
Original Paper

Remote Photoplethysmography Technology for Blood
Pressure and Hemoglobin Level Assessment in
the Preoperative Assessment Setting: Algorithm
Development Study

Selene Y L Tan1, MBBS; Jia Xin Chai1, MBBS, MMed; Minwoo Choi2, BA; Umair Javaid2, PhD; Brenda Pei Yi
Tan1, MSc; Belinda Si Ying Chow1, BSc; Hairil Rizal Abdullah1,3, MBBS, MMed, MSc, PhD
1Division of Anesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore, Singapore
2Nervotec, Singapore, Singapore
3Duke-NUS Medical School, Singapore, Singapore

Corresponding Author:
Hairil Rizal Abdullah, MBBS, MMed, MSc, PhD
Division of Anesthesiology and Perioperative Medicine
Singapore General Hospital
Outram Road
Singapore, 169608
Singapore
Email: hairil.rizal.abdullah@singhealth.com.sg

Abstract
Background: Blood pressure (BP) and hemoglobin concentration measurements are essential components of preoperative
anesthetic evaluation. Remote photoplethysmography (rPPG) is an emerging technology that may be used to measure BP
and hemoglobin concentration noninvasively with just a consumer-grade smartphone, replacing traditional in-person measure-
ments. However, there is limited data regarding the use of this technology in patients with diverse skin tones and medical
comorbidities. Hence, widespread applicability is yet to be achieved. The potential benefits of achieving this would be
immense, allowing for greater convenience, accessibility, and reduction in labor and resources.
Objective: Our study aims to be the first to develop an algorithm for noninvasive rPPG-based BP and hemoglobin concentra-
tion measurement that can be used for preoperative evaluation of patients in real-world clinical practice settings.
Methods: We conducted the study at Singapore General Hospital from March 1, 2023, to June 28, 2024. A total of 200
patients were recruited. Our primary analysis compared the accuracy of rPPG-based systolic and diastolic BP measurements
against measurements taken with automated BP measuring devices. Our secondary analysis compared the accuracy of rPPG-
based hemoglobin concentration measurement against traditional blood sampling.
Results: Our model performed best with diastolic BP predictions, with a mean absolute percentage error of 7.52% and a
mean difference of 0.16 mm Hg (SD 3.22 mm Hg) between reference and measured readings. The 95% CI for the mean
difference between predicted and measured diastolic BP was ±0.57 (−0.41 to 0.73) mm Hg. Systolic BP predictions yielded
a mean absolute percentage error of 9.52% and a mean difference of 2.69 mm Hg (SD 7.86 mm Hg). The 95% CI for the
mean difference between predicted and measured systolic BP was ±1.14 (−1.54 to −3.83) mm Hg. Hemoglobin concentration
predictions had a mean absolute percentage error of 8.52%, with a mean difference of 0.23 g/dL (SD 0.67 g/dL). The 95% CI
for the mean difference between predicted and reference measured hemoglobin concentration was ±0.10 (95% CI 0.13‐0.33)
g/dL.
Conclusions: Noninvasive rPPG-based measurement of BP and hemoglobin concentration at the preoperative evaluation
setting has great potential for improving convenience, improving efficiency, and conserving resources for patients and health
care providers. Our model was able to accurately predict diastolic BP in patients with diverse skin tones and medical
comorbidities. The findings of this study serve as a basis for further studies to develop and validate the model for noninvasive
rPPG-based BP and hemoglobin concentration measurement.
Trial Registration: ClinicalTrials.gov NCT06320847; https://clinicaltrials.gov/study/NCT06320847
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Introduction
With the use of just an ubiquitous smartphone camera, remote
photoplethysmography (rPPG) technology can measure vital
signs remotely, eliminating the need for traditional in-person
physical assessments. In telehealth and patient care applica-
tions, noninvasive vital sign measurements can transform
billions of devices into cost-effective and portable health care
measuring devices [1].

The major obstacles to obtaining an accurate signal for
rPPG-based vital sign measurements are changes in ambient
lighting conditions and movement artifacts. However, these
artifacts always present and are not completely avoidable in
realistic conditions [2].

Our study aims to develop a model for noninvasive,
rPPG-based BP and hemoglobin concentration measurement
in patients with diverse skin tones and medical comorbid-
ities in real world conditions, at the preoperative evalua-
tion clinic setting. Preoperative assessment is an important
aspect of care for all patients undergoing anesthesia and
surgery. The demand for surgical services is rising due to
population growth and aging, technological advances and
changes in treatment perspectives [3,4]. This in turn leads to
greater demand for preoperative anesthetic assessments at the
preoperative evaluation clinic. Telemedicine is an imminent
adjunct that could improve patient care and the effectiveness
of treatment in a rapidly aging population with an increasing
number of chronic health conditions [5,6].

An essential component of preoperative assessment is the
measurement of vital signs such as blood pressure (BP) and
hemoglobin concentration, both of which are traditionally
done in-person at the preoperative evaluation clinic set-
ting. Preoperative hypertension is associated with increased
perioperative risk [7]. Anemia is one of the strongest risk
factors for perioperative blood transfusions, which could
bring further complications, such as increased length of stay
[8].

Automated BP measuring devices are the most commonly
used devices for BP measurement [9], while hemoglobin
concentration is measured with an invasive blood test. The
ideal alternative is a noninvasive, contactless physiological
monitor, which would provide greater comfort, convenience,
and efficiency.

rPPG works on the principle that reflected light from the
various regions of the skin is affected by the volume of blood
under the skin [10]. This allows for an optical measurement
technique that quantifies peripheral blood volume and flow
variations [11]. These measurements are then analyzed with
signal processing algorithms which then generate physiolog-
ical measurements, such as BP [12]. Furthermore, rPPG
technology relies only on a consumer-grade smartphone
camera and does not require skin contact, which makes it

even more ideal for use in telemonitoring and mobile health
(mHealth) apps [13,14]. Developing rPPG technology for
use in the preoperative evaluation clinic setting can improve
manpower, save costs and lead to higher patient satisfaction
scores without increasing day-of-procedure case cancellations
[15,16].

An additional advantage is that rPPG technology may
allow for telemonitoring of ambulatory BP, which is currently
considered the gold standard for accurate diagnosis of
hypertension [17]. However, the majority of patients are
assessed via clinic BP measurements [18]. Home-based
telemonitoring may lead to better control of ambulatory BP,
especially among those with inadequate BP control [19-21].

Despite the potential advantages of contactless rPPG vital
sign monitoring, there are currently some important limita-
tions that our study aims to address. Most early studies on
contactless rPPG-based BP measurement were conducted in
a nonclinical setting on healthy, normotensive participants
with similar skin tones [12,22,23]. These limitations must
be addressed for rPPG technology to achieve widespread,
commercially viable usage in the clinical setting. Our study
aims to develop an rPPG model for remote BP monitoring
and hemoglobin concentration estimation across a representa-
tive range of BP readings and skin tones at the preoperative
evaluation clinic setting.

Methods
Study Design
The study was conducted at Singapore General Hospital
between March 1, 2023, and June 28, 2024. Our study
used a prospective feasibility design to compare contactless
rPPG BP and hemoglobin concentration measurements with
reference measurements from automated cuffed BP measur-
ing devices and clinical laboratory testing. A total of 200
patients participated.
Data Collection
The study was conducted in the preoperative evaluation clinic
with Nervotec’s contactless rPPG vital signs measurement
technology and equipment for standard reference measure-
ments (automated cuffed BP measuring device and pulse
oximeter), as illustrated in Figure 1. Patients were seated
in a private room and positioned comfortably with their
arms placed at a 90-degree angle on the table. Two indi-
vidual measurements were obtained sequentially using both
the Welch Allyn Connex machine and Nervotec’s rPPG
technology (NervoScan). Nervotec, our technical partner, is
a Singaporean digital health and artificial intelligence (AI)
company that has successfully used rPPG technology in
telehealth and mHealth apps to allow for the collection of
rPPG waveforms via smartphones. Their base technology
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measures heart rate (HR), heart rate variability (HRV),
respiration rate (RR) and blood oxygen saturation (SpO2)

levels through signal processing techniques of a facial scan
via the smartphone camera.

Figure 1. Equipment setup and patient positioning for blood pressure and hemoglobin concentration measurement with Nervotec remote photople-
thysmography technology in the preoperative evaluation clinic.

The NervoScan generates estimates every 10 seconds,
therefore the goal was to capture the respective clinical
reference for BP per 10 seconds. This was not feasible
due to reasons such as limitations in the continuous nonin-
vasive BP monitoring and waveform extraction as well as
time synchronicity of the two measuring devices (NervoScan
and the clinical device). To address this, the study team
used a pulse oximeter in conjunction with the Welch Allyn
Connex Vital Signs Monitor 6000 Series, which serves as the
standard equipment within the preoperative clinic setting. The
vital signs, including HR, RR, SpO2, HRV, and BP esti-
mates, were simultaneously captured using Nervotec’s rPPG
technology, recorded with a laptop and webcam setup. The
parameters were collected via a synchronized measurement
process lasting 3 minutes. Hemoglobin concentration was
retrospectively derived from the rPPG scans.

Information on age, height, weight, gender, ethnicity,
Monk Skin Tone (MST) Scale, relevant medical history
and routine preoperative blood investigation results (full
blood count, renal panel, anemia panel, coagulation, thyroid
function) were collected from the patient’s electronic medical
records. The MST Scale is a validated alternative to previ-
ous skin tone scales (eg, Fitzpatrick Scale), which has been
adopted for multiple uses, including AI and machine learning
[24]. Data collected were nonidentifiable, and only numeri-
cal data were collected. No photographic face recognition
data were stored. The regions of interest captured by the
rPPG facial scan were the forehead and bilateral cheeks, as
indicated in Figure 2 below.
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Figure 2. Regions of interest for the remote photoplethysmography facial scan.

Dataset
A total of 200 patients with a mean age of 56.44 years
(range: 21‐84 y) participated. Of these patients, 67% had

comorbid conditions such as hypertension, diabetes mellitus,
and ischemic heart disease. The demographic profile of the
participants is given in Table 1.

Table 1. Demographic profile of patients (N=200).
Characteristic Patients
Sex, n (%)
  Male 76 (38)
  Female 124 (62)
Age (years), mean (range) 58.23 (21-84)
SBPa (mm Hg) determined from baseline reference measurement, mean (range) 127.57 (84.5‐191)
DBPb (mm Hg) determined from baseline reference measurement, mean (range) 75.17 (54.5‐98)
Race, n (%)
  Chinese 160 (80)
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Characteristic Patients
  Filipino 1 (0.5)
  Malay 16 (8)
  Indian 15 (7.5)
  Eurasian 2 (1)
  Others 6 (3)
Skin tone, n (%)
  Monk skin tone 5 or 6 118 (59)
  Monk skin tone ≤4 82 (0.41)
Underlying medical conditions, n (%)
  None 66 (33)
  Ischemic heart disease 6 (3)
  Diabetes mellitus 48 (24)
  Hypertension 80 (40)

aSBP: systolic blood pressure.
bDBP: diastolic blood pressure.

Definitions
We defined hypertension according to the European Society
of Hypertension (ESH) guidelines [25]. The ESH classifies
office BP and defines hypertension grades as shown in Table
2. For our study, we combined Grade 2 and 3 hyperten-
sion into a single category. We also defined hypotension as
systolic BP (SBP) ≤100 mm Hg and/or diastolic BP (DBP)
≤60 mm Hg [26].

The absolute numbers and percentages of patients in each
BP category are presented in Table 3.

A more detailed breakdown of the percentages of
participants in each BP category was also compared against
the International Organization for Standardization (ISO)
81060-2:2018 requirements (Table 4) [27].

Table 2. Definition of hypertension grades.
BPa classification SBPb (mm Hg) and DBPc (mm Hg) criteria
Optimal SBP of <120 and DBP of <80
Normal SBP of 120‐139 and/or DBP of 80‐89
Grade 1 hypertension SBP of 140‐159 and/or DBP of 90‐99
Grade 2 hypertension SBP of 160‐179 and/or DBP of 100‐109
Grade 3 hypertension SBP of ≥180 or DBP of ≥110

aBP: blood pressure.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.

Table 3. Numbers and percentages of patients sampled from each blood pressure category.
BP Hypotensive, n (%) Grade 1 hypertension, n (%) Grade 2 and 3 hypertension, n (%)
Systolic 16 (8) 36 (18) 16 (8)
Diastolic 8 (4) 27 (13.5) 0 (0)

Table 4. Percentage of patients in each blood pressure category compared with International Organization for Standardization (ISO) requirements.
BPa range Patients (%) ISO requirements (%)
SBPb ≤100 mm Hg (hypotension) 8 ≥5
SBP ≥140 mm Hg (Grade 1 hypertension) 26 ≥20
SBP ≥160 mm Hg (Grade 2 and 3 hypertension) 8 ≥5
DBPc ≤60 mm Hg (hypotension) 4 ≥5
DBP ≥85 mm Hg (Grade 1 hypertension) 13.5 ≥20
DBP ≥100 mm Hg (Grade 2 and 3 hypertension) 0.0 ≥5

 

JMIR FORMATIVE RESEARCH Tan et al

https://formative.jmir.org/2025/1/e60455 JMIR Form Res 2025 | vol. 9 | e60455 | p. 5
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e60455


aBP: blood pressure.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.

Data Preprocessing
In this study, facial video recordings of 200 patients were
obtained, each comprising two 3 minute sessions with
concurrent ground truth BP and hemoglobin concentration
measurements. For each 3-minute (180s-) video, red, green,
and blue (RGB) variations of the facial regions were extracted
from several predefined regions of interest (ie, forehead, left
cheek, right cheek, nose and cheeks, and full face). The RGB
data were segmented into 18 windows of 10 seconds each,
with each window representing an independent data point.
The NervoScan software was used to filter out data points
where the patient’s face was not centered in the camera
frame, thereby enhancing data quality and consistency. A
total of 4109 data points were collected for effective training
of the proposed model.

We excluded data points with extreme BP values (SBP≤80
mm Hg or ≥180 mm Hg and DBP≤60 mm Hg or ≥130 mm
Hg). This addressed the class imbalance issue by remov-
ing outliers, thereby enhancing the dataset’s suitability for
analysis. After filtering, 3941 data points from 197 patients
remained. The shuffled dataset was then divided into training,
validation, and testing sets comprising 2758, 592 and 591
data points respectively.
Machine Learning Model and Training
Our approach used a U-Net-based model enhanced with
label distribution smoothing (LDS) techniques [28]. The
model optimization leveraged the Adam optimizer, chosen
for its efficient handling of large datasets and adaptability in
gradient-based optimization. A weighted mean squared error
loss function was applied to minimize prediction error, with
additional adjustments provided by a triangular LDS kernel
and an inverse LDS reweighting mechanism. This configura-
tion refined prediction accuracy, particularly in instances with
label distribution imbalances.

For training, we used a batch size of 64 and conducted 300
epochs, which allowed the model to capture intricate patterns

and reduce overfitting. A learning rate of 0.001 was selected
to ensure a balanced convergence rate without overshooting
the optimal parameters. Separate models were trained for the
prediction of SBP and DBP to better capture the specific
patterns associated with each measurement.

Ethical Considerations
The study was approved by the SingHealth Centralised
Institutional Review Board (CIRB Ref: 2023/2042) for
the period of February 15, 2023, to December 6, 2024,
and was registered on ClinicalTrials.gov (trial number:
NCT06320847). All patients were recruited in the preoper-
ative evaluation clinic by research assistants. All patients
who were present in the preoperative evaluation clinic at
Singapore General Hospital during the study period were
screened for eligibility. The inclusion criteria were (1) all
patients aged above 21 years, (2) presenting for any surgery
except head and neck surgery, and (3) the ability to give
informed consent. The exclusion criteria were (1) patients less
than 21 years old, (2) inability to give informed consent, or
(3) patients undergoing head and neck surgery. Participation
was voluntary, without compensation, and written informed
consent was obtained from all participants. Data collected
were nonidentifiable, and only numerical data were collected.
No photographic face recognition data were stored.

Results
Primary Analysis – SBP and DBP
The primary objective was to assess the accuracy of BP
measurements from rPPG compared to automated cuffed BP
measuring devices. All results are reported for a test set
consisting of data points from 90 participants. The results of
the primary analysis are presented in Table 5.

Table 5. Results of primary analysis (remote photoplethysmography–based systolic and diastolic blood pressure estimation).
Metric SBPa DBPb

Mean absolute percentage error (%) 9.52 7.52
Reference BPc (mm Hg), mean (SD) 128.77 (19.54) 75.54 (8.39)
Predicted BP (mm Hg), mean (SD) 131.46 (11.68) 75.38 (5.16)
Difference between predicted and measured BP (mm Hg), mean difference (SD) 2.69 (7.86) 0.16 (3.22)
95% CI for mean difference between predicted and measured BP (mm Hg) ±1.14 (–1.54 to −3.83) ±0.57 (−0.41 to 0.73)

aSBP: systolic blood pressure.
bDBP: diastolic blood pressure.
cBP: blood pressure.

The results revealed a general trend of underestimation of
BPs at the lower end of the range and overestimation at the
higher end for both SBP and DBP. To assess the agreement

and correlation between the predicted and measured values,
we used a Bland-Altman plot.
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These results indicate the stronger performance of the
model in estimating BP using rPPG for DBP.
Validation Against Standards
The mean absolute differences between the predicted and
measured BP measurements were 2.69 mm Hg for SBP and
0.16 mm Hg for DBP as shown in Figures 3 and 4, respec-
tively.

We compared the results from the NervoScan model
against the ISO 81060-2:2018 standards [27]:

Using these guidelines, the performance of NervoScan BP
estimates is given in Tables 6 and 7. It can be seen that
both SBP and DBP estimates satisfy the validation criterion 1
(SD≤8.0 mm Hg). Also, the DBP estimates fulfill the criterion
2 (SD<6.95 mm Hg) whereas the SBP estimates do not meet
the validation criterion 2 (SD<6.30 mm Hg).

Figure 3. Bland-Altman plot of the differences between the reference and remote photoplethysmography–based SBP measurements. pred: predicted;
SBP: systolic blood pressure.
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Figure 4. Bland-Altman plot of the differences between reference and remote photoplethysmography–based DBP measurements. pred: predicted;
DBP: diastolic blood pressure.

Table 6. Validation results of blood pressure measurements in accordance with criterion 1 and criterion 2 of the ANSI/AAMI/ISOa 81060−2:2018
guidelines (validation criteria of SD≤8.0 mm Hg for criterion 1; validation criteria of SD<6.30 mm Hg for systolic blood pressure and SD<6.95 mm
Hg for diastolic blood pressure for criterion 2).
Criteria SBP (mm Hg), estimate (SD) Meets standard DBP (mm Hg), estimate (SD) Meets standard
Criterion 1 2.68 (7.86) Yes 0.15 (3.22) Yes
Criterion 2 2.92 (8.02) No 0.27 (3.43) Yes

aANSI/AAMI/ISO: American National Standards Institute/Association for the Advancement of Medical Instrumentation/International Organization
for Standardization.

Table 7. Validation results of blood pressure measurements in accordance with criterion 1 and criterion 2 of the guidelines.
Criteria ISOa 81060-2:2018 standard (mm Hg) rPPGb model (mm Hg) Fulfills standards
Criterion 1 (SBPc) <8 7.86 Yes
Criterion 1 (DBPd) <8 3.22 Yes
Criterion 2 (SBP) <6.3 8.02 No
Criterion 2 (DBP) <6.95 3.43 Yes

aISO: International Organization for Standardization.
brPPG: remote photoplethysmography.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.

Statistical Analysis of SBP and DBP
Predictions
To determine the appropriate statistical approach for
evaluating SBP and DBP predictions by the NervoScan
and respective measured readings, we performed the Shapiro-
Wilk Test to check for normality. The null hypothesis states

that the data follows a normal distribution. A P value ≤.05
indicates a statistically significant deviation from normality,
leading to the rejection of the null hypothesis.

The results of the Shapiro-Wilk test are summarized in
Table 8.
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These findings justify the use of nonparametric statistical
tests for analyzing the paired data (eg, Wilcoxon signed rank
test) in subsequent comparisons.

To evaluate the agreement between predictions and ground
truths for SBP and DBP, the Wilcoxon signed rank test was

used, as the data consists of paired measurements. The results
of the Wilcoxon signed rank test are summarized in Table 9.

In conclusion, the results highlight that while the NervoS-
can performs well in predicting DBP, the SBP predictions
require further optimization.

Table 8. Shapiro-Wilk test results for systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurements.
Measurement P value Interpretation
SBP <.001 SBP does not follow a normal distribution
DBP <.001 DBP does not follow a normal distribution

Table 9. Wilcoxon signed rank test results for systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurements.
Measurement P value Interpretation
SBP <.001 Significant difference between reference and rPPGa-based SBP measurement
DBP .90 No significant difference between reference and rPPG-based DBP measure-

ment
arPPG: remote photoplethysmography.

Secondary Analysis – Hemoglobin
Concentration
Using the aforementioned dataset and the machine learning
model architecture, a new model was trained to estimate
hemoglobin. Our model predicted hemoglobin concentration

with a mean absolute percentage error of 8.52%, exhibiting
an error bias of 0.23 g/dL and an SD of 0.67 g/dL (Figure
5). Among 197 participants, the mean predicted hemoglobin
was 12.71 g/dL (SD 1.13 g/dL), compared with the refer-
ence hemoglobin of 12.95 g/dL (SD 1.81 g/dL). The mean
difference was 0.23 g/dL (SD 0.67 g/dL) as given in Table 10.

Figure 5. Bland-Altman plot of the difference between reference and remote photoplethysmography–based Hb concentration measurements. Hb:
hemoglobin; pred: predicted.
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Table 10. Results of the secondary analysis (remote photoplethysmography–based hemoglobin concentration estimation).
Criteria Hemoglobin (g/dL)
Mean absolute percentage error (%) 8.52
Reference hemoglobin (g/dL), mean (SD) 12.95 (1.81)
Mean predicted blood pressure (g/dL), mean (SD) 12.71 (1.13)
Difference between predicted and reference measured hemoglobin (g/dL), mean difference (SD) 0.23 (0.67)
95% CI for mean difference between predicted and reference measured hemoglobin (g/dL) ±0.10 (0.13‐0.33)

The Shapiro-Wilk test was again used to test for normality.
We obtained a P value of <.01, which indicates that the
data are not normally distributed. Furthermore, the Wilcoxon
signed rank test revealed significant difference between the
two hemoglobin data distributions (predictions and measured
reference) with a P value of <.01. It is due to the inherent
class-imbalance in the data distribution (majority samples are
between the 12-15 g/dL range whereas fewer samples exist
outside the mentioned range. Hence, the model learning/esti-
mation is biased from such over-representation of data points
from the 12‐15 g/dL range. This indicates that hemoglobin
estimation can be improved by collecting sufficient hemoglo-
bin values for both low and high values for a more effective
learning.

As an initial proof of concept, this demonstrates the
feasibility of hemoglobin prediction from rPPG. Thus,
offering an alternative to hemoglobin estimation compared to
the measurements requiring blood samples. While it offers
reasonable accuracy in hemoglobin predictions compared
with clinical laboratory results, the estimation can be further
improved by including more data points from the low and
high hemoglobin ranges. The results are demonstrated in the
Bland Altman plot shown in Figure 5.

Discussion
Principal Findings
Our study successfully developed an rPPG model which
performed strongly in predicting DBP in the preoperative
evaluation clinic setting. Our model performed best with
DBP predictions, with a mean absolute percentage error of
7.52% and a mean difference of 0.16 mm Hg (SD 3.22 mm
Hg) between reference and measured readings, outperforming
previous studies [29]. The focus of our study was to develop
a contactless rPPG vital sign monitoring technology that
could be used in diverse patient populations to measure BP
and hemoglobin concentration in the preoperative evaluation
clinic setting. Our study substantiates the potential efficacy
of the rPPG-based model for accurately predicting BP and
hemoglobin measurements. Further optimization is required
for SBP and hemoglobin concentration predictions, as well
as predictions in extreme physiological ranges. However,
this development study serves as a promising basis to guide
and optimize future studies, which will further develop and
validate the model.

There were some limitations that we considered in our
study. One limitation faced was the lack of a reference

protocol for contactless vital signs monitoring. In view of
this, we opted to use the American National Standards
Institute (ANSI)/Association for the Advancement of Medical
Instrumentation (AAMI)/ISO 81060-2:2018 standard as a
guide, as automated cuffed BP measuring devices are the
standard measurement device in the clinical setting. For
future studies, a potential improvement would be to perform
3 reference readings per patient, instead of 2 as we have
done in our study. Including more patients with extremes
of BP and hemoglobin would improve the size and diver-
sity of the dataset, which could improve model robustness.
Another limitation was that the patients were not screened for
arrhythmias, which would potentially affect the accuracy of
contactless rPPG vital signs measurements [30]. This would
also be a point of consideration for future follow-up studies.

The reported findings are promising, given that our
study is the first rPPG BP and hemoglobin measurement
development study based on patients with diverse skin
tones, nonnormotensive BP readings and comorbid medical
conditions such as diabetes mellitus and ischemic heart
disease. Despite the challenges of developing a model in
this heterogeneous dataset, our model was able to predict
DBP accurately and achieve good correlation for SBP and
hemoglobin. More work needs to be done in order to achieve
the same degree of agreement for SBP and hemoglobin
predictions. In doing so, we recognize the potential utility
for this technology in the hospital setting, due to its wide
applicability. The potential applications for this technology
are vast and not just limited noninvasive BP and hemoglobin
measurement in the preoperative evaluation clinic setting.

By stratifying patient readings into predefined BP and
Hb categories, a successful model can significantly opti-
mize the triaging process, thereby reducing the workload
on health care professionals and increasing the efficiency
of patient management. In-hospital applications would
include continuous contactless monitoring in the emergency
department, post-anesthesia care unit or intensive care unit
This would possibly decrease human errors and improve
patient safety without increasing the strain on human
resources [31].

Furthermore, this model can be integrated into a mobile
app (mHealth) that supports the trend toward more indi-
vidualized and accessible health care solutions. Such an
app could enhance ambulatory chronic disease manage-
ment by enabling continuous monitoring and early detec-
tion, potentially reducing emergency visits and associated
health care costs. Primary and ambulatory care patients may
self-monitor their vital signs continuously and conveniently,

JMIR FORMATIVE RESEARCH Tan et al

https://formative.jmir.org/2025/1/e60455 JMIR Form Res 2025 | vol. 9 | e60455 | p. 10
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e60455


which could be used to diagnose hypertension [32] without
physically traveling to a health facility. This may allow
timely intervention while reducing unwarranted hospital
visits and transport costs [33]. Apart from hypertension,
potential expansions may include the management of other
common conditions such as diabetes [32]. For example, rPPG
technology could be developed upon to measure glyca-
ted hemoglobin to diagnose diabetes mellitus and monitor
glucose control in patients known to have diabetes [34].

In summary, the results of our study support further data
evaluation and development of clinical applications for our
rPPG model.
Conclusions
Our study was the first development study of a model for
rPPG-based, contactless, noninvasive BP and hemoglobin
measurement in a population with diverse skin tones and

medical comorbidities. Predictions were stronger for DBP
than SBP. Predictions for SBP, DBP, and hemoglobin were
most accurate in the midquartile ranges. Our study serves
as a promising basis for future development and validation
studies. Further studies with a larger dataset including more
measurements in the extreme ends of physiological range
are required. In addition, rPPG-based contactless monitoring
has vast applications beyond BP and hemoglobin measure-
ment in the preoperative evaluation clinic setting, which
could potentially include other physiological measurements,
such as glycated hemoglobin measurements. These broader
applications are potentially limitless and could include home
ambulatory monitoring, noninvasive monitoring in pedia-
tric populations, monitoring in low-resource settings, and
reducing the labor costs of monitoring patients in critical care
areas in the hospital.
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