast, previous work has shown that PCA is a robust
approach for integrating various vulnerability and health
indicators and providing reliable unequal weighting [33,34] to
help guide the selection of local communities for health care
interventions. Future studies should continue to investigate
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best practices for engaging communities in trial design and
implementation.

Our protocol also presented several limitations. First,
the COVID-19 pandemic highlighted significant challenges
in data reporting due to the absence of established surveil-
lance data infrastructures for COVID-19 and other rap-
idly spreading communicable diseases. The state reporting
requirements for data elements and definitions changed over
time, complicating the consistent use of data across study
regions. In our study, we directly collaborated with individ-
ual county public health departments and processed and
harmonized data across different study regions, which were
time-consuming processes. Second, the time lag commonly
seen in surveillance databases posed challenges in accurately
identifying current hot spots, and incomplete demographic
data hindered the assessment of health equity throughout the
COVID-19 pandemic by delaying the analysis of COVID-19
health outcomes by subgroups and across more granular
geographic scales [45,46]. The Congressional Research
Service’s 2020 report highlighted the need to modernize
public health reporting systems to improve the timeliness
and accuracy of public health data reporting [45]. However,
differences in data standards, technical capacity, and regional
policy priorities, particularly in the early stages of the
COVID-19 pandemic, limited effective data sharing across
study regions. Third, our protocol required accurate and
complete address information for geographical granularity in
identifying the high–disease burden priority areas, and when
address information was missing, we may not have been
able to include the SARS-CoV-2 case records in determining
the PBGs. Finally, finding geographically separated CBGs in
later rounds of selection could be difficult in small coun-
ties with fewer CBGs, such as Cameron County. Tradition-
ally, administrative boundaries are used to define spatial
units, yet alternative approaches may better capture actual
community layouts. For example, Tuson et al [47] developed
the Spatial Targeting Algorithm to generate flexible priority
regions not restricted by administrative boundaries. However,
while flexible boundaries may better capture neighborhoods,
they may not provide SDOH information, which is typically
accessible only at the administrative level. Additional work is

needed to develop more flexible spatial units, with or without
administrative boundaries as a constraint, for population-
based research.
Study Implications
Despite these challenges, our study provided valuable
protocols for data processing and analytical support to an
intervention team working with local public health depart-
ments and organizations. It demonstrated a useful approach
to ensuring that the most vulnerable communities participated
in a multilevel intervention trial for increasing COVID-19
testing and vaccination uptake. Our proposed protocol could
be adapted to other population-based randomized trials for
which rapid assessment and allocation of finite resources are
imperative. For example, geospatial approaches have been
used to assess cancer screening rates among a vulnerable
population in Ontario, Canada [48] and determine priority
clinics to allocate funding for improving up-to-date color-
ectal cancer screening rates [49]. The integration of PCA
and the real-time nature of our protocol can also be adap-
ted to other population-based trials. When tackling multifac-
eted and complex problems, our protocol demonstrates that
PCA is effective at robustly incorporating a wide range of
health indicators. Further, the real-time nature of our protocol
allows for ongoing, continuous assessment and adjustment
in allocation of resources, provided that accurate and timely
data are available. This could be applied to study recruitment
protocols or other intervention-based trials.
Conclusion
The selection of optimal sites for health care and public
health interventions, especially under limited resources, is
a crucial challenge. Our protocol contributes to existing
research by integrating disease surveillance and SDOH data,
the robust PCA method, and community engagement to
identify locations where COVID-19 testing interventions
for vulnerable populations are most needed. The proposed
data-driven approach could be adapted to other disease
control and prevention programs to improve population health
and reduce disease burden in areas with disparities.
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Map of Texas counties with 3 study regions highlighted. Harris County (yellow) has the most ethnically diverse population
in Texas. Cameron County (blue), located on the southern border of Texas, is primarily Hispanic. A large proportion of the
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[DOCX File (Microsoft Word File), 25 KB-Multimedia Appendix 2]

Multimedia Appendix 3
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(NETX) counties, with vertical lines indicating the start and end of the planning and intervention periods for the Take Care
Texas project. Historical Texas COVID-19 data were obtained from the Texas Department of State Health Services.
[PNG File (Portable Network Graphics File), 351 KB-Multimedia Appendix 3]
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Maps of the census block group–level community disparity index developed in this protocol, overlaid with high–disease
burden zip code tabulation areas (shown in red geographical boundaries) in the first round of selection (May 2021) for the three
study regions.
[PNG File (Portable Network Graphics File), 1604 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Screenshots of the (A) R shiny dashboard and (B) ArcGIS dashboard developed for the Take Care Texas study. These data
dashboards were designed to be interactive to best facilitate strategic planning efforts and were password protected for internal
team use only.
[PDF File (Adobe File), 234 KB-Multimedia Appendix 5]
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