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Abstract
Background: The International Classification of Diseases (ICD), developed by the World Health Organization, standardizes
health condition coding to support health care policy, research, and billing, but artificial intelligence automation, while
promising, still underperforms compared with human accuracy and lacks the explainability needed for adoption in medical
settings.
Objective: The potential of large language models for assisting medical coders in the ICD-10 coding was explored through
the development of a computer-assisted coding system. This study aimed to augment human coding by initially identifying
lead terms and using retrieval-augmented generation (RAG)–based methods for computer-assisted coding enhancement.
Methods: The explainability dataset from the CodiEsp challenge (CodiEsp-X) was used, featuring 1000 Spanish clinical
cases annotated with ICD-10 codes. A new dataset, CodiEsp-X-lead, was generated using GPT-4 to replace full-textual
evidence annotations with lead term annotations. A Robustly Optimized BERT (Bidirectional Encoder Representations from
Transformers) Pretraining Approach transformer model was fine-tuned for named entity recognition to extract lead terms.
GPT-4 was subsequently employed to generate code descriptions from the extracted textual evidence. Using a RAG approach,
ICD codes were assigned to the lead terms by querying a vector database of ICD code descriptions with OpenAI’s text-embed-
ding-ada-002 model.
Results: The fine-tuned Robustly Optimized BERT Pretraining Approach achieved an overall F1-score of 0.80 for ICD
lead term extraction on the new CodiEsp-X-lead dataset. GPT-4-generated code descriptions reduced retrieval failures in
the RAG approach by approximately 5% for both diagnoses and procedures. However, the overall explainability F1-score
for the CodiEsp-X task was limited to 0.305, significantly lower than the state-of-the-art F1-score of 0.633. The diminished
performance was partly due to the reliance on code descriptions, as some ICD codes lacked descriptions, and the approach did
not fully align with the medical coder’s workflow.
Conclusions: While lead term extraction showed promising results, the subsequent RAG-based code assignment using GPT-4
and code descriptions was less effective. Future research should focus on refining the approach to more closely mimic the
medical coder’s workflow, potentially integrating the alphabetic index and official coding guidelines, rather than relying solely
on code descriptions. This alignment may enhance system accuracy and better support medical coders in practice.
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Introduction
Background and Significance
The International Classification of Diseases (ICD), devel-
oped by the World Health Organization (WHO), serves
as a universal standard for coding health-related condi-
tions [1]. The ICD system steers health care policymaking,
assists in billing and reimbursement, underpins research,
ensures quality monitoring, and promotes the standardization
of medical information exchange. ICD-10 is divided into
diagnosis and procedure codes, encompassing over 100,000
codes. The system is hierarchically organized and includes
detailed coding guidelines.

Medical coding entails the allocation of unique codes to
medical records and is a standard procedure in most hospitals.
Hospitals collect a list of ICD codes relevant to each patient’s
hospital admission. Medical coding is a time-consuming and
error-prone task, which has led to interest in automating it,
and in turn, to the emergence of the medical coding sub-
field within medical natural language processing (NLP) [1,2].
However, the task of effectively computerizing ICD coding
remains a challenge. While the accuracy of codes assigned
by medical coders may be debated [2-4], current state-of-
the-art (SOTA) automated systems for ICD-10 coding still
fall short of human performance [5-7]. In addition, many
artificial intelligence (AI) solutions are “black boxes,” not
offering explanations for their predictions. However, model
transparency is required to gain trust, which is crucial for its
adoption in medical settings [8].

ICD Coding
Diagnosis codes in the ICD system are organized into an
alphanumeric format across 21 chapters, capturing a range
of categories including specific diseases, symptoms, and
external causes, among others.

The hierarchical structure of ICD codes begins with a letter
that corresponds to a chapter, together with the 2 subsequent
digits that form the category of the code. Following the
category code, the subclassification uses up to 5 additional
alphanumeric characters. These detail specific aspects of the
disease or condition, like laterality or severity, as illustrated
in Figure 1. The procedure codes, separate from diagnostic
codes, consist of 7 characters termed as “axis,” with each
axis representing a specific aspect of the medical procedure
performed [9]. ICD-10 provides a comprehensive 3-volume
coding manual that includes an alphabetical index. This index
helps in finding medical codes using “lead terms,” which
are crucial keywords associated with medical conditions,
listed in the alphabetical index. Medical coders first iden-
tify a diagnosis’s lead term in the text (Figure 2). In this
example, the lead term “cirrhosis” from the textual evidence
corresponds to an alphabetic index entry. Under “Cirrhosis,”
the relevant subentry is “liver,” “alcoholic,” leading to the
back-reference code K70.30. The next coding step involves
consulting the tabular index for K70.30 for detailed instruc-
tions.

Figure 1. Structure and components of an ICD-10 diagnosis code. ICD-10: International Classification of Diseases, 10th version.
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Figure 2. Illustration of concepts “code description,” “textual evidence (green),” “lead terms (red),” and “back references” in the “alphabetical
index”. ICD: International Classification of Diseases.

For each diagnosis and procedure that needs an ICD code, the
initial step is to identify the lead term, which is comparable
to the named entity recognition (NER) task in NLP. NER
involves extracting specific categories like names, locations,
medications, and diseases from unstructured text. Only a few
studies proposing lead term-based approaches for ICD coding
have been published [5], possibly due to the absence of public
datasets annotated with lead terms. Previous NER approaches
focused on extracting full textual evidence, rather than lead
terms [5].
Explainability
Recent studies have proposed adversarial robustness training
strategies and feature attribution, such as the use of atten-
tion mechanisms, for the explainability of NLP [10-12]. A
limitation of these approaches is the absence of efforts to
validate whether the identified “explainable” terms align with
official ICD guidelines. For instance, while “insulin” may be
a predictive term for the disease “diabetes”, it is not suitable
as evidence for coding according to the WHO guidelines and
educational textbooks [13] as insulin can be prescribed for
various medical conditions other than diabetes.
Transformers
In the original transformer architecture, which encompasses
both encoder and decoder components [14], it is crucial to
recognize the distinct roles of these elements. Encoder-only
models, such as the BERT (Bidirectional Encoder Repre-
sentations from Transformers) architecture and its variant,
RoBERTa (Robustly Optimized BERT Pretraining Approach)
[15], excel at capturing relevant information from the input
data and constructing meaningful representations [16-18]

and can be found in current SOTA models in ICD coding
[5,7]. Conversely, decoder models, exemplified by GPT,
are specialized in generating coherent and contextually
relevant text [19]. With the evolution of the GPT architec-
ture, remarkable advancements have been achieved in NLP
[20,21]. GPT has already been applied across various health
care disciplines and use cases [22]. However, early studies
indicate that while GPT-3.5, GPT-4, and ChatGPT show
potential, their performance in ICD classification has been
mixed, with out-of-the-box negative results [23]. Generative
approaches may be especially useful for ICD coding of rare
diseases [24]. OpenAI’s GPT was, for a time, the leading
large language model (LLM) in generative AI [20], but other
models, such as Mixtral, Gemini, Grok, Llama, and Claude
[25], are available and quickly catching up [26,27].
Objective
Our objective was to develop a GPT-4-based computer-assis-
ted coding system to aid medical coders in ICD-10 cod-
ing. Our approach enhances the identification of diagnoses
and procedures in texts by initially focusing on lead terms
rather than extracting the full textual evidence for a code
at once. The reason for initially extracting lead terms is
that it aligns perfectly with the first step followed by
medical coders in their procedure. This approach would
therefore be a good fit for assisting with the process. For
code normalization, our approach exclusively employs code
descriptions, moving away from reliance on model-based
training. Specifically, the ICD code for identified lead terms
was assigned using GPT-4 and ICD descriptions, employ-
ing a retrieval-augmented generation (RAG) approach. This
reliance on an external knowledge source is strategically
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chosen to improve generalizability, enhancing the system’s
ability to accurately classify codes unseen during training.
Furthermore, this method offers increased adaptability to
changes in the coding system. The research also investigates
the optimal method for querying a database to retrieve ICD
codes by description. It compares the effectiveness of 2
approaches: using direct textual evidence as the query and
employing code descriptions generated (invented) by GPT-4
from that textual evidence. Additionally, the study aimed
to assess GPT-4’s ability to accurately select the best code
by matching code descriptions with textual diagnoses. This
objective is rooted in the understanding that ICD coding
guidelines and descriptions are designed for humans, and
it seeks to determine if GPT-4’s capabilities in following
instructions translate to robust performance in this specific
context.

Methods
GPT-4
This study used GPT-4 (gpt-4 1106-preview) via OpenAI’s
application programming interface and the Langchain Python
library [11]. To ensure reproducibility, the model’s tempera-
ture was set to 0. GPT-4’s parametric knowledge, or out-
of-the-box performance, was evaluated in 2 ways. First, it
was prompted to generate descriptions for 100 random ICD
codes from the CodiEsp dataset. These descriptions were then
compared with the ground truth by prompting GPT-4 in a new
chat with, “Do both descriptions refer to the same ICD code?”
Second, GPT-4 was tasked with matching the correct ICD-10
code to each of the 100 official descriptions.
Dataset CodiEsp
CodiEsp is a unique corpus of 1000 clinical cases in
Spanish, annotated by professionals for explainability,

offering token-level annotations that provide textual evidence
for each assigned code [28]. The annotation agreement rates
were 88.6% for diagnosis, 88.9% for procedures, and 80.5%
for textual evidence [28]. The test set contains 1514 unique
ICD codes (1143 diagnoses and 371 procedures), some of
which are not present in the training set, specifically, 439
diagnosis codes (38.3%) and 231 procedure codes (62.3%).
Among the procedure codes, 143 (38.5%) are 4-axis ICD-10
procedure codes, which officially should have 7-axis ICD-10
codes. These incomplete codes lack descriptions and account
for 602 of the total of 1112 procedure codes (54%). Overall,
828 out of 4777 (17.3%) test annotations do not have an exact
match in the training set. In the current SOTA on CodiEsp-X,
the entity extraction and normalization are both transformer-
based [5].
Dataset CodiEsp-X-Lead
This approach does not use NER to extract complete textual
evidence; instead, it mimics human coders by first identify-
ing lead terms. An annotated dataset was required to train
and evaluate a NER model for this task. However, man-
ual annotation of 18,435 items was deemed infeasible due
to the time and effort involved. Instead, GPT-4 few-shot
prompting with 20 manually curated examples was used
to extract lead terms from CodiEsp-X textual evidence.
The author (SP) reviewed and corrected the extraction. The
resulting CodiEsp-X-lead dataset is identical to CodiEsp-X
but includes additional columns for the GPT-extracted lead
terms.
Approach
For this study, we followed the process described in 2 main
phases and 5 steps in Figure 3, mimicking the process human
medical coders follow.

Figure 3. Schematic overview of the process followed for ICD coding. ICD: International Classification of Diseases; RAG: retrieval-augmented
generation; RoBERTa: Robustly Optimized BERT Pretraining Approach
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Step 1: Extract Lead Terms
A RoBERTa-based biomedical-clinical language model for
Spanish was fine-tuned for NER of lead terms using the
CodiEsp-X-lead dataset and Hugging Face’s transformer
library (version 4.26.0) [19,20], using the official dataset
splits. The fine-tuned model enabled precise identification
of lead terms within medical documents. To evaluate its
performance, the same approach was applied to the CodiEsp-
X dataset to extract full-textual evidence, which is more
commonly used in AI methods for code assignment.

Step 2: Expand Lead Terms Into Full Textual
Evidence
Instead of using NER to extract textual evidence, GPT-4 was
instructed to complete a template for each lead term which
included a field to capture the full textual evidence for the
code. Alongside the textual evidence, the template includes
a field designed to capture contextual information, which
is described as the text snippet containing all the necessary
information for coding the lead term. In the prompt, the entire
text was supplied, using HTML tags to highlight the lead
terms within the original text.

Step 3: Generate (Invent) an ICD Code
Description From Textual Evidence
In this part, we tested the theory that GPT-4 can improve
text embeddings-based database search accuracy by aligning
queries with official ICD code descriptions. This assump-
tion arose from the observation that terms in official ICD
code descriptions often markedly differ from those used in
clinical texts. GPT-4 was tasked to generate (invent) ICD
code descriptions from extracted textual evidence, aiming to
reconcile these terminological discrepancies. This process,
known as query alignment, refines a query to mirror the
language and structure of database entries more closely,
with the goal of enhancing search accuracy. To verify this
assumption, the study compared different types of input
queries; raw clinical text versus GPT-4 refined descriptions,
to assess their effectiveness in achieving precise database
lookups.
Step 4: Retrieving ICD Codes Using
Descriptions and RAG
The complete lists of code descriptions for diagnoses and
procedures contain around 2.5 million tokens each, far
exceeding the context window size of current generative
models. While including an entire knowledge base in the
prompt is feasible for smaller datasets, RAG is necessary
here to retrieve relevant context efficiently. To address this,
we converted the official ICD code descriptions into vectors
using OpenAI’s “text-embedding-ada-002” model via the
Langchain library [21], and stored them in the Chroma
vector database. This enables efficient searching by embed-
ding-based similarity rather than exact matches. By retrieving
only the most relevant information, RAG ensures that the
results fit within the model’s context window, allowing it to
process the required details effectively.

Step 5: Select the Code Best Matching Textual
Evidence
From the 50 results retrieved from the vector store query,
GPT-4 was prompted to choose the best-matching ICD code.
For the decision, GPT was provided with the lead term,
textual evidence, and additional context extracted in Step 2.
Evaluation
The performance of the ICD coding pipeline and its com-
ponents was evaluated using precision, recall, and F1-score
metrics calculated with the CodiEsp scripts [18,22]. To assess
performance loss at each step, predictions were replaced with
actual values in subsequent steps only if the predictions at
the current step were accurate. Specifically, in lead term
extraction, a prediction was deemed correct if the predicted
text span overlapped with the textual evidence. For textual
evidence extraction, if there was an overlap, all values
except the span were replaced. In the code retrieval step,
the predicted code was replaced with the actual code if the
predicted code was among the top-k results. In the code
assignment, the predictions were not altered. Additionally,
the accuracy of lead term extraction was also measured using
F1-scores calculated for the actual spans, independently of the
CodiEsp script.
Ethical Considerations
This study used only publicly available data from the
CodiEsp challenge, a synthetic corpus of 1000 clinical
case studies, that does not contain real patient information,
ensuring anonymity and eliminating the need for ethical
approval.

Results
GPT-4
GPT-4 generated descriptions for 100 randomly selected ICD
diagnosis codes and in a new chat compared these with
official ICD-10 descriptions. It found that only 52% matched
the official descriptions, as detailed in Multimedia Appen-
dix 1. When GPT-4 was tasked with associating the correct
ICD-10 code to each of the 100 official descriptions, only
47% of the ICD codes were correct.
Dataset CodiEsp-X-Lead
A key outcome of this study is the creation of the CodiEsp-
X-lead dataset using GPT-4. This dataset consists of 7748
unique textual evidence strings, with 6532 of these contain-
ing multiple terms. As instructed, GPT-4 typically extracted
a single lead term from these multiterm strings. However,
in 549 cases (8%), multiple lead terms were extracted. The
researchers manually resolved 325 of these cases to a single
lead term, leaving the remaining cases unmapped due to
ambiguity in determining the appropriate lead term.
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Step 1: Extracting Lead Terms
After fine-tuning the Biomedical-clinical language model for
Spanish for NER to extract lead terms [29], it achieved an
F1-score of 0.80 (precision of 0.78 and a recall) of 0.83

on the CodiEsp-X-lead test set (Table 1). When this model
was solely fine-tuned and tested for diagnoses, it exhibited a
slightly better performance, with an F1-score of 0.82 (Table
1).

Table 1. Named entity recognition (NER) performance on extracting lead terms and textual evidence for diagnoses and or procedures on CodiEsp-X
and CodiEsp-X-lead.
NER F1-score
Textual evidence diagnoses and procedures combined (ours-baseline) [29] 0.65
Textual evidence diagnoses (SOTAa) [5] 0.71
Textual evidence procedures (SOTA) [5] 0.61
Main-terms diagnoses (ours) [29] 0.82
Main-terms diagnoses and procedures combined (ours) [29] 0.80

aSOTA: state-of-the-art.

Step 2: Expand Lead Terms Into Full
Textual Evidence
Using GPT-4, full textual evidence was extracted based on
preannotated lead terms, which were identified in Step 1.

GPT-4 completed a template that incorporated the full textual
evidence for each provided lead term. This approach achieved
an F1-score of 0.509, as shown in Figure 4.

Figure 4. F1-Score performance loss for each individual step in the approach.

The base model from Step 1 was fine-tuned to extract textual
evidence solely for benchmarking, achieving an F1-score of
0.65 on the CodiEsp-X test set (Table 1). This model was not
used in the actual approach, which aims to mimic medical

coders by prioritizing the extraction of lead terms. Note that
results from Table 1, assessing exact offsets, differ from those
in Figure 5 where the official CodiEsp scripts allow for an
error margin.
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Figure 5. Comparison of failed retrievals @50 in a vector database containing all official ICD diagnosis and procedure codes. The chart compares
results for 25 documents (507 codes), contrasting searching by textual evidence versus GPT-4 zero-shot generated code descriptions based on the
textual evidence.

Step 3: Generate (Invent) an ICD Code
Description From Textual Evidence
GPT-4 was used to generate ICD code descriptions from
textual evidence, evaluated on 25 documents containing 507
codes in a RAG setting. When comparing GPT-4-generated
descriptions to direct retrieval using textual evidence (Figure
5), retrieval failures decreased from 160 to 141 (42.1% to
37.1%) for the 380 diagnoses codes and from 97 to 91 (76.4%
to 71.7%) for the 127 procedure codes.

For procedure codes, many were assigned as 4-axis codes,
lacking the detail of the official 7-axis codes and without
available descriptions in the resources. As a comparison, a
nonexact matching criterion was applied, where a match was
considered valid if the assigned code was a substring of
the retrieved code. Under this nonexact approach, retrieval
failures for procedures dropped significantly, from 62 to 30
out of 127 (48.8% to 23.6%). For diagnoses, which were
mostly assigned in full detail, the decrease in failures was
smaller, from 157 to 137 out of 380 (41.3% to 36.1%).

Step 4: Retrieving ICD Codes Using
Descriptions and RAG
When RAG retrieval was evaluated within the full pipeline,
a significant drop in explainability F1-score was observed,
falling from 0.509 to 0.378, as shown in steps 3 and 4 in
Figure 4. Procedures had the largest contribution to this drop,
with their F1-score decreasing from 0.743 to 0.246. Diagno-
ses also experienced a decline, with their F1-score dropping
from 0.781 to 0.597.
Step 5: Select the Code Best Matching
Textual Evidence
In the final step, GPT-4 had to select the correct ICD code
from the top 50 retrieved results based on the previously
predicted textual evidence. This selection process caused
a further decline in performance, with the explainability
F1-score dropping from 0.378 to 0.3 (Table 2 and Figure 4).

Table 2. Comparison of performance of different models in the CodiEsp challenge.
Team name Diagnoses

(F1-score)
Procedures
(F1-score)

Explainability
(F1-score)

FLE 0.679 0.514 0.611
IAM 0.687 0.522 0.611
BETO-Galén+mBERTGalén+XLM-R-Galén —a — 0.633
Ours 0.457 0.204 0.305

aNot available.
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Discussion
Summary of Main Findings
In this study, we proposed methods to assist ICD-10 coding
using LLMs. We successfully created a dataset of lead terms,
“CodiEsp-X-lead,” using few-shot prompting on GPT-4.
Using this dataset, we effectively fine-tuned a transformer
model (F1-score of 0.80) that can assist medical coders
in the initial step of medical coding: identifying ICD lead
terms. To enhance RAG retrieval, we employed GPT-4 to
generate code descriptions from textual evidence, aiming to
improve ICD code identification within a code description
database. Although the initial step, focusing on extracting
lead terms, closely mimicked medical coders and performed
well, subsequent RAG steps based on textual descriptions
were less effective, yielding a poor F1-score of 0.305 on the
CodiEsp-X task. We will discuss the shortcomings of the
RAG implementation and analyze each step’s performance,
highlighting areas of significant improvement.
Motivation of Choices
RoBERTa was selected over GPT-4 for NER of lead terms
because encoder-based models are better suited for token-
level tasks like NER, providing detailed context understand-
ing. RoBERTa is lighter and more efficient to fine-tune,
potentially outperforming generative, decoder-only models
like GPT-4 [17,30]. Additionally, as of 2023, fine-tuning
GPT-4 was not possible. Previous research indicates that GPT
models perform poorly in traditional, example-rich NER tasks
[31].

In contrast, GPT-4 excels in few-shot NER tasks and
was chosen for other aspects of the study due to its SOTA
performance in NLP. Medical coding involves following
specific guidelines, and a well-configured generative model
like GPT-4, trained for instruction-following, is likely to
perform well in such roles. Therefore, GPT-4 was used to
create the dataset by extracting lead terms through few-shot
NER, as manually compiling the dataset was not feasible. Its
natural language generation capabilities and instruction-fol-
lowing skills were also leveraged to generate code descrip-
tions, align queries, and identify the correct ICD-10 codes
from a given list.

Using code descriptions exclusively for normalizing lead
terms to ICD codes offers independence from training
data-based fine-tuning. Given the vastness of ICD-10, with
over 100,000 codes, many are rarely encountered in practice.
The analysis of the CodiEsp dataset revealed that 17.3% of
specific test set codes were not included in the training data.
If the proposed method, which primarily relies on official
code descriptions, were to be successful, it likely would be
very generalizable across different ICD datasets.
GPT-4 Parameteric Knowledge
The preliminary results of GPT-4’s performance were
disappointing. However, it is crucial to approach nega-
tive outcomes based on prompts with caution, as the
prompts themselves may be suboptimal. Nevertheless, we can

definitively state that GPT-4’s out-of-the-box performance
on 2 basic ICD-10 coding tasks—coding official descrip-
tions and generating code descriptions for diagnoses—was
mediocre. The approach of using GPT-4 generated descrip-
tions for procedure codes was found to be completely
ineffective in the study. These findings and those from the
first available publications on GPT-3.5 and GPT-4’s abilities
with ICD billing codes underscore their subpar performance
for downstream applications [23].
Creating CodiEsp-X-Lead With GPT-4
In this study, we introduced “CodiEsp-X-lead”, a curated
selection of lead terms from the CodiEsp-X dataset. Using
GPT-4 as an annotator and employing few-shot prompting,
we extracted these terms from the dataset’s textual evidence.
This method showcases its utility for other use cases where
manual annotation is unfeasible, but reviewing the generated
annotations is feasible. While the authors manually reviewed
and made minor adjustments to this extraction, there is
potential for further refinement. For improved lead term
identification, lead terms derived from the codes assigned to
that textual evidence could be suggested by using an inverse
lookup on the official alphabetical index. This approach can
benefit both the GPT-4 prompts given and our manual review
process. Last, to ensure the highest accuracy, domain experts,
such as medical coders, could annotate or validate a portion
of the lead terms and can help improve the quality of the
examples used in the (few-shot) prompt. Another suggestion
to enhance the dataset’s quality is to allow multiple lead terms
for each assigned code. Limiting to a single lead term when
several are applicable results in inconsistencies and reduces
the quality of the dataset and the model’s performance.
Step 1: Extracting Lead Terms
The results demonstrate that using NER for lead term
identification holds distinct advantages over extracting the
full textual evidence all at once.

First, since the task is more straightforward, significantly
better performance can be obtained when extracting lead
terms compared with extracting the full textual evidence.
For instance, the SOTA approach for the CodiEsp-X task
yielded an F1-score of 0.71 for NER of full-textual evidence
for diagnoses compared with our score of 0.82 for NER of
lead terms (Table 1) [2]. High performance in extracting the
correct lead term is crucial, as it sets the performance ceiling
for the entire coding approach.

Second, starting with lead term extraction mirrors the
initial step of human coders, facilitating seamless integration
into their workflow and providing standalone value. A coding
assistant that accurately identifies lead terms with high recall
and precision would likely be favored over a system that
offers full ICD assignments but has a higher error rate. The
latter could compel human coders to frequently reread the
text and make extensive corrections, frequently starting from
scratch. In contrast, a fully autonomous approach that meets
performance requirements without needing human interven-
tion would likely favor extracting full-textual evidence at
once, due to its potential for higher efficiency. However,
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in such a scenario, the relevance of explainability becomes
questionable, particularly when the system operates satisfac-
torily with no human oversight.

The proposed NER model for extracting lead terms
performs well, but further improvements can be achieved by
enhancing the quality of the CodiEsp-X-lead dataset. It may
be beneficial to fine-tune the model to prioritize recall over
precision, as medical coders might favor removing incorrect
lead term suggestions instead of revisiting a text to verify that
all diagnoses are captured. Additionally, optimizing parame-
ters might enhance the performance of the model.
Step 2: Expand Lead Terms Into Full
Textual Evidence
From Step 2, our method deviated from ICD-10 coding
guidelines by adopting a RAG approach, which requires a
database lookup rather than following the traditional coding
steps.

Using a zero-shot GPT-4 prompt to extract full textual
evidence resulted in mediocre outcomes, with the F1-score
for explainability dropping from 0.824 to 0.509 (Figure 4).
This highlights a significant limitation of this approach. In
contrast, skipping lead term extraction and directly employ-
ing a fine-tuned BERT model yielded better performance,
achieving F1-scores of 0.71 and 0.61 for diagnoses and
procedures respectively, which are SOTA, and a combined
score of 0.65 for our model [5]. For future work, we propose
to align more closely with medical coders’ practices by
continuing to use extracted lead terms and leveraging the
alphabetic index and official guidelines for code lookups,
allowing textual evidence to emerge naturally. This differs
from the current RAG approach, which relies on a single
lookup using predefined semantic queries.
Step 3: Generate (Invent) an ICD Code
Description From Textual Evidence
The hypothesis we examined suggested that GPT-generated
code descriptions, based on textual evidence and context,
would semantically more closely align with a database of
ICD code descriptions than the original textual evidence. This
expected alignment is intended to enhance RAG retrieval,
suggesting that rephrasing textual evidence into descriptions
using AI could improve the accuracy of searching for ICD
codes by their descriptions. From the experiments on a
subset of the data (Figure 5), we confirm the hypothesis,
as all cases show a reduction in failed retrievals. Although
the improvements are subtle in most scenarios, with only
a few percentage points fewer failed retrievals, there is a
marked improvement for nonexact matching procedure codes.
Specifically, failed retrievals dropped from 48.8% to 23.6%.
This notable performance in nonexact matching is likely
due to the majority of procedure codes lacking descriptions
(59%), which is why nonexact matching was evaluated and
resulted in a significant reduction in the number of classes.

Step 4: Retrieving ICD Codes Using
Descriptions and RAG
In step 3, we tested nonexact matching for procedure codes,
but the official Codiesp evaluation uses exact matching. Our
approach, relying on NER extraction and descriptions for
code lookup, fails when many assigned codes lack descrip-
tions and are invalid.

In the RAG retrieval step, F1-score performance for
procedure codes drops sharply from 0.743 to 0.246. Diagnosis
code performance is also mediocre at 0.597, but this would
still be acceptable if GPT-4 could select the correct code in
the next step without causing another drop.
Step 5: Select the Code Best Matching
Textual Evidence
In step 5, GPT-4 selects the final answer from the retrieved
codes, but another drop in performance is observed, result-
ing in a final F1-score of 0.3 on CodiEsp-x, compared with
the SOTA score of 0.633 (Table 2) [5]. It is likely that the
proposed textual evidence (span) is incorrect in some cases,
making it valuable to evaluate this step in isolation to assess
its impact on overall performance.
Method Recap and Evaluation
While the initial NER step for extracting lead terms is
promising and can directly assist medical coders, subsequent
steps perform inadequately. Although using RAG with code
descriptions seems intuitive for ICD-10 coding, the imple-
mentation underperforms. While lead term extraction works
well, the following steps should better mimic the workflow of
medical coders. If this is not done, step 2 could be replaced by
extracting textual evidence via NER, which achieves a higher
F1-score (0.65 in Table 1) compared with the current method
(0.509 in Figure 5).

Instead of relying on descriptions to find the correct code,
it would be more effective to use the alphabetic index of
lead terms. Textual evidence could then be derived from this
lookup using iterative steps, rather than the current approach,
which requires knowing the exact spans of evidence in
advance before performing the database lookup, as we need to
know exactly what we are searching for.

Additionally, terms like NEC (not elsewhere classified)
and NOS (not otherwise specified), which are present
in some code descriptions, could be useful for an agent-
based approach, allowing an agent to interpret and follow
these instructions in coding scenarios. This would enhance
performance, as an agent can adaptively handle these cases,
which are often challenging for a simple database lookup.

Incorporating more coding guidelines into the process
would further align with an agent-based model, closely
replicating the real-world workflow of medical coders.
Limitations
Our hypothesis was that GPT-4 can achieve effective medical
ICD-10 code normalization (assignment) by solely using
the official WHO-supplied ICD-10 code descriptions. The
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findings suggest that the combination of GPT-4 with solely
code descriptions might not be sufficient.

Relying solely on the WHO descriptions for medical
coding can be problematic. A prime example is the challenge
in coding “lower limb weakness” when it must fit into a broad
category description like “Other malaise”, highlighting issues
with semantic differences. Although the embedding methods
used address some similarity issues, using an alphabetic index
or leveraging training data might be more effective and
accurate, but care must be taken to maintain generalizability.

A major challenge in using GPT-4 for research lies
in its cost, processing speed, and privacy concerns. For
each individual medical text, processing with GPT-4 using
the proposed prompts typically takes several minutes at a
minimum. Furthermore, when evaluating 50 code candidates,
each accompanied by descriptions for the lead term extracted,
the token use becomes significant, resulting in substantial
costs. Additionally, GPT-4’s closed-source nature presents
further complications in research applications.

Another limitation is the exclusive use of the CodiEsp
dataset, which restricts the generalizability of our findings.
While the MIMIC dataset is a commonly used public resource
for ICD coding, it lacks annotations for explainability. No
other publicly available ICD dataset is currently coded for
explainability.
Future Research
For NER of lead terms and their normalization to ICD codes,
we suggest continuing with the NER approach for extracting
lead terms, given its promising performance and its seam-
less integration into the workflow of medical coders. For

future research, we propose implementing an agent-based
LLM approach that mimics all steps of the medical coders’
workflow in detail.

Another point for future research is to explore the use
of locally runnable LLMs, ensuring that data can remain
in-house for privacy and security purposes.
Conclusions
A dataset of ICD-10 lead terms, “CodiEsp-X-lead”, was
created using few-shot prompting on GPT-4. This method
of model-assisted labeling showcases its utility for other use
cases where manual annotation is unfeasible, but reviewing
the generated annotations is feasible. As GPT models are
not the SOTA in NER [31], a RoBERTa-based model was
fine-tuned, achieving an F1-score of 0.80. This model can
aid medical coders in the primary step of medical coding by
identifying ICD lead terms. GPT-4 was employed to generate
code descriptions based on textual evidence, improving RAG
retrieval for code lookups in a code description database.
However, exclusive reliance on code descriptions, coupled
with GPT-4 prompting for ICD-10 coding, led to only
mediocre outcomes. Continuing with the NER approach for
lead term extraction is advisable. Relying solely on code
descriptions, along with GPT-4 prompts for ICD-10 coding,
led to mediocre outcomes, partly because some codes in the
dataset lacked descriptions. Additionally, this approach is
likely less effective than mimicking the complete workflow
of medical coders, which could yield more accurate results.
A key limitation of using RAG for medical coding is its
requirement for full-textual evidence upfront, making it less
flexible than methods that extract evidence during the lookup
process using official coding resources and guidelines.
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