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Abstract
Background: The COVID-19 pandemic has caused serious health, economic, and social consequences worldwide. Under-
standing how infectious diseases spread can help mitigate these impacts. The Theil index, a measure of inequality rooted in
information theory, is useful for identifying geographic disproportionality in COVID-19 incidence across regions.
Objective: This study focused on capturing the degrees of regional disproportionality in incidence rates of infectious diseases
over time. Using the Theil index, we aim to assess regional disproportionality in the spread of COVID-19 and detect epicenters
where the number of infected individuals was disproportionately concentrated.
Methods: To quantify the degree of disproportionality in the incidence rates, we applied the Theil index to the publicly
available data of daily confirmed COVID-19 cases in the United States over a 1100-day period. This index measures relative
disproportionality by comparing daily regional case distributions with population proportions, thereby identifying regions
where infections are disproportionately concentrated.
Results: Our analysis revealed a dynamic pattern of regional disproportionality in the confirmed cases by monitoring
variations in regional contributions to the Theil index as the pandemic progressed. Over time, the index reflected a transition
from localized outbreaks to widespread transmission, with high values corresponding to concentrated cases in some regions.
We also found that the peaks in the Theil index often preceded surges in confirmed cases, suggesting its potential utility as an
early warning signal.
Conclusions: This study demonstrated that the Theil index is one of the effective indices for quantifying regional dispropor-
tionality in COVID-19 incidence rates. Although the Theil index alone cannot fully capture all aspects of pandemic dynamics,
it serves as a valuable tool when used alongside other indicators such as infection and hospitalization rates. This approach
allows policy makers to monitor regional disproportionality efficiently, offering insights for early intervention and targeted
resource allocation.
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Introduction
The COVID-19 pandemic has caused serious health problems
and has had major economic and social consequences
worldwide. It has highlighted the need to understand regional
disparities in infection rates to strengthen public health

responses since infection dynamics are influenced by factors
such as population density, socioeconomic conditions, and
health care infrastructure [1,2]. Numerous indicators and
models have been proposed to address the problem, and
mechanisms for the spread of the infection and intervention
measures to control the pandemic have been studied [3-9].
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Several recent studies have investigated regional differ-
ences in COVID-19 prevalence [10-13]. Differences in
the prevalence rates between regions highlight the need
to understand regional inequalities in pandemic response
strategies. Effectively addressing these disparities requires
accurate quantification and understanding of regional
disproportionalities in daily confirmed COVID-19 cases.

In the field of economics, various indicators have been
developed to measure resource and income inequality,
including an index proposed by Theil, which incorporated
information theory [14]. Manz and Mansmann [15] have
demonstrated the importance of using inequality indices for
monitoring changes in geographic inequality; for instance,
the Theil index was used to track geographic disproportion-
ality over time during the COVID-19 pandemic, providing
important insights for public health policy.

The aim of this paper is to quantify the interregional
disproportionality in the number of confirmed cases using
the Theil index, which mathematically corresponds to the
Kullback-Leibler (KL) divergence in information theory [16].
The Theil index is an effective method of measuring the
degree of disproportionality and objectively assessing biases
in the interregional distribution of infected individuals.

Methods
Overview
We analyzed the time trends of daily COVID-19–confirmed
cases in the United States over 1100 days since the first
reported case on January 21, 2020 [17]. Data are taken from
the COVID-19 data repository at the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins Univer-
sity [18]. US state population data were obtained from the
US Census Bureau website [19]. Population changes due
to migration, births, and deaths were not considered in the
analysis.
The Disproportionality Measure: Theil
Index
The Theil index is commonly applied in various fields
including economics, sociology, and information theory. It
quantifies the relative differences between various compo-
nents of a dataset. In the context of regional analysis of
the confirmed cases, the Theil index can be employed
to evaluate the distribution of infected individuals across
different regions. In this study, we use the Theil index to
identify regions with disproportionate numbers of confirmed
cases relative to their population size.

The discrete form of the Theil index is expressed as:

T = ∑i = 1N ti = ∑i = 1N pilnpiqi
where N is the total number of regions being considered and
ln is the natural logarithm. The Theil index T is composed
of a sum of ti which is a partial contribution from region i.
The discrete probability distribution, pi, in region i is defined

as the ratio of daily confirmed cases region i to the total
confirmed cases across all regions for that day. Similarly, the
population ratio, qi, in region i is the ratio of the population in
region i to the total population across all regions.

The Theil index, which is mathematically related to the
KL divergence, is a nonsymmetric metric that measures the
relative entropy or informational difference between two
distributions. It is sensitive to the interregional variations in
the distribution of the confirmed cases, with its maximum
value attained when the confirmed cases are concentrated in
areas with the smallest population proportion. Consequently,
the index tends to exhibit higher values when a small number
of regions account for a large share of the confirmed cases,
and conversely, lower values when the confirmed cases are
more evenly distributed across regions. Notably, it remains
nonnegative and reaches a minimum value of 0 only when
the two distributions are identical. Therefore, applying the
Theil index to the time-series data of the confirmed cases, and
monitoring changes in the index over time, we quantified the
degree of spread of COVID-19 cases and assessed whether
the confirmed cases were disproportionately concentrated
relative to the regional population sizes over time.
Ethical Considerations
This study used publicly available, deidentified COVID-19
data from CSSE at Johns Hopkins University [18], and
therefore, additional ethics approval and informed consent
were not required. The aggregated data ensured privacy
and confidentiality, and no direct human participants were
involved; thus, no compensation was provided. No identifia-
ble information appears in any images or materials.

Results
To address fluctuations in the Theil index caused by data
aggregation inconsistencies during holidays across different
regions, the 7-day average of confirmed COVID-19 cases was
used instead of raw data.

Figure 1 illustrates a 2-axis graph showing the time trends
of the Theil index (left axis) and the number of confirmed
cases in a logarithmic scale (right axis, logarithmic scale).
The horizontal axis represents the number of days elapsed
(denoted by d in the text) since the date of the first reported
case in the United States.

In Figure 1, there are eight notable surges of the con-
firmed cases, occurring at approximately d=80 (first), 180
(second), 350 (third), 450 (fourth), 580 (fifth), 720 (sixth),
900 (seventh), and 1080 (eighth), respectively. The presence
of multiple peaks in the Theil index indicates that infected
individuals were concentrated in specific regions during the
period, and the degree of this concentration can be assessed
by examining the numerical values. However, it is important
to note that changes in the Theil index simply indicate the
degree of regional disproportionality in the confirmed cases
rather than absolute increases or decreases in the number
of infected individuals. Therefore, this indicator is most
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effective when interpreted in conjunction with actual trends
in the number of confirmed cases.

Before the first peak, the number of confirmed cases
was quite low, and the Theil index fluctuated erratically. As
d increased near the first peak, the Theil index gradually
decreased, reaching a local minimum around d=120. This
suggested that the initially localized epidemic began to spread
throughout the US during the early stages of the global
pandemic. Similar trends were observed during subsequent
surges, such as slight a increase in the Theil index before
the peak, followed by a decrease. This could be seen as a
precursor to a surge in the number of infected individuals.
This finding aligns with previous research by Ikeda, Sasaki,
and Nakano [7].

The following examples provide interesting insights; when
the Theil index value was high and the number of confirmed
cases was low (d=60, 550, etc), it indicated that the infectious
disease was localized and beginning to spread to various
regions. Conversely, when the index was low and the number
of confirmed cases was high (d=750, etc), it indicated that
there was no obvious epicenter of the infectious disease,
with the number of confirmed cases increasing relatively and
evenly across different regions.

The contributions to the Theil index from each region
(ti), calculated from the number of cases on each date,
were arranged in chronological order and visualized using
a heatmap, as shown in Figure 2. Regions with a high
proportion of confirmed cases are represented in red, while
regions with a low proportion are colored blue. Notably,
there are long intervals between the deep red patches in
some regions such as California, Florida, and New York.
Particularly, the periods of intense infection represented by
these deep red patches were not repeated at short intervals.
This phenomenon is of great importance in infectious disease
management. Once a major epidemic in an area has sub-
sided, the interval between subsequent outbreaks provides
an opportunity to rebuild the health care infrastructure and
implement preventive measures before the occurrence of the
next epidemic.

Based on the observations from Figure 2, the epicenter of
infectious diseases as indicated by the red patches alternates
between New York, California, and Florida. This insight is
crucial for understanding the underlying mechanisms of the
spread of infectious diseases in the future. Furthermore, after
d=750, both the red and blue colors fade over time, indicating
the absence of a single epicenter, and a widespread outbreak
of COVID-19. This pattern suggests the ineffectiveness of
countermeasures against the spread of infectious diseases
under these circumstances.

Figure 3A shows the contributions to the Theil index by
region at d=60. The horizontal axis in the figure shows the
state code (as listed in Multimedia Appendix 1). There is a
significant contribution to the Theil index from New York
State compared to the other regions. Figure 3B shows that
at this point confirmed cases were highly localized in these
regions.

There were relatively large negative contributions to the
Theil index from California, Florida, and Texas, which were
regions with high population ratios. It is interesting to note
that there was little risk of infection in these regions at that
point; however, the number of infected individuals rapidly
increased following the concentration of confirmed cases in
New York.

Figure 4 shows the contributions to the Theil index from
each region at d=550 and 750. At d=550 shown in Figure 4A,
the Theil index reaches a peak, and the trend of confirmed
cases is increasing. This suggests that a new epidemic is
emerging, mainly in Florida and Louisiana. However, their
contributions are significantly smaller compared to New York
at d=60, as seen in Figure 3. This indicates that regional
disproportionality is much less pronounced than in the early
stage of the COVID-19 pandemic. It is also interesting to look
at data on d=750 as shown in Figure 4B, when confirmed
cases in the United States are at their maximum. Although
several regions show large contributions to the Theil index,
the epicenter of COVID-19 is no longer obvious, suggesting
that COVID-19 cases are uniformly distributed across the
country.
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Figure 1. Time trends of the Theil index on the left axis and the 7-day average number of the confirmed cases on the right axis on a logarithmic scale
are shown in the red and blue curves, respectively. The horizontal axis is the number of days elapsed since January 21, 2020.

Figure 2. Partial contributions to the Theil index from each region, ti, are displayed in a heatmap over time. The horizontal axis represents the
number of days elapsed since January 21, 2020. The vertical axis shows the names of states in the United States. The positive (high concentration of
incidences) and negative (low concentration) contributions to the Theil index correspond to deep red and blue colors, respectively.
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Figure 3. Partial contributions to the Theil index from each region, ti, at d=60. The horizontal axis shows the state code given in Multimedia
Appendix 1. (A) Comparison of the distribution of the confirmed cases and population. The vertical axis shows the ratio of a part to the whole
region for populations and for the confirmed cases. (B) Contributions to the Theil index from each region. The vertical axis shows the strength of the
contribution to the Theil index. The significantly high value of partial contribution to the Theil index is highlighted in orange.

Figure 4. Partial contributions of the Theil index from each region, ti at a specific date. The vertical axis shows the strength of contribution to
the Theil index. The horizontal axis shows the state code given in Multimedia Appendix 1. (A) Contributions of the Theil index at d=550. (B)
Contributions of the Theil index at d=750. The significantly high values of partial contribution to the Theil index are highlighted in orange.

Discussion
This study demonstrates the utility of the Theil index for
quantifying regional disproportionalities in the distribution of
COVID-19 cases. It offers an intuitive and efficient approach
to identifying hotspots and monitoring the spread of infection.
However, certain limitations may affect result interpretation.

The accuracy of the analysis depends on data quality;
factors such as underreporting, delays in case confirmation,
and regional differences in testing capacity may introduce
biases into case counts. These issues could potentially impact
the calculated Theil index and the assessment of regional
disproportionalities.

Additionally, this study focuses primarily on confirmed
cases rather than new infections, limiting its capacity to
predict future spread. Therefore, the Theil index alone may
not be sufficient for determining the timing and location
of public health interventions, such as isolation measures.
To support comprehensive policy-making, it should be used

alongside other indicators, such as infection rates, hospitaliza-
tion rates, and health care capacity.

Conventional spatiotemporal analysis methods [20,21] are
widely used in epidemiology and public health to track
infectious disease spread and visualize infection clusters over
time in specific regions. These established tools effectively
detect geographical clusters, identify areas with unusually
high incidence, and reveal disease hotspots within defined
spatial ranges.

In contrast, our method offers two distinct advantages.
First, an increase in the Theil index acts as a precursor to
a surge in the number of infected individuals. Second, it
quantifies regional disproportionalities in incidence rates at
any given time. Unlike conventional methods that empha-
size physical distance and spatial proximity, our approach
treats regions as discrete categories to calculate incidence rate
disproportionalities. Although simple, this approach provides
an intuitive way to identify epicenters at a lower computa-
tional cost compared to spatiotemporal scanning, enabling us
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to detect early surges in confirmed cases and pinpoint regions
with concentrated infections.

For instance, the concentration of COVID-19 cases in
New York at d=60 as shown in Figure 3A and B, can-
not be overlooked when considering infection control. The
lockdown was implemented in New York City [22] and
coincided with a period when the contribution to the Theil
index was concentrated in New York State. Although it is
challenging to assess the direct impact of lockdown using the
Theil index alone, the timing appears appropriate based on the
pattern of concentration of confirmed cases.

Integrating our method with additional data sources, such
as mobility patterns and health care capacity, will enhance
pandemic response strategies, particularly for early interven-
tion and efficient resource allocation.

In conclusion, this study demonstrates the application of
the Theil index in quantifying regional disproportionalities in
confirmed cases and monitoring their evolution over time. By
analyzing confirmed case data in the United States, we have

identified patterns of disproportionalities, specified epicen-
ters, and characterized localized outbreaks.

Continued monitoring and analysis of regional differen-
ces in COVID-19 transmission remain essential, especially
considering emerging variants and evolving public health
responses. Our findings highlight the importance of under-
standing the regional dynamics of infected individuals for
effective pandemic response interventions.

Incorporating the findings of this study will help policy
makers refine strategies and address the diverse needs of
different regions, ultimately increasing the effectiveness of
pandemic response efforts and mitigating the impact of future
health crises.

Lastly, the decomposability of the Theil index makes
it possible to quantify and compare disproportionality in
groups with specific characteristics, such as age, vaccina-
tion coverage, and health care accessibility. Identifying these
disproportionalities will provide important insights for future
pandemic responses.
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