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Abstract

Background: Real-world COVID-19 vaccine effectiveness (VE) studies are investigating exposures of increasing complexity
accounting for time since vaccination. These studies require methods that adjust for the confounding that arises when morbidities
and demographics are associated with vaccination and the risk of outcome events. Methods based on propensity scores (PS) are
well-suited to this when the exposure is dichotomous, but present challenges when the exposure is multinomial.

Objective: This simulation study aimed to investigate alternative methods to adjust for confounding in VE studies that have a
test-negative design.

Methods: Adjustment for a disease risk score (DRS) is compared with multivariable logistic regression. Both stratification on
the DRS and direct covariate adjustment of the DRS are examined. Multivariable logistic regression with all the covariates and
with a limited subset of key covariates is considered. The performance of VE estimators is evaluated across a multinomial
vaccination exposure in simulated datasets.

Results: Bias in VE estimates from multivariable models ranged from –5.3% to 6.1% across 4 levels of vaccination. Standard
errors of VE estimates were unbiased, and 95% coverage probabilities were attained in most scenarios. The lowest coverage in
the multivariable scenarios was 93.7% (95% CI 92.2%-95.2%) and occurred in the multivariable model with key covariates,
while the highest coverage in the multivariable scenarios was 95.3% (95% CI 94.0%-96.6%) and occurred in the multivariable
model with all covariates. Bias in VE estimates from DRS-adjusted models was low, ranging from –2.2% to 4.2%. However, the
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DRS-adjusted models underestimated the standard errors of VE estimates, with coverage sometimes below the 95% level. The
lowest coverage in the DRS scenarios was 87.8% (95% CI 85.8%-89.8%) and occurred in the direct adjustment for the DRS
model. The highest coverage in the DRS scenarios was 94.8% (95% CI 93.4%-96.2%) and occurred in the model that stratified
on DRS. Although variation in the performance of VE estimates occurred across modeling strategies, variation in performance
was also present across exposure groups.

Conclusions: Overall, models using a DRS to adjust for confounding performed adequately but not as well as the multivariable
models that adjusted for covariates individually.

(JMIR Form Res 2025;9:e58981) doi: 10.2196/58981
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Introduction

Background
Real-world, observational vaccine effectiveness (VE) studies
are critical for evaluating the post licensure performance of
vaccines. These studies must address confounding from patients’
demographic characteristics and underlying medical conditions
because such factors may be associated with both disease
outcomes and vaccination status. When vaccination status was
dichotomous, inverse probability weighting based on propensity
scores (PS) could be used to adjust for confounding. However,
the usefulness of the PS is problematic when the exposure is
multinomial rather than dichotomous—for example, if we are
interested in comparing multiple levels of vaccination status
distinguished by the number of doses received and by intervals
of time after the last dose [1]. Multinomial PS approaches are
feasible in some situations [2], however, multinomial PS poses
computational challenges and is less intuitive.

An alternative to the PS in this context is the disease risk score
(DRS), also called a confounder score, prognostic score,
comorbidity score, or simply a risk score [1-9]. A DRS can
combine covariates into a single score that reflects their
associations with the outcome. However, if it is feasible to make
a DRS that adjusts appropriately for the relevant covariates, it
can be similarly feasible and appropriate to simply adjust for
the covariates individually without first combining them into a
DRS [1]. This simulation study compared logistic regression
models that use a DRS to adjust VE estimates versus logistic
regression models that adjust for covariates individually. We
compared DRS adjustment with individual covariate adjustment
in scenarios comprised of simulated data similar to real-world
data used by the Virtual SARS-CoV-2, Influenza, and Other
Respiratory Viruses Network (VISION) to report on COVID-19
VE.

VISION: Virtual SARS-CoV-2, Influenza, and Other
Respiratory Viruses Network Studies of COVID-19
VE
The VISION network was established by the Centers for Disease
Control and Prevention (CDC) in collaboration with 10 US
health care systems with medical, laboratory, and vaccination
records. VISION uses a case-control test-negative design (TND)
to assess the effectiveness of COVID-19 vaccines in preventing
laboratory-confirmed COVID-19–associated hospitalizations
and visits to emergency departments or urgent care clinics [10].

Patients who received care in one of these settings for a
COVID-19-like illness (CLI) are included in the study if they
were tested for SARS-CoV-2 by molecular assay proximate to
the encounter. Those who tested positive were considered cases;
those who tested negative were considered controls. CLI
diagnoses include acute respiratory diagnoses or related signs
or symptoms, captured by diagnosis codes [10-13]. The
case-control TND has been commonly used in studies of
COVID-19 VE and VE studies against influenza, rotavirus, and
other diseases [14-16]. This study was reviewed and approved
by the institutional review board at Westat, Inc. This electronic
health record-based study does not include factors necessitating
patient consent. The findings and conclusions in this report are
those of the authors and do not necessarily represent the official
position of the CDC.

When VISION first began analyzing COVID-19 VE in early
2021, the comparison of interest was between fully vaccinated
individuals and unvaccinated individuals. PS-based methods
have been widely used in cohort studies with this kind of binary
exposure [17-19]. VISION’s case-control studies also used a
PS, derived from the test-negative controls, to adjust VE
estimates [10,20].

As the pandemic progressed, recommended vaccination
schedules became more complex [21-23]. Research studies
required consideration of more nuanced exposure categories,
based on a combination of the number of vaccine doses received
and time since the most recent vaccine dose (to examine the
waning of vaccine-induced protection against COVID-19)
[24-26]. VISION continued to rely on the PS for covariate
adjustment by conducting a series of separate comparisons, each
comparing one vaccine status with another. For example, 1 PS
was derived and used in comparisons of vaccinees who received
3 doses versus the unvaccinated; then a separate PS was derived
and used in comparisons of vaccinees who received 4 doses
versus the unvaccinated. However, separate models do not allow
for easy testing between different levels of exposure and are
computationally challenging, with a single analysis often
requiring over 1000 PS to account for different vaccination
exposure groups and population subgroups being assessed. In
addition, the positivity assumption of the PS requires that at no
level of the PS is outcome probability close to 0 or 1 [27,28].
The widening difference in characteristics between those who
closely follow the recommended vaccination schedule and those
remaining unvaccinated put a strain on the positivity assumption
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and decreased the appeal of collapsing vaccination categories
into two.

Disease Risk Scores to Adjust for Confounding
An alternative to PS is the DRS. A DRS reflects the relationship
between potential confounders and the outcome [1-4,7,9,29,30].
Conditioning on a DRS does not balance covariates across
treatment groups as a PS would but results in a covariate balance
where the potential outcome under the referent condition is
independent of a set of covariates [29], which has been called
prognostic balance by Hansen [30]. In short, the DRS is an
observation’s predicted risk of the outcome, assuming the
observation was in the referent category of the exposure,
reflecting the risk of the outcome relative to other observations.
There are well-known generalizable risk scores, such as the Gail
model score [31], Framingham score [32], APACHE score [33],
and Charlson index [34] that can be used to control for baseline
health status. Instead, a study may generate a DRS specific to
the outcome and population. In the context of a TND, the
outcome is not simply testing positive for the disease of interest
but rather testing positive for the disease of interest conditional
on receiving care and being tested. A key benefit of using the
DRS is potentially only calculating it once for the entire dataset,
or a few times for a few key subgroups, rather than generating
up to thousands of PS for comparisons using different
dichotomous comparisons between multiple vaccination
exposure groups.

We compared the performance of DRS-adjusted estimators with
multivariable-adjusted estimators that do not aggregate the
covariates into a composite score. Several studies have
implemented TNDs with this straightforward approach—that
is, by fitting logistic regression models that include many
covariates in addition to indicators of vaccination status [35-37].
While many analytic methods select variables or adjust for
confounding, we are particularly interested in the possibility
the DRS allows us to calculate a single score to apply to many
analyses.

Methods

Monte Carlo Simulation
We conducted simulations to compare the performance of
alternative approaches to the adjustment of VE estimates for
potential confounding—either by DRS or by individual covariate
adjustment—in VISION network-like scenarios. In order of
generation, the simulated data consisted of a bootstrapped
sample of individuals, each with (1) a profile of continuous and
categorical covariates, (2) a 13-level vaccination status derived

conditionally from the covariates, and (3) a 2-level outcome
derived conditionally from vaccination status and the covariates.
The simulation study used R=1000 replications, which ensured
that an estimated coverage of 95% would have a Monte Carlo
error of 0.7 [38]. Datasets were generated as follows:

1. A bootstrap sample of size N=1000 or 10,000 observations
was drawn from observed emergency department and urgent
care encounters in VISION data of adults aged ≥18 years
from the Omicron predominance era (December 16,
2021-July 31, 2022). Each observation consisted of all
covariates aside from vaccination status and test result for
a sampled encounter. This maintained complex relationships
between potential confounders in the real-world VISION
study. The data used to initiate this simulation study were
accessed beginning on August 8, 2022. The authors did not
have access to information that could identify individual
participants during or after the analysis.

2. Vaccination status was generated as a 13-level exposure
variable incorporating the number of vaccine doses received
and the time interval since receipt of the most recent dose
from a multinomial distribution for each observation, Vi,
based on the bootstrapped covariates, Xi (1).

, where k=1,2,…,13 and i=1,2,…, N
(1)

βk was derived from the dataset by multinomial logistic
regression and shown in Table S1 in Multimedia Appendix 1.
The generated 13-level vaccination status was collapsed into a
5-level vaccination status as shown in Table 1 with approximate
frequencies. We focused on VE estimates for each of the 4 levels
of vaccination status compared with a reference level of
vaccination status.

Next, we used a Bernoulli distribution to generate an outcome,
Yi dependent on the covariates in the bootstrap sample, and
generated 13-level vaccination status (2). γ are the coefficients
describing the true VE and are shown in Table 1. α are defined
in Table S2 in Multimedia Appendix 2. In the VISION data,
from which the bootstrap sample was drawn, approximately
22% of encounters were cases. This percentage varied depending
on covariates such as season or vaccination status. For example,
cases comprise approximately 42% of encounters in January
2022 and only 13% of encounters in May. Among those
unvaccinated, approximately 30% are cases, while among those
recently vaccinated with their third dose, 11% are cases.
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Table 1. Definition of vaccination status categories for data generation and analysis with the true VE used in generating simulated data.a

Five-level vaccination status categories for VE
analysis

Thirteen-level vaccination status categories for data
generation

Approximate frequency

in simulated datac,d, %

DefinitionCorresponding true
VE

Coefficient for true
VE, γ

Approximate frequency

in simulated datac,d, %
Definitionb

40Unvaccinated——e40Unvaccinated

62 doses, 14-179 d65–1.0512 doses, 14-59 d

——45–0.6022 doses, 60-119 d

——35–0.4332 doses, 120-179 d

242 doses, ≥180 d30–0.3652 doses, 180-239 d

——25–0.2972 doses, 240-299 d

——20–0.2262 doses, 300-359 d

——15–0.1662 doses, ≥360 d

153 doses, 7-119 d80–1.6163 doses, 7-59 d

——75–1.39103 doses, 60-119 d

153 doses, ≥120 d35–0.4383 doses, 120-179 d

——15–0.1653 doses, 180-239 d

——10–0.1113 doses, ≥240 d

aVE: vaccine effectiveness.
bVaccination categories are defined by the number of mRNA vaccines received at the index date of the medical encounter and the days between the
most recent dose and the index date. The index date is the earlier of the date of specimen collection of a positive test within the allowable testing window
(14 d before to 72 h after the encounter) and the time of the medical encounter.
cApproximate percent observed in the full dataset from which samples of 10,000 or 1000 are drawn.
dData were generated using a 13-level vaccination status variable, with the approximate frequency of each category shown. This frequency varies across
the 1000 replicates. The vector of coefficients, γ, is used as part of the data generation process, and its corresponding values on the VE scale are shown.
In the analysis phase, the 13 categories are collapsed to the 5 shown in the column on the right, again with approximate frequencies.
eNot available.

Derivation of the DRS
Methods for deriving the DRS have been described elsewhere
[1-5,7,29,39]. For this simulation study, we used Miettinen’s
approach, which models the outcome in relation to the covariates
in the entire study population and includes the exposure of the
vaccination status in the model with the covariates. The
coefficients from the fitted model were used to calculate a
predicted DRS for the entire dataset, predicting what risk of the
outcome would be for each individual if they were unvaccinated
(or if they were given the “reference” level of vaccination status
in other scenarios) [5]. Multimedia Appendix 3 [40,41] contains
more details about why this approach was selected.

Consideration around the use of a single DRS for the entire
VISION study population for each analysis of VE was required.
For example, VISION analyses were commonly stratified by
age and immunocompromising status. Those with
immunocompromising conditions had different vaccine
recommendations and may have had reduced VE [42].
Accordingly, in each generated dataset, up to 3 DRS were
estimated for each individual depending on their age and
immunocompromised (IC) status. One used the full generated
dataset, the second used only those with IC conditions according
to VISION network criteria, and the third used only those 50
years and older (≥50).

In Miettinen’s approach, incorrectly modeling the modification
of exposure by baseline covariates can result in estimated scores
that are influenced by the magnitude of the exposure effect [30].
Applied to the estimation of DRS, gradient-boosted regression
trees look for multilevel interactions that are useful for
describing the relationship between patient characteristics,
including vaccination status, and the outcome [20]. DRS were
estimated using gradient boosted regression and included the
exposure and all the covariates. Table S1 in Multimedia
Appendix 1 contains a listing of these covariates.

Final VE Models
The VE was calculated in a variety of logistic regression models,
calculated as (1–adjusted odds ratio)×100%. Without a DRS,
we estimated unadjusted VE, VE adjusted only for the key
variables of patient age (as a spline), calendar date from January
1, 2021 (epi-day, as a spline), and VISION site and sub-region
of the health care facility (site-region) (referred to as
multivariable key), and VE adjusted for the key variables plus
all other variables in the DRS (referred to as multivariable all).
Note that the term spline refers to a natural cubic spline with 3
knots placed at the 25th, 50th, and 75th percentiles.

While a PS is typically used to balance comparisons of the
exposed versus the unexposed by inverse probability weighting
or by matching on the PS [43], there is less theory or experience
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pertaining to the use of the DRS in the final model that yields
the adjusted VE [2]. A model may include DRS as a covariate
[44], or a model could be conditional on DRS [45], which under
certain conditions, may yield an average of the individual
treatment effects of those treated (ATT) [29]. Well-known
generalizable risk scores, such as the Gail model score,
Framingham score, APACHE score, and Charlson index, are
sometimes included in models or are used for stratification. The
risk score we investigated was not designed to be generalizable,
however, the modeling strategies employed for including a DRS
in a VE model are similar. We investigated DRS inclusion in

VE models as strata in a conditional model as well as a
continuous covariate fit with a flexible spline. Conditional
models used DRS as centiles, or deciles with epi-week, and site
as strata. Conditional models that are only conditioned on DRS
and models that included DRS as a continuous covariate also
adjusted for age (as a spline), epi-day (as a spline), and site
region. Models that were conditioned on DRS epi-week and
site were also adjusted for age (as a spline). Vaccination status
in the final VE model was collapsed to the 5-level category.
Table 2 summarizes the calculated models.
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Table 2. Description of final vaccine effectiveness (VE) models assessed in the simulation study.

Dataset totals, nModel stratification and adjustmentSubset of data used to estimate DRSa,b.

Subset of data used for estimating VEc.

Model name

10,000 and 1000Vaccination status onlyDRS dataset: no DRS. VE dataset: full
simulated dataset.

Unadjusted

10,000 and 1000DRS dataset: no DRS. VE dataset: full
simulated dataset.

Multivariable all • Stratification: none
• Adjustment: variables that would go

into the DRS including age (spline),
epi-day (spline), and site region

10,000 and 1000DRS dataset: no DRS. VE dataset: full
simulated dataset.

Multivariable key • Stratification: none
• Adjustment: age (spline), epi-day

(spline), and site region

10,000 and 1000DRS dataset: full simulated dataset. VE
dataset: full simulated dataset.

Stratified week, site, DRS • Stratification: DRS decile, epi-week,
and site

• Adjustment: age (spline)

10,000 and 1000DRS dataset: full simulated dataset. VE
dataset: full simulated dataset.

Stratified DRS • Stratification: DRS centile
• Adjustment: age (spline), epi-day

(spline), and site region

10,000 and 1000DRS dataset: full simulated dataset. VE
dataset: full simulated dataset.

Spline DRS • Stratification: none
• Adjustment: DRS included with a nat-

ural spline with 4 degrees of freedom,
age (spline), epi-day (spline), and site-
region

10,000Multivariable key ICd •1. Stratification: noneDRS datasets: no DRS. VE dataset: IC
subset. • Adjustment: age (spline), epi-day

(spline), and site2. DRS datasets: IC subset. VE dataset:
IC subset.

10,000Stratified week, site, IC DRS •1. Stratification: DRS decile, epi-week,
and site

DRS datasets: full simulated dataset.
VE dataset: IC subset.

• Adjustment: age (spline) 2. DRS datasets: IC subset. VE dataset:
IC subset.

10,000Stratified IC DRS •1. Stratification: DRS centileDRS datasets: full simulated dataset.
VE dataset: IC subset. • Adjustment: age (spline), epi-day

(spline), and site2. DRS datasets: IC subset. VE dataset:
IC subset.

10,000Spline IC DRS •1. Stratification: noneDRS datasets: full simulated dataset.
VE dataset: IC subset. • Adjustment: DRS included with a nat-

ural spline with 4 degrees of freedom,2. DRS datasets: IC subset. VE dataset:
IC subset. age (spline), epi-day (spline), and site

10,000Multivariable key ≥50e •1. Stratification: noneDRS datasets: no DRS. VE dataset:
≥50 subset. • Adjustment: only for age (spline), epi-

day (spline), and site region2. DRS datasets: ≥50 subset. VE dataset:
≥50 subset.

10,000Stratified week, site, ≥50 DRS •1. Stratification: DRS decile, epi-week,
and site

DRS datasets: full simulated dataset.
VE dataset: ≥50 subset.

• Adjustment: age (spline)2. DRS datasets: ≥50 subset. VE dataset:
≥50 subset.

10,000Stratified ≥50 DRS •1. Stratification: DRS centileDRS datasets: full simulated dataset.
VE dataset: ≥50 subset • Adjustment: age (spline), epi-day

(spline), and site region2. DRS datasets: ≥50 subset. VE dataset:
≥50 subset.
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Dataset totals, nModel stratification and adjustmentSubset of data used to estimate DRSa,b.

Subset of data used for estimating VEc.

Model name

10,000• Stratification: none
• Adjustment: DRS included with a nat-

ural spline with 4 degrees of freedom,
age (spline), epi-day (spline), and site
region

1. DRS datasets: full simulated dataset.
VE dataset: ≥50 subset.

2. DRS datasets: ≥50 subset. VE dataset:
≥50 subset.

Spline ≥50

aDRS: disease risk score.
bOne goal of this simulation study is to consider how the DRS might behave in smaller subsets of the full dataset, specifically a subset of patients with
IC conditions and a subset of patients 50 years or older. For this reason, when analyzing these subsets, we consider a DRS built from the full dataset
but applied to a smaller subset and a DRS built specifically from that smaller subset.
cVE: vaccine effectiveness.
dIC: patients with immunocompromising conditions.
e≥50: patients aged 50 years or older.

Assessing Model Performance
To evaluate performance, we examined bias, SE, the ratio of
mean SE to empirical SE, and coverage. The true VE is built
into the data generation mechanism, and these known values
are shown in Table 1 for the 13 levels of vaccination status.
However, VE was estimated for the collapsed 5-level
vaccination status, Vcollapsedi. Therefore, for each replication,
r, the true effect for each 5-level vaccination status, γm,r, was
approximated with a weighted average (weighted by sample
size in each of the 13 vaccination status categories) as shown
below (3) and summarized as a VE (4).

The estimated VE for each vaccine status in each replication,

, was calculated as shown in (5).

Percent VE bias was calculated as the average percent bias
across the replications on the VE scale (6).

The ratio of the observed SE of the OR compared with the
empirical SE was calculated as shown in (7).

Presentation of Results
Simulation results are presented in figures depicting the
complete distribution of observed percent VE bias and SE of

γm,r, for each vaccination status. The average across all

replications is shown as well as the 2.5th and 97.5th percentiles.
The empirical SE, or SD of the coefficients, is presented as a
vertical bar. In addition to low bias, an ideal model will provide
estimates of SE that are also averaged across replications, close
to the SD of the estimated coefficients. The figures include
coverage. All results are in Tables S3 and S4 in Multimedia
Appendices 4 and 5. Coverage is detailed in the results, with
CIs for the coverage probabilities based on the binomial
distribution of the R coverage indicators [38]. All simulations
and analyses were conducted with R Statistical Software (R
Foundation for Statistical Computing) [46].

Ethical Considerations
This study was reviewed and approved by the institutional
review boards at participating sites and under a reliance
agreement between the CDC and the Westat institutional review
board (FWA# FWA00005551, expiry date 10/13/2027, IRB
project number 6201.08). This activity was reviewed by the
CDC and was conducted consistent with applicable federal law
and CDC policy (eg, 45 CFR part 46.102(l)(2), 21 CFR part
56; 42 USC §241(d); 5 USC §552a; 44 USC §3501). This
activity was reviewed and approved as a research activity by
one VISION site. This study presented minimal risk to
participants because there was no interaction or intervention
with patients; therefore, a waiver of informed consent was
granted.

Results

Comparing Strategies for Estimating VE
When N=10,000, the unadjusted models resulted in an average
percent bias of VE ranging from –37% to 124% across the 4
vaccination categories (Figure 1, Table S3 in Multimedia
Appendix 4). Average percent bias was dramatically lower in
the models that accounted for the covariates: the 2 multivariable
models without DRS (range for multivariable with all covariates,
including key covariates from –2.2 to 3.8, multivariable with
only key covariates from –5.3 to 6.1), the stratified model with
DRS decile epi-week and site (range –2.6 to 2.3), the stratified
model with DRS centile (range –1.5 to 4.2), and the model with
DRS as a spline (range –1.6 to 4.1). Bias varied less across the
5 strategies for estimating VE than across the 4 levels of
vaccination status for which VE was estimated. For example,
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the bias in estimates of 3-dose VE within 120 days ranged from
–10% to 10% approximately, whereas the bias in estimates of
2-dose VE within 180 days ranged from –50% to 40%
approximately. The difference in bias between vaccination status

levels is related to the different sample sizes expected in each
vaccine status group and the expected increasing instability of
the percent bias when VE is closer to 0 (ie, 5 units is a much
greater percent of 25 than it is of 80).

Figure 1. Summary of simulation results in the overall sample of 10,000. DRS: disease risk score; VE: vaccine effectiveness.

In all figures, panel A presents the percent VE bias for each
vaccination level, with a vertical black line at 0. The distribution
across 1000 replications is shown for each model strategy. The
mean percent VE bias, represented with a black square, with an
interval indicating the observed 2.5th and 97.5th percentiles,
appears below each distribution. Panel B presents the
distribution across 1000 replications of the estimated standard

error for each vaccination level. The mean standard error,
represented with a black square, with an interval indicating the
observed 2.5th and 97.5th percentiles appears below the
distribution. The vertical line shows the empirical standard error
(SE), or SD of the coefficients. Ideally, the vertical line aligns
with the mean standard error. Means to the left of the empirical
SE indicate underestimation of the SE. Coverage is shown on
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the right of Panel B. Coverage is defined as the proportion of
confidence intervals from the simulated analyses that include
the true VE. Ideally, this would be close to 95%.

Across all 4 vaccination statuses, the multivariable models had
the lowest SE. In most instances, the average SE came closest
to the SD of the coefficients in the multivariable models. In all
but the 2-dose 14-179 days category, the models incorporating
DRS as a spline and the models stratified on DRS centile
resulted in empirical SE greater than the 97.5th percentile of
observed standard errors. The model stratified on decile of DRS,
epi-week, and site fared slightly better, with empirical SE greater
than the 97.5th percentile in 2 of the 4 vaccination categories.
However, the models stratified on decile of DRS, epi-week, and
site had the highest mean SE in all vaccination categories.
Models including DRS as a spline had the greatest
underestimation of SE, as demonstrated with the lowest ratio
of mean SE to empirical SE (Table S3 in Multimedia Appendix
4). With the exception of the multivariable all or multivariate
key models, all models yielded CIs that covered the true VE in
less than 95% of replicated analyses for at least one vaccination
status, as shown in Table 3.

We also considered subgroups of the N=10,000 dataset defined
by immunocompromised (IC) status and age, as these groups
were routinely studied by VISION and others to guide
vaccination policy decisions. Out of N=10,000, approximately
532 fell into the IC subgroup and 4782 into the 50 years or older
subgroup. In the IC subgroup, the multivariable model with key
covariates and without the DRS performed best in terms of
bias—its VE estimates for each level of vaccination status were
least biased (Figure 2 and Table S4 in Multimedia Appendix
5). This multivariable model also had the lowest SE while
achieving 95% coverage across two of the four levels of
vaccination status (Table 3). For estimates of 2-dose VE within
180 days, the coverage with the multivariable model was 96.8%
(CI 95.1-97.5), and for 3-dose VE within 120 days, the coverage

with the multivariable model was also 96.8% (CI 95.7-97.9).
While having slightly higher bias, the spline model and the
model stratified using DRS derived from the full 10,000
achieved 95% coverage in all 4 vaccination categories. The IC
group was so small that several replications yielded very high
SE estimates for at least one vaccination status indicating that
a meaningful VE estimate was not obtained. This occurred in
21 of 1000 replications for the multivariate model, 11-132
replications for the models using the DRS from the full model,
and 21-230 replications for the models using the DRS from the
IC subset. In the older subgroup, the multivariable model with
key covariates and without DRS again performed best in terms
of bias across all 4 vaccination statuses (Figure 3 and Table S4
in Multimedia Appendix 5). Again, the multivariable model
often had the lowest SE, which was also closest to the SD of
the coefficients. Only the multivariable model achieved 95%
coverage for its VE estimates for all four levels of vaccination
status. Only the model stratified on DRS (from the full cohort),
epi-week, and site-region achieved 95% coverage for 3 of the
4 levels of vaccination status; the other models only achieved
this for 2 or fewer levels of vaccination status (Table 3). In both
the IC subgroup and the 50 years or older subgroup, the models
using a DRS derived from the subgroup tended to perform worse
than models with a DRS derived from the full sample of 10,000.

When N=1000, the sizes in each vaccination category were
dramatically lower, ranging from 50 in the 2-dose 14-179 days
group to 242 in the 2-dose ≥180 days group. Again, the
multivariable models, particularly the one with all the covariates,
had the least bias in VE estimates for each level of vaccination
status (Figure 4 and Table S3). The multivariable models, along
with the model stratified by epi-week, site, and DRS decile all
achieved 95% coverage across the four vaccination statuses
(Table 3). The model stratified by DRS centile and the model
with a DRS spline had coverages slightly below 90% for 3-dose
VE within 120 days (89.6% coverage CI: 87.7%-91.5% and
89.1% coverage CI: 87.2%-91%, respectively).
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Table 3. Estimates of coverage of the true vaccine effectiveness (VE) with 95% CIs.

Three-dose ≥120 d,

coveragea (95% CIb)

Three-dose 7-119 d,

coveragea (95% CIb)

Two-dose ≥180 d,

coveragea (95% CIb)

Two-dose 14-179 d,

coveragea (95% CIb)

Model strategy

N=10,000

94.3 (92.9-95.7)94.2 (92.8-95.6)94.7 (93.3-96.1)95.3 (94.0-96.6)Multivariable all

93.7 (92.2-95.2)94.7 (93.3-96.1)94.8 (93.4-96.2)95.3 (94.0-96.6)Multivariable keyc

93.9 (92.4-95.4)92.1 (90.4-93.8)94.4 (93.0-95.8)94.2 (92.8-95.6)Strata: week site, DRSd

93.1 (91.5-94.7)88.9 (87.0-90.8)93.8 (92.3-95.3)94.8 (93.4-96.2)Strata: DRS

92.5 (90.9-94.1)87.8 (85.8-89.8)94.0 (92.5-95.5)94.5 (93.1-95.9)Spline DRS

ICe subgroup

94.7 (93.3-96.1)96.8 (95.7-97.9)94.9 (93.5-96.3)96.3 (95.1-97.5)Multivariable keyc

97.0 (95.9-98.1)96.6 (95.5-97.7)95.6 (94.3-96.9)97.8 (96.9-98.7)Strata: week site, DRS

96.1 (94.9-97.3)95.6 (94.3-96.9)95.8 (94.6-97.0)96.0 (94.8-97.2)Strata: DRS

94.7 (93.3-96.1)94.7 (93.3-96.1)94.5 (93.1-95.9)96.0 (94.8-97.2)Spline DRS

98.2 (97.4-99.0)98.4 (97.6-99.2)98.3 (97.5-99.1)96.6 (95.5-97.7)Strata: week, site, IC DRS

94.2 (92.8-95.6)95.8 (94.6-97.0)97.6 (96.7-98.5)95.4 (94.1-96.7)Strata: IC DRS

93.8 (92.3-95.3)95.2 (93.9-96.5)98.5 (97.7-99.3)92.3 (90.6-94.0)Spline IC DRS

≥50f subgroup

94.1 (92.6-95.6)94.1 (92.6-95.6)94.4 (93.0-95.8)93.5 (92.0-95.0)Multivariable keyc

93.5 (92.0-95.0)93.0 (91.4-94.6)93.8 (92.3-95.3)94.9 (93.5-96.3)Strata: week site, DRS

93.0 (91.4-94.6)90.6 (88.8-92.4)94.2 (92.8-95.6)93.7 (92.2-95.2)Strata: DRS

93.2 (91.6-94.8)89.7 (87.8-91.6)93.4 (91.9-94.9)94.0 (92.5-95.5)Spline DRS

94.2 (92.8-95.6)91.1 (89.3-92.9)93.6 (92.1-95.1)92.7 (91.1-94.3)Strata: week, site, IC DRS

92.9 (91.3-94.5)86.1 (84.0-88.2)92.3 (90.6-94.0)92.3 (90.6-94.0)Strata: IC DRS

92.3 (90.6-94.0)84.8 (82.6-87.0)92.2 (90.5-93.9)91.5 (89.8-93.2)Spline IC DRS

N=1000

95.2 (93.9-96.5)94.8 (93.4-96.2)94.9 (93.5-96.3)95.6 (94.3-96.9)Multivariable all

94.8 (93.4-96.2)94.9 (93.5-96.3)95.1 (93.8-96.4)95.8 (94.6-97.0)Multivariable keyc

95.2 (93.9-96.5)93.8 (92.3-95.3)94.1 (92.6-95.6)95.6 (94.3-96.9)Strata: week site, DRS

93.3 (91.8-94.8)89.6 (87.7-91.5)92.8 (91.2-94.4)94.2 (92.8-95.6)Strata: DRS

93.5 (92.0-95.0)89.1 (87.2-91.0)93.1 (91.5-94.7)95.0 (93.6-96.4)Spline DRS

aCoverage is defined as the proportion of confidence intervals from the simulated analyses that include the true VE. Ideally, this would be close to 95%.
bConfidence intervals were calculated using the properties of the binomial distribution of the indicators that each replication covers the true VE.
cKey variables include simple adjustment only for age (spline), epi-day (spline), and site region.
dDRS: disease risk score.
eIC: immunocompromising conditions.
f≥50: patients 50 years old or older.
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Figure 2. Summary of simulation results in the immunocompromised subset of 10,000. DRS: disease risk score; IC: immunocompromised; VE: vaccine
effectiveness.
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Figure 3. Summary of simulation results in the 50 years or older subset of 10,000. DRS: disease risk score; VE: vaccine effectiveness.
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Figure 4. Summary of simulation results in a sample of size 1000. DRS: disease risk score; VE: vaccine effectiveness.

DRS-Related Decisions
When comparing the bias in analyses of subgroups defined by
IC or age, we found little difference in the bias of VE between
using a DRS built from the full dataset of 10,000 compared with
using a DRS built exclusively from the subset of interest
(Figures 2 and 3). When a difference was found, models using
the DRS built from the full cohort tended to perform better than
the models built from the smaller subset. Among the 12 VE
estimates for the IC subgroup—a VE estimate for each of the
4 levels of vaccination status obtained by each of the 3 ways of
using the DRS—9 of the 12 achieved 95% coverage when using

a DRS from the full cohort compared with 5 of 12 when using
the DRS from the IC subgroup. Among the 12 VE estimates
for the subgroup aged ≥50 years, 6 of 12 achieved 95% coverage
when using a DRS from the full cohort compared with 2 of 12
when using the DRS from the 50 years or older subgroup.
Model-fitting challenges occurred more frequently when using
the subgroup-specific DRS, particularly in the smaller IC
subgroup.
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Discussion

Principal Findings
This simulation study found that multivariable covariate
adjustment, either with all the covariates or a subset of key
covariates, performed well in the context of VISION’s
case-control test-negative studies of VE. Adjustment for a DRS
comprised of the covariates performed adequately but tended
to overestimate the precision of VE estimates.

It is possible the underestimate of the SE we have observed
could be attributed to a high correlation between the confounders
and vaccination status. Early studies of DRSs suggested they
can help reduce the dimensionality of analyses that try to adjust
for multiple covariates but that DRS adjustment tends to
overestimate the precision of the effect estimate of interest [47].
Later studies suggested that the corresponding exaggeration of
the statistical significance of a finding (eg, a finding about VE)
would be trivial unless the covariates are very strongly
associated with the exposure (eg, vaccination status) or with
each other [1,48].

It should not be surprising that simple covariate adjustment
performed well, given VISION’s large samples of cases and
controls. Other large VE studies with TNDs have also
successfully employed individual covariate adjustment [35-37].
Furthermore, in previous VISION network studies, we observed
that only a few of the available covariates (primarily age,
calendar time, and geographic location) accounted for most of
the confounding apparent in unadjusted VE estimates, which
makes it feasible to adjust for the covariates individually even
in subsets that might otherwise be too small to adjust for several
dozen covariates or more. Even in our subgroup analyses, we
did not find that use of the dimension-reducing DRS improved
performance compared with straightforward adjustment for the
individual covariates.

In the context of settings other than VISION, where sample
sizes may be smaller, and the relevant covariates may be more
numerous, the “curse of dimensionality” may render covariate
adjustment more problematic. If an appropriate DRS has already
been derived from large samples in similar settings, such a DRS
could be helpful in several ways. First, an appropriate DRS can
avoid overfitting. DRS adjustment outperformed individual
covariate adjustment in some of our smaller subgroup analyses,
especially when we used a DRS derived from the larger overall
sample.

Second, confounding may arise from nonlinearities and
interactions among covariate-outcome associations that could
easily be overlooked unless previously captured by a DRS

derived from large datasets using flexible machine learning
methods. In this simulation study, we used boosted regression
to derive the DRS, as described above, but our data-generating
mechanism did not insert nonlinearities and interactions that
would be undetectable in smaller datasets and would be
challenging to specify in a logistic regression model with
individual covariate adjustment.

Third, a DRS could be part of a hybrid approach to covariate
adjustment. VE estimates could be derived from logistic
regression models that include a DRS plus a few key covariates
(which may also be components of the DRS). The key covariates
would be those with high potential for confounding because of
strong associations with the outcome (and exposure) that may
differ in the current study population than in the population
where the DRS was derived.

Fourth, a DRS can be an intuitive way to adjust for confounding
and an intuitive tool to explore effect modification. Typically,
effect modification examines one risk factor at a time—for
example, examining whether the benefits of vaccination differ
by age group. A DRS can be used to account for multiple risk
factors as we examine whether the benefits of vaccination differ
by level of risk. Furthermore, a DRS can facilitate the
interpretation of findings. For example, if VE is found to be
similar across levels of the DRS, yet the risk is 10-fold higher
in the highest DRS decile as compared with the lowest, then
we can infer that the vaccine benefits the highest decile 10-fold
more (on the scale of cases prevented per 1000 persons
vaccinated) than it benefits the lowest decile. However, a DRS
may be less intuitive as a risk score in our test-negative VISION
study than in a population-based cohort study to the extent that
our test-negative controls are restricted to individuals with “a
COVID-19-like illness” and may not be representative of the
underlying population at risk. In the underlying population, risk
factors for hospitalization for CLI may differ from risk factors
for hospitalization for COVID-19.

This simulation study was motivated by challenges facing
VISION’s studies of VE. The scenarios we simulated emulate
those examined by VISION, and this may limit the
generalizability of our findings to other settings.

Conclusions
Our simulations found that logistic regression with individual
covariate adjustment performed well in scenarios similar to
those studied by the VISION network and is generally the
current approach employed by the VISION network.
DRS-adjusted models performed adequately but not as well as
models that adjusted for the covariates individually.

Data Availability
The datasets generated during and/or analyzed during this study are not publicly available due to data sharing agreements between
CDC and VISION network partner institutions prohibiting it.
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Multimedia Appendix 1
Definition of effects of covariates on 13-level exposure, β, for multinomial model determining simulated exposure with exposure
status defined by number of mRNA doses and time since most recent dose.
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Definition of other coefficients, α, for the Bernoulli distribution defining the probability of the generated outcome.
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