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Abstract
Background: Transvaginal insertion of polypropylene mesh was extensively used in surgical procedures to treat pelvic
organ prolapse (POP) due to its cost-efficiency and durability. However, studies have reported a high rate of complications,
including mesh exposure through the vaginal wall. Developing predictive models via supervised machine learning holds
promise in identifying risk factors associated with such complications, thereby facilitating better informed surgical decisions.
Previous studies have demonstrated the efficacy of anticipating medical outcomes by employing supervised machine learning
approaches that integrate patient health care data with laboratory findings. However, such an approach has not been adopted
within the realm of POP mesh surgery.
Objective: We examined the efficacy of supervised machine learning to predict mesh exposure following transvaginal POP
surgery using 3 different datasets: (1) patient medical record data, (2) biomaterial-induced blood cytokine levels, and (3) the
integration of both.
Methods: Blood samples and medical record data were collected from 20 female patients who had prior surgical intervention
for POP using transvaginal polypropylene mesh. Of these subjects, 10 had experienced mesh exposure through the vaginal
wall following surgery, and 10 had not. Standardized medical record data, including vital signs, previous diagnoses, and
social history, were acquired from patient records. In addition, cytokine levels in patient blood samples incubated with sterile
polypropylene mesh were measured via multiplex assay. Datasets were created with patient medical record data alone, blood
cytokine levels alone, and the integration of both data. The data were split into 70% and 30% for training and testing sets,
respectively, for machine learning models that predicted the presence or absence of postsurgical mesh exposure.
Results: Upon training the models with patient medical record data, systolic blood pressure, pulse pressure, and a history
of alcohol usage emerged as the most significant factors for predicting mesh exposure. Conversely, when the models were
trained solely on blood cytokine levels, interleukin (IL)-1β and IL-12 p40 stood out as the most influential cytokines in
predicting mesh exposure. Using the combined dataset, new factors emerged as the primary predictors of mesh exposure: IL-8,
tumor necrosis factor-α, and the presence of hemorrhoids. Remarkably, models trained on the integrated dataset demonstrated
superior predictive capabilities with a prediction accuracy as high as 94%, surpassing the predictive performance of individual
datasets.
Conclusions: Supervised machine learning models demonstrated improved prediction accuracy when trained using a
composite dataset that combined patient medical record data and biomaterial-induced blood cytokine levels, surpassing the
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performance of models trained with either dataset in isolation. This result underscores the advantage of integrating health care
data with blood biomarkers, presenting a promising avenue for predicting surgical outcomes in not only POP mesh procedures
but also other surgeries involving biomaterials. Such an approach has the potential to enhance informed decision-making for
both patients and surgeons, ultimately elevating the standard of patient care.
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Introduction
Patients experiencing difficulty from symptoms of pelvic
organ prolapse (POP) are prescribed nonsurgical option
as a first-line treatment, including pelvic floor physical
therapy to strengthen the muscles supporting the pelvic
organs and the use of pessaries that are inserted into the
vagina to provide structural support and alleviate symptoms.
Lifestyle modifications are also suggested, such as weight
management and avoidance of heavy lifting, to reduce
symptoms. However, conservative treatments often fail to
provide adequate relief, leading many patients to pursue
surgical interventions. Notably, patients who undergo surgical
treatments are more likely to report complete satisfaction
1 year after the procedure compared to those who opt for
nonsurgical options [1]. The choice of surgical approach
depends largely on the type of prolapse. Among these,
transvaginal mesh surgery was once a widely used treatment
when reinforcement of the pelvic floor structures was deemed
necessary to treat severe or recurrent prolapse, though its
use was later restricted following safety concerns raised by
the Food and Drug Administration. This paper focuses on
transvaginal mesh surgery to explore strategies for identify-
ing patient populations that are more likely to experience
favorable surgical outcomes, with the aim of minimizing the
number of patients who face less successful results.

Surgical treatment via transvaginal mesh implantation
uses polypropylene mesh due to its low cost, nontoxic-
ity, and mechanical resilience. Its superior tensile strength
and elasticity compared to native pelvic tissue enabled it
to withstand the pressure changes within the pelvic cav-
ity [2]. Despite these advantageous properties, the usage
of polypropylene mesh in transvaginal repair of POP has
been prohibited in multiple countries due to postsurgical
complications, notably mesh exposure through the vaginal
wall [2,3]. In fact, studies have reported mesh exposure
rates ranging from 4% to 12.3% in POP patients follow-
ing surgery [4-6]. Conversely, however, nearly 90% of
patients experience successful POP treatment via transvaginal
mesh. Consequently, accurately identifying risk factors and
developing personalized predictive models can greatly benefit
both patients and surgeons in making informed surgical
decisions.

Building a machine learning model to predict postsurgi-
cal mesh exposure holds considerable promise, as it offers
a robust framework that harnesses large datasets, identi-
fies relevant patterns, and provides quantitative predictions

that can be used as clinical decision-making tools. In
fact, supervised machine learning models have demonstrated
efficacy in predicting various surgical outcomes, includ-
ing patient survival, symptom improvement, and disease
progression [7-9]. This efficacy is particularly evident when
using datasets that integrate patient health care information
and biological assessments. For instance, Jung et al [7]
developed an individualized predictive model incorporating
patient health care information from medical records as well
as pre- and postoperative laboratory measurements (eg, total
bilirubin and sodium levels) to anticipate graft failure in
pediatric liver transplant surgery. Similarly, Chowdhury et al
[8] applied biomarkers, such as mucus cytokines, along with
patient demographics and clinical characteristics to machine
learning algorithms to predict chronic rhinosinusitis improve-
ment when treated with endoscopic sinus surgery. Kawakita
et al [9] developed a model to predict delayed graft func-
tion with kidney transplantation surgery by integrating donor
and recipient health care characteristics (eg, BMI, race, age,
diabetes diagnosis) and clinical laboratory data (eg, blood
urea nitrogen levels, serum glutamic pyruvic transaminase).
Despite these successful examples of incorporating demo-
graphic, clinicopathological, therapeutic, and biomolecular
data into personalized clinical decision-making tools aimed
at predicting poor clinical outcomes, such methods have yet
to gain acceptance in the current clinical practice of mesh
surgery.

In this preliminary study, we explored the benefit of
integrating distinct datasets when developing supervised
machine learning models to predict mesh exposure in patients
who have undergone POP repair surgery involving transvagi-
nal insertion of polypropylene mesh. Models were trained
with 3 different datasets: patient medical record data (such as
demographics, social history, and medical history), biomate-
rial-induced blood cytokine levels, and the integration of
both datasets. Models trained with these 3 different data-
sets were able to identify pertinent health risk factors as
well as important predictors among the cytokines. More-
over, models trained with the integrated dataset relative to
individual datasets demonstrated superior performance. These
outcomes illustrate the potential of leveraging integrated
datasets with machine learning models to accurately predict
transvaginal mesh implantation outcomes and identify crucial
risk factors associated with such outcomes. Such predictive
models offer invaluable guidance to patients and surgeons.
This approach holds potential to enhance the decision-mak-
ing process for both transvaginal and other mesh surgeries,
leading to improved patient care and better surgical outcomes.
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Methods
Study Population
As described previously [10], recruited patients with surgical
intervention for POP using transvaginal polypropylene mesh
included both those with mesh exposure, a postsurgical
complication where the implanted mesh protrudes through
the vaginal wall, and those without. A cohort of 20 healthy,
nonpregnant female patients, divided evenly between the 2
categories, was determined necessary for statistical observa-
tion of a difference in blood cytokine biomarkers with a 10%
chance of error. Briefly, this statistical analysis used a 1-tailed
t test based on a priori power analysis, a Cohen d of 1, and a
conservative study power of 0.80.

Participants were selected retrospectively from a list
of patients who had undergone surgical intervention for
POP using polypropylene mesh at Prisma Health Greenville
Memorial Hospital, as detailed in Waugh et al [10]. The
patients were randomly identified and recruited via phone
call until 10 patients with mesh exposure and 10 without
were enrolled for this study. Participants with POP recurrence
or those taking medications that could affect inflammatory
responses were excluded from the study.
Ethical Considerations
The study protocol was approved by the Institutional Review
Board of Prisma Health (number 1984257). Informed consent

was waived due to the retrospective nature of the data.
All collected data were deidentified and stored in a secure,
password-protected folder with restricted access. As this
was a retrospective study with no subject participation, no
compensation was provided.
Patient Medical Record Data Collection
Medical record data were collected from 20 female patients
who had experienced prior surgical intervention for POP
using transvaginal polypropylene mesh, selected retrospec-
tively and randomly as described earlier. The data categories
include vital signs (systolic blood pressure [BP], diastolic
BP, and pulse pressure), previous medical history (hyperten-
sion, diabetes, renal disease, hyperlipidemia, hemorrhoids,
endometriosis, gastroesophageal reflux, and hysterectomy),
social history (alcohol and tobacco usage, sexual activity,
marital status, and education level), and other relevant health
statistics (age at surgery, BMI, BMI change since surgery,
POP stage diagnosis at surgery, and number of births). Mean
and SD values were calculated for continuous variables
(systolic and diastolic BP, pulse pressure, age at surgery,
BMI, and BMI changes) along with the range of the variables
(Table 1). Unpaired t tests were conducted on each variable to
determine significance (P<.05).

Table 1. Demographics of the patients with pelvic organ prolapse (POP) study population (N=20 subjects).
Variables Mesh exposure (n=10 subjects) No mesh exposure (n=10 subjects)
Vital signs
  Systolic blood pressure
   Mean (SD) 127.4 (17.9) 123.3 (19.3)
   Range 102‐162 98‐152
  Diastolic blood pressure
   Mean (SD) 77.9 (11.3) 76.9 (10.7)
   Range 58‐98 60‐92
  Pulse pressure
   Mean (SD) 49.5 (21.3) 46.4 (11.9)
   Range 24‐104
Previous medical history, n (%)
Hypertension 4 (40) 5 (50)
Diabetes 0 (0) 2 (20)
Renal disease 2 (20) 5 (50)
Hyperlipidemia 3 (30) 3 (30)
Hemorrhoids 3 (30) 2 (20)
Endometriosis 3 (30) 4 (40)
Gastroesophageal reflux 5 (50) 6 (60)
Hysterectomy 8 (80) 8 (80)
Social history, n (%)
Alcohol 6 (60) 2 (20)
Tobacco 2 (20) 1 (10)
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Variables Mesh exposure (n=10 subjects) No mesh exposure (n=10 subjects)
Sexual activity 9 (90) 5 (50)
  Marital status
   Single or lives alone 0 (0) 1 (10)
   Married 8 (80) 6 (60)
   Separated or divorced 1 (10) 1 (10)
   Widowed 1 (10) 2 (20)
  Highest education level
   Primary 0 (0) 1 (10)
   Secondary 2 (20) 2 (20)
   College or higher 8 (80) 7 (70)
Other relevant health statistics
  Age at surgery (years)
   Mean (SD) 56.8 (1.2) 59.4 (8.0)
   Range 43‐77 47‐75
  BMI
   Mean (SD) 29.3 (7.0) 28.8 (6.5)
   Range 19.3-42.3 21.5‐44.9
  BMI change, mean (SD) −1.6 (4.5) −1.1 (3.5)
  POP stage preoperation, n (%)
   1 1 (10) 1 (10)
   2 4 (40) 2 (20)
   3 4 (40) 7 (70)
   4 1 (10) 0 (0)
  Number of births, n (%)
   1‐2 6 (60) 5 (50)
   3+ 4 (40) 5 (50)

Patient Blood Cytokine Measurements
Patient blood samples were collected from the same 20
female patients and incubated with sterile polypropylene
mesh (2 cm × 2 cm), as detailed in Waugh et al [10].
Plasma layers collected following centrifugation (1500xg, 4
°C) of blood samples were analyzed via multiplex assay
to quantify cytokine levels, as in Waugh et al [10]. These
cytokines include interleukin (IL)-1α, IL-1β, IL-2, IL-4,
IL-6, IL-8, IL-10, IL-12 p40, IL-12 p70, IL-17A, interferon-
γ, tumor necrosis factor-α (TNF-α), and granulocyte-mac-
rophage colony-stimulating factor. In total, 3 independent
measurements were observed to detect the cytokine levels,
with each sample evaluated in duplicate.
Data Analysis
Raw datasets, including blood cytokine levels and various
medical record data, were analyzed using the statistical
programming language R (RStudio, Inc). The imported data
contained 60 observations (20 subjects x 3 independent
cytokine measurements) and 35 total variable fields (21
medical record variables+13 cytokines+1 target variable).
The target variable of exposure referred to the presence
or absence of surgical mesh exposure through the vaginal
wall following POP surgery. Univariate and multivariate
analysis was implemented to explore the dataset, including

identifying missing values, analyzing outliers, and standardiz-
ing categorical variables.

Supervised machine learning models were created using
the caret package (version 6.0‐90) in the R programming
language. The 4 models trained were decision tree (DT),
logistic regression (LR), Naïve Bayes (NB), and artificial
neural network (ANN). This approach focused on three
different datasets: (1) patient medical record data, (2) blood
cytokine levels following incubation with surgical mesh, and
(3) an integrated dataset of both medical record data and
blood cytokine levels. Prior to creating the predictive models,
the original data were split using an industry standard of
70% for training and 30% for testing. Each group contained
an equal distribution of subjects who did or did not experi-
ence postsurgical mesh exposure through the vaginal wall,
the prediction target for each model. Each model was trained
using the 70% (42/60) subset and a cross-validation training
control. A 10-fold cross-validation with 25% (15/60) left out
replicated 3 times was used on each model to avoid bias
and overfitting. From this, training accuracies are reported.
Additional testing was performed for the prediction accuracy
of each model using the 30% (18/60) test data. Prediction
accuracies are reported along with sensitivity and specific-
ity for the prediction of subjects to experience postsurgical
mesh exposure. After computing predictive statistics for each
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dataset, analysis using the varImp function was conducted
to identify which variables contributed most to the predic-
tive outcome within each model. This analysis allowed for
visualization of individual variable importance regarding each
predictive model.

Results
Descriptive Analysis of Patient Medical
Record Data
Health care data of patients with POP were collected from
electronic medical records and analyzed in Table 1. The
cohort included 20 patients with POP, among whom were
the 10 that experienced vaginal mesh exposure and 10 that
did not. Overall, no significant differences (P<.05) in systolic
and diastolic BP, pulse pressure, age at surgery, BMI, and

BMI changes were noted between patients with or without
mesh exposure. Higher numbers of patients with no mesh
exposure had previous medical diagnoses of diabetes and
renal diseases. In contrast, higher numbers of patients with
mesh exposure reported social histories of alcohol usage as
well as sexual activity.
Predictive Analysis
Each of 4 supervised machine learning models, DT, NB,
LR, and ANN, was implemented on 3 separate datasets:
patient medical record data (21 variables), blood cytokine
levels following incubation with surgical mesh (13 variables),
and an integrated dataset of both medical data and blood
cytokine levels (34 variables). The 5 most important factors
that predict mesh exposure in each model are presented in
Figure 1.
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Figure 1. Four supervised machine learning models were used to identify important factors capable of yielding effective predictive analysis: decision
tree (DT), Naïve Bayes (NB), logistic regression (LR), and artificial neural network (ANN). Each model was performed with patient medical
record data (left), blood cytokine levels following incubation with surgical mesh (center), or an integrated dataset of both patient medical record
data and blood cytokine levels (right). The importance of the 5 most important factors to predict mesh exposure in each model is indicated as a
percentage. BP: blood pressure; GERD: gastroesophageal reflux disease; hx: history; IL: interleukin; TNF-α: tumor necrosis factor-α; GM-CSF:
granulocyte-macrophage colony-stimulating factor.

When the models were trained with patient medical record
data alone, history of alcohol usage was the most important

factor for NB, LR, and ANN models, and it also accounted
for greater than 60% of the importance in the DT model.

JMIR FORMATIVE RESEARCH Waugh et al

https://formative.jmir.org/2025/1/e59631 JMIR Form Res 2025 | vol. 9 | e59631 | p. 6
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e59631


BMI change was among the 5 most relevant factors in 3 of
the models, DT, LR, and ANN. In total, 3 additional factors
were among the 5 most relevant factors in 2 of the 4 models:
medical history of endometriosis (LR and ANN, >77%
importance), POP stage (LR and ANN, >60% importance),
and age at surgery (DT and ANN, >40% importance).

When models were trained with blood cytokine levels
alone, IL-1β was the most important cytokine to predict
mesh exposure in LR and ANN models and among the 5
most important cytokines in NB and DT models, while IL-12
p40 was the most important cytokine in DT and NB mod-
els and among the 5 most important cytokines in the ANN
model. In total, 2 cytokines exhibited>60% importance in 3
models: granulocyte-macrophage colony-stimulating factor in
DT, NB, and LR models and IL-12 p70 in DT, LR, and ANN
models. In total, 2 cytokines exhibited>80% importance in 2
models: TNF-α in DT and NB models and IL-6 in NB and
ANN models.

Finally, the predictive models were also performed on
an integrated dataset of both medical record data and blood
cytokine levels. IL-8 was among the 5 most important factors
(>70% importance) in 3 models, DT, LR, and ANN. In total,
2 factors were among the 5 most important in 2 models:
TNF-α in DT and NB models and hemorrhoids in LR and
ANN models. Factors of highest importance in all 4 mod-
els included a combination of health care characteristics
and blood cytokine levels. For the NB model, the 5 most

important factors in the integrated dataset matched those
identified to be of highest importance in the individual
datasets. In the DT model, 3 factors identified to be of high
importance in individual datasets were also of the highest
importance in the integrated dataset, while 2 previously
unidentified factors rose to high importance within the
integrated dataset. In contrast, ANN and LR models identified
four unique factors to be of highest importance within the
integrated dataset.

Statistics were generated for the performance of each
supervised machine learning model (Table 2). Each model
achieved the highest prediction accuracy when using the
integrated dataset, ranging from 78% (14/18) to 94% (17/18),
compared to either medical record data or blood cyto-
kine levels alone, which scored ranges of 33% (6/18) to
50% (9/18) and 50% (9/18) to 83% (15/18), respectively.
Similarly, the highest training accuracy for each model was
observed when using the integrated dataset, as opposed to
either medical record data or blood cytokine levels alone.
When comparing different models, both LR and ANN
achieved the highest training and prediction accuracies with
the integrated dataset. In fact, when the LR and ANN models
were trained with the integrated dataset to predict mesh
exposure, a training accuracy of 91% (38/42) and a prediction
accuracy of 94% (17/18) were observed in combination with
sensitivity and specificity ranging from 89% (16/18) to 100%
(18/18).

Table 2. Summary of supervised machine learning model statistics. Patient medical record data (Med), blood cytokine levels following incubation
with surgical mesh (Cyto), and an integrated dataset of both patient medical record data and blood cytokine levels (Int) were used to predict the
presence or absence of pelvic organ prolapse (POP) postsurgical mesh exposure; 70% (42/60) of observations were used for training, and 30%
(18/60) of observations were used for testing.

Model and dataset
Training accuracy, n
(%)

Prediction accuracy,
n (%) 95% CI

Sensitivity, n
(%)

Specificity, n
(%) Prediction κ

Naïve Bayes
Med 16 (37) 9 (50) 0.118-0.882 0 (0) 18 (100) 0
Cyto 26 (62) 11 (61) 0.357-0.827 6 (33) 16 (89) 0.222
Int 31 (73) 16 (89) 0.653-0.986 14 (78) 18 (100) 0.778

Decision tree
Med 18 (43) 6 (33) 0.0433-0.777 12 (67) 0 (0) 0.333
Cyto 27 (64) 11 (61) 0.57-0.827 6 (33) 16 (89) 0.222
Int 28 (67) 14 (78) 0.524-0.936 12 (67) 16 (89) 0.556

Logistic regression
Med 11 (27) 6 (33) 0.043-0.777 6 (33) 6 (33) 0.333
Cyto 31 (73) 9 (50) 0.26-0.740 10 (56) 8 (44) 0.000
Int 38 (90) 17 (94) 0.727-0.999 18 (100) 16 (89) 0.889

Artificial neural network
Med 17 (40) 9 (50) 0.118-0.882 6 (33) 12 (67) 0.000
Cyto 33 (79) 15 (83) 0.586-0.964 14 (78) 16 (89) 0.667
Int 38 (90) 17 (94) 0.727-0.999 16 (89) 18 (100) 0.889
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Discussion
Summary
Machine learning is gaining acceptance as a tool for
predicting medical conditions, including treatment prognosis,
disease progression, and surgical outcomes [7,9,11,12]. In
particular, literature reports have illustrated the utility of
predictive models that incorporate both health care data and
biomarkers [13,14]. These successes lay the groundwork for
a pioneering method that integrates patient medical records
and biomarker measurements for predicting mesh-related
postsurgical outcomes. Patients with POP, in particular,
could benefit from such a personalized approach. These
patients currently make surgical decisions based solely on
risk factors derived from demographic statistics of the general
population of surgical patients with POP, while individual
medical history and personalized responses to the biomate-
rial used in the surgery could better inform their decision.
Our previous study demonstrated the efficacy of predictive
models that use biomaterial-induced blood cytokine-expres-
sion profiles to accurately predict mesh exposure following
surgical intervention for POP using transvaginal polypropy-
lene mesh [10]. In this exploratory study, we examined
the benefit of combining continuous and categorical data
from health care records and biomarker measurements to
build supervised machine learning models and develop more
inclusive and efficient predictive models with a higher rate of
prediction accuracy, rendering such models more favorable as
a novel, noninvasive, personalized clinical decision tool.
Principal Findings and Comparison to
Prior Work
Comparative statistical analysis of medical record data of
patients with POP with transvaginal mesh is illustrated in
Table 1. Even though this study had a small population
of 20 patients, the median outcomes in mesh-exposure and
nonexposure groups were comparable to those reported in
other studies with a larger study cohort [15,16]. The current
dataset revealed that sexually active patients were more prone
to experiencing mesh exposure, a trend similarly observed by
Kaufman et al [4]. This observation could be attributed to the
mechanical challenges posed by sexual activity, potentially
leading to friction-induced issues with the mesh implant [17].
In contrast, within the current dataset, variables such as BP,
medical diagnoses, education levels, BMI, age at surgery,
and parity numbers were not significant risk factors when
comparing patients with or without mesh exposure. Similarly,
Long et al [18] found no disparity in BMI between the
2 groups. Additionally, Chavez et al [16] noted that risk
factors including obesity, diabetes, and smoking status were
not associated with vaginal mesh exposure, aligning with our
result.

While significant associations were not evident within
many individual health care data categories, implement-
ing supervised machine learning models on such data
both reinforced groups identified via comparative statis-
tics and revealed new groups associated with patients

who experienced mesh exposure. For instance, the history
of alcohol usage, indicated as important via comparative
statistics, was also considered the most important factor in
NB, LR, and ANN models, while BP variables were newly
identified as important in the DT model. From a clinical
perspective, alcohol use could contribute to malnutrition and
inflammation, which may affect the healing process and
influence the outcomes of mesh surgery [19]. Similarly,
changes in BP and pulse pressure could indicate cardiovas-
cular or systemic issues that may impact surgical planning
or postoperative recovery [20]. However, using supervised
machine learning models on patient medical record data alone
yielded the lowest prediction accuracy rate when compared
to models trained with either cytokine levels or an integra-
ted dataset (Table 2). Similarly, low predictive power was
reported in Taneja et al [21] when health care data alone
was employed in their predictive model [21]. Thus, relying
solely on medical record data to construct predictive models
does not provide a comprehensive representation. Given
an individual’s varying inflammatory response [10,22], as
well as their race and genetic components [23,24], merely
identifying commonalities among medical record data may
not accurately represent predictors of the mesh exposure
postsurgery.

Previous studies have indicated a relationship between
elevated levels of pro-inflammatory cytokines and postsurgi-
cal complications [25-27]. When creating predictive models
trained with 13 biomaterial-induced cytokines known to
influence wound healing, the models predicted with a higher
prediction accuracy of 50% (9/18) to 83% (15/18) compared
to models trained with patient medical record data (Table 2).
These supervised machine learning models demonstrated that
IL-1β was one of the most important cytokines to predict
mesh exposure across all four models. Elevated levels of
IL-1β have been associated with various diseases, includ-
ing obesity, cardiovascular diseases, cancer, and periodon-
titis [28-30]. Moreover, IL-1β was increased in a murine
model following hernia polypropylene mesh implantation
[31], mirroring our findings. Additionally, IL-12 p40 played
a pivotal role in DT and NB models. This pro-inflammatory
cytokine, which serves as a critical link between the innate
and adaptive immune response, is observed in inflammatory
conditions, such as pulmonary sarcoidosis and inflammatory
bowel diseases [32-34].

All 4 supervised machine learning models achieved their
highest prediction accuracies when trained with an integra-
ted dataset comprising both patient medical record data and
biomaterial-induced blood cytokine levels. This integrated
dataset proved particularly effective when used in LR and
ANN models, achieving 94% (17/18) prediction accuracy.
The approach also exceeds predictive health care models for
other surgical outcomes that used only cytokine-based [35]
or electronic health record-based approaches [36]. In parallel,
Taneja et al [21] demonstrated that their sepsis predictive
models had higher predictive power when combined data
were used, rather than either electronic medical record or
biomarker data alone. Interestingly, this integrated approach
also identifies new factors of high importance. In contrast

JMIR FORMATIVE RESEARCH Waugh et al

https://formative.jmir.org/2025/1/e59631 JMIR Form Res 2025 | vol. 9 | e59631 | p. 8
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e59631


to the models trained on cytokine expression alone, models
trained with integrated data observed that IL-8 was among
the important predictors in DT, LR, and ANN models, and
TNF-α in DT and NB models. IL-8 and TNF-α are 2
prominent pro-inflammatory cytokines elevated in patients
postsurgery, including mesh implantation and pelvic surgery
[37,38]. In contrast to the models trained on medical record
data alone, hemorrhoids were considered one of the important
factors in LR and ANN models trained with the integra-
ted dataset. Models trained with the integrated dataset also
outperformed those trained with either dataset alone in terms
of training accuracy, sensitivity, and specificity across all four
models (Table 2).
Limitations and Future Directions
Despite employing rigorous research methodologies, it is
imperative to acknowledge certain limitations inherent in
this study. As a pilot study, the population size was limi-
ted to 20 patients within a single hospital system. Even
though it was on a small scale, this study yielded a predic-
tion accuracy as high as 94% (17/18), surpassing compa-
rable predictive models that ranged from 71% to 86% in
prediction accuracy across a population size of 198-467
[35,39], thus affirming the validity of our approach. Future
research will involve a larger participant pool drawn from
multiple hospitals to further confirm these results. To mitigate
potential confounders, patients with POP recurrence or
taking medication that would alter inflammatory response
were excluded. Future studies with a larger population will
also enable matching participants with respect to these and
other potentially confounding variables. In the analysis of
the integrated dataset, medical record data were repeated

3 times to match the structure of the cytokine dataset,
which contained 3 repeated measurements. This approach
was employed to balance the contribution of both data
types. This may represent to a potential limitation, although
the resulting variable importance graphs for the integrated
dataset demonstrated a relatively equal contribution from both
the cytokine and medical record data, mitigating concerns
that the repetition of the medical record data led to over-
fitting. Despite these limitations, the results of this pilot
study highlight the importance of integrating inflammatory
biomarkers with medical record data in the prediction of
postsurgical mesh exposure.
Conclusions
Supervised machine learning models demonstrated signifi-
cantly higher prediction accuracy when trained with an
integrated dataset comprising both patient medical record data
and biomaterial-induced blood cytokine levels, surpassing the
performance of models trained using either dataset alone.
These results demonstrate for the first time the advantage
of an approach integrating medical record data and blood
biomarkers. This innovative approach to predicting surgical
outcomes following POP repair via transvaginal insertion
of polypropylene mesh holds promise for both patients and
surgeons. Additionally, such a method could be applied to
the study of other mesh-related surgeries, such as those used
to repair POP transabdominally or to treat hernia and stress
urinary incontinence. By presenting a more personalized
decision-making tool, this approach offers a more accurate
depiction of potential outcomes, thereby enhancing informed
decision-making and improving patient care.
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