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Abstract

Background: Cerebral small vessel disease (CSVD) significantly impacts motor functions, particularly gait dynamics.
However, its analysis often lacks the integration of comprehensive tools that capture the multifaceted nature of gait distur-
bances. Traditional methods may not fully address the complexity of CSVD’s impact on gait, underscoring the need for a
detailed exploration of gait characteristics through advanced technological means.

Objective: This study aims to identify the distinct gait patterns and postural adaptations present in patients with CSVD
compared to a healthy older population, using an integrative analysis combining sensor and video data to provide a holistic
understanding of gait dynamics in CSVD.

Methods: This study involved 90 participants older than 50 years (mean age 68.85, SD 9.74 years; 47 males and 43 females),
with 24 categorized as normal controls (mean age 66.42, SD 7.51 years) and 66 diagnosed with CSVD (mean age 69.74,
SD 10.37 years). Participants performed three walking tasks: normal walking, dual-task walking (with concurrent mental
arithmetic), and fast walking. Gait parameters were collected through video data for image posture parameters using the
OpenPose BODY_25 key point model, and the “Pocket Gait Test” smartphone app for sensor-based parameters sampled
at approximately 40 Hz. Data analysis included 5 sensor-based parameters (step frequency, root mean square (RMS), step
variability, step regularity, and step symmetry) and 6 key video-based parameters (including knee angle, ankle angle, elbow
angle, body trunk angles, and head posture).

Results: Among the 29 participants with complete sensor and video data (10 normal controls and 19 patients with CSVD),
significant differences were observed in step regularity (normal walking: mean 0.76, SD 0.09 vs mean 0.61, SD 0.25; P<.003
and dual-task: mean 0.74, SD 0.13 vs mean 0.57 SD 0.24; P<.005), RMS (normal walking: mean 1.64, SD 0.45 vs mean 1.43,
SD 0.42; P<.006), and forward head posture angles (head-to-body angle during normal walking: mean 132.96, SD 7.78 vs
mean 128.07, SD 7.99; P<.02 and head-to-ground angle: mean 134.11, SD 8.28 vs mean 128.40, SD 9.75; P<.008) between the
CSVD and control groups. The CSVD group exhibited a more pronounced forward head posture across all walking tasks, with
the greatest difference observed during dual-task walking (head-to-ground angle: mean 134.43, SD 8.29 vs mean 125.02, SD
8.42; P<.02).

Conclusions: The study provides compelling evidence of distinct gait disturbances in patients with CSVD, characterized by
reduced step regularity (15%-23% lower than controls), altered acceleration patterns, and significant postural adaptations,
particularly forward head positioning (4°-7° more pronounced than controls). These quantifiable differences, detectable
through accessible smartphone and video technology, offer potential biomarkers for early CSVD detection and monitoring. The
integration of sensor and video analysis provides a more comprehensive assessment approach that could be implemented in
both clinical and home settings for longitudinal monitoring of disease progression and rehabilitation outcomes.
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Introduction

Background and Motivation

Gait analysis is commonly used to detect abnormalities
in walking behavior, analyze physical function, and assess
disease rehabilitation, indicating the occurrence of poor
health problems or the progression of neurological disea-
ses. Cerebral small vessel disease (CSVD) is character-
ized by brain white matter lesions, lacunar infarcts, and
microbleeds on cranial imaging (especially head magnetic
resonance imaging [MRI]) [1,2], and clinically can present as
stroke, cognitive impairment, gait and balance dysfunction,
emotional disorders, urinary disorders, etc [3.4]. CSVD has
an estimated prevalence of 5%-10% in the general population
older than 50 years of age, with numbers increasing signifi-
cantly with advancing age [5,6]. Recent evidence indicates
that CSVD is the most common pathology underlying
vascular cognitive impairment and is increasingly recognized
as a primary contributor to gait disturbances in older adults
[7.8]. Gait disturbance is a major and important clinical
manifestation of patients with CSVD [9], but it is severely
underestimated in clinical practice. There is an urgent need
in clinical practice to intelligently collect, analyze, and report
data on the gait of patients with CSVD and to diagnose and
follow up on their condition.

Current assessment methods for CSVD-related gait
disturbances are primarily limited to traditional clinical
evaluations or laboratory-based systems that lack real-world
applicability [3]. These existing approaches often fail to
capture the subtle, multidimensional aspects of gait abnormal-
ities specific to CSVD, particularly in everyday settings [10].
Recent systematic reviews and meta-analyses have highligh-
ted that patients with CSVD commonly exhibit reduced
walking speed, shorter stride length, increased stance time,
and greater gait variability compared to healthy controls [3,8].
These gait characteristics are detectable even in early-stage
CSVD and may precede cognitive symptoms, underscoring
their potential value as early biomarkers. However, in the
medical diagnostic process, many motor function impair-
ments and gait disturbances associated with CSVD cannot be
conveniently assessed using traditional cumbersome clinical
tools. These motor manifestations, which often precede
cognitive symptoms in patients with CSVD, require more
accessible and efficient measurement approaches for timely
diagnosis and monitoring.

Due to its convenience, remote application, and quanti-
fiability, an intelligent wearable gait analysis measurement
system offers a promising alternative direction in gait
analysis. This approach directly addresses the limitations
of conventional methods by enabling continuous, ecological
monitoring of gait parameters in patients’ natural environ-
ments. Smartphone-based gait analysis has emerged as a
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valid and reliable method for capturing gait parameters,
with recent validation studies demonstrating high agreement
between smartphone accelerometry data and gold-standard
systems in measuring key spatiotemporal gait parameters
[10,11]. These smartphone-based systems can detect subtle
gait abnormalities and have shown particular promise in
neurological conditions where traditional assessment methods
may be insensitive to early changes. On the one hand, medical
costs are too high, and on the other hand, patients may
delay diagnosis or treatment due to high medical expenses,
requiring simpler and easier-to-use tools to assist in diag-
nosing diseases. In addition, the physical walking posture
characteristics of patients at various stages, such as during
illness and recovery, are significantly different, requiring
tools that can effectively assist in assessing daily rehabili-
tation conditions over a long period. This study proposes
combining image and sensor data to establish an intelligent
wearable gait measurement system. This system allows for
analyzing gait differences between patients with CSVD and
healthy older groups. It also enables tracking of patient data
during illness and recovery periods. Through this approach,
key gait disturbances specifically related to CSVD can be
identified. These findings can provide valuable reference
points for the diagnosis of patients with CSVD and assist in
their health monitoring and rehabilitation assessment.

This study aimed to conduct a detailed analysis of gait
characteristics in patients with CSVD, using both sensor and
video data. The objective was to identify and characterize
distinct gait patterns and postural adaptations in patients with
CSVD and to compare these with those of a healthy older
population. Specifically, this study’s contribution includes
the collection and analysis of real-world data from patients
with CSVD. This effort sought to contribute to a deeper
understanding of the impact of CSVD on motor functions,
potentially guiding clinical assessments and rehabilitation
strategies.

Related Studies

Gait is the behavioral characteristic of human walking.
Normal gait is the gait of a healthy adult walking in a
natural state and feeling most comfortable, characterized by
stable body posture, appropriate stride length, and minimal
energy consumption [12]. Quantitative gait analysis is an
important clinical indicator and, as a routine analysis in
patient management, can be used together with medical
history, physical examination, and other special investiga-
tions. Clinical gait analysis typically includes five elements:
videotape examination, measurement of general spatiotem-
poral gait parameters, kinematic analysis, kinetic measure-
ments, and electromyography [13]. Spatiotemporal gait data
includes stride length, stride width, support time, rhythm,
walking speed, swing time, and double-limb support time
[14,15]. Gait parameters, including gait intensity, smooth-
ness or regularity [16], variability, and complexity [17], can
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also be described by collecting acceleration signals during
walking using specialized devices. Using kinematic (such
as joint angles and angular velocities) and kinetic (such as
ground reaction forces and joint torques) data, joint torques
and forces can be calculated more precisely in 3D, and
electromyography from specific muscles provides a detailed
description of the gait mechanism [13,18].

Attributing gait abnormalities to a specific disease is
difficult, as many diseases present similar gait abnormalities
[19]. Special and precise quantification of gait abnormali-
ties for specific diseases is needed. Diseases related to the
cerebellum usually accompany specific gait differences, such
as ataxic gait in spinocerebellar ataxia and cerebellar stroke.
These conditions typically present with a wide-based stance,
irregular stepping patterns, and poor coordination [20].
Similarly, CSVD has its own characteristic gait disturban-
ces that require specific identification and quantification.
Research on CSVD found that patients have reduced gait
capabilities such as walking speed and stride length. De Laat
et al [21] conducted MRI, voxel-based morphometry analysis,
and walking ability assessments on 429 patients aged 50-80
years with CSVD but without dementia or Parkinson, finding
a significant relationship between white matter lesions in
CSVD and reduced gait ability, especially in terms of walking
speed, stride length, and broad-based gait. In addition, they
analyzed the relationship between the characteristic micro-
bleeds of CSVD and gait ability using MRI to calculate
the location and proportion of microbleeds, and using the
GAITRite system, Tinetti gait scale, and Timed Up and Go
measurements, finding that “microbleeds” resulted in shorter
walking stride lengths and significantly lower Tinetti and
Timed Up and Go scores [22]. Zong et al [23] used scales
such as the ataxia rating scale, Tinetti gait score, Tinetti
balance score, etc, for behavioral ability assessment and
conducted gait and balance disorder studies on 57 patients
with CSVD, finding that more than half of the participants
showed gait disturbances such as reduced speed, dragging,
wide base, and unequal bilateral stride lengths.

Traditional gait analysis methods are limited to fixed
laboratory measurement environments, often using complex
instruments such as single-camera image processing [24] and
walking leap sensors [25] to record human gait motion, but
they struggle to reflect real-world gait conditions. More-
over, nonwearable system equipment and testing are too
expensive, making it difficult for people to measure related
data on their own [26]. In recent years, portable, wireless
real-time recording of daily gait information has become
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the main method of data collection. Zhong and Rau [27]
used smartphones for gait assessment based on embedded
accelerometers, finding that the reliability and effectiveness
of smartphones in measuring gait parameters (stride length
variability, autocorrelation, and root mean square [RMS] of
acceleration) were comparable to external accelerometers.
More recently, Tao et al [28] validated smartphone-based gait
analysis across different attachment positions and walking
speeds, including applications in patients with CSVD. Their
study confirmed measurement validity in controlled environ-
ments, establishing that smartphones can provide reliable gait
measurements comparable to traditional inertial measurement
units. In addition, using OpenPose (developed by Cao et
al [29] at Carnegie Mellon University) image recognition
technology to collect key body metrics during walking and
to calculate body posture parameters during walking can
also serve as important gait feature data. At present, the
key gait disturbances in patients with CSVD have not been
fully identified, and there is ongoing research to establish
a complete intelligent wearable gait measurement system
based on smartphone-collected gait parameters, for use in
assisting clinical diagnosis and rehabilitation monitoring.
Other influencing factors, such as demographic information
(age, sex, BMI, etc), disease severity, and other concurrent
diseases, may also bring about changes or differences in gait.
For example, gait abnormalities increase with age; men are
more likely to have neurological gait abnormalities (such as
stroke), while women are more likely to have non-neurologi-
cal gait abnormalities (such as arthritis, cardiac, or respiratory
diseases) [30]. Therefore, in addition to gait data, tracking and
combining medical diagnostic results for in-depth research
are needed to better assist in the diagnosis, assessment, and
rehabilitation monitoring of diseases.

Methods

Overview

This study was designed to assess gait characteristics in
older adults with and without CSVD using a combination of
sensor-based and video-based analysis methods. Participants
completed three walking tasks—normal walking, dual-task
walking, and fast walking—while wearing a smartphone
equipped with accelerometers and being recorded by a
camera. Data were collected on spatiotemporal gait parame-
ters and postural angles to identify specific gait disturbances.
The complete setup and data collection process are presented
in Figures 1A and 1B.
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Figure 1. Field experimental environment setup and data collection method for gait assessment in patients with cerebral small vessel disease and
healthy controls. (A) A participant wearing a waist bag containing a smartphone positioned at the L3 vertebra region for collecting accelerometer data

and (B) the positioning of the GoPro HEROS8 camera mounted on a tripod to capture a 5-meter walking segment.

Recruitment

The study was conducted at Yuquan Hospital of Tsing-
hua University, a major medical center in Beijing, China,
specializing in neurological disorders and geriatric care.
Participants were not recruited through conventional research
recruitment processes. Instead, a collaborative clinical
screening approach was used. Physicians at Yuquan Hospital
identified potentially eligible patients from their clinical
practice who met the study criteria.

The recruitment process began with hospital neurologists
reviewing medical records to identify individuals older than
50 years who either had a confirmed CSVD diagnosis or
were free of neurological disease (for the control group).
The physicians then conducted preliminary assessments
of these individuals during their regular clinical visits to
determine their suitability for the study based on mobility
status and cognitive ability to follow instructions. After this
clinical screening, suitable candidates were approached about
potential participation in the study during their hospital visits.
The physicians explained the study’s purpose, procedures,
and potential benefits and risks. Those who expressed interest
were provided with detailed written and verbal information
about the study. All participation was strictly voluntary, and

patients were assured that their decision regarding participa-
tion would not affect their clinical care.

For the CSVD group, inclusion was based on the
presence of characteristic neuroimaging findings (white
matter lesions, lacunar infarcts, or microbleeds on MRI) and
clinical symptoms consistent with CSVD, as determined by
the attending neurologists. Control group participants were
recruited from the same hospital setting but were confirmed
to be free of CSVD and other neurological conditions through
clinical and radiological assessment.

This study involved 90 participants older than 50 years,
of whom 24 participants were categorized as normal and 66
participants with CSVD. The groups were demographically
comparable: the average age was 66.42 years in the normal
group and 69.74 in the disease group (P=.14); sex distribution
was 11 males to 13 females in the normal group and 36
men to 30 women in the disease group (P=.47). Heights and
weights were also similar: normal group averaged 163.62 cm
and 65.58 kg, while the disease group averaged 164.30 cm
and 64.78 kg (P=.67 and .63, respectively). BMI showed no
significant difference either, with 24.45 in the normal group
and 23.81 in the disease group (P=.40). The demographic
statistics for the participants are shown in Table 1.

Table 1. Demographic characteristics of participants in a cross-sectional observational study comparing gait parameters between patients with

cerebral small vessel disease and healthy controls, conducted at Yuquan Hospital.

Variable Normal, mean (SD) CSVD?, mean (SD) P value
Age (years) 66.42 (7.51) 69.74 (10.37) 14
Height (cm) 163.62 (8.03) 164.30 (8.62) 67
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Variable Normal, mean (SD) CSVD?, mean (SD) P value
Weight (kg) 65.58 (9.47) 64.78 (12.91) .63
BMI 24 .45 (2.55) 23.81 (3.50) 40

4CSVD: cerebral small vessel disease.

Variables and Measurements

This study involved collecting gait parameters through
accelerometer data for sensor-based parameters and video
data for image posture parameters. Initially, 30-second
walking data were gathered using the “Pocket Gait Test,”
a gait measurement app developed by the authors’ research
team (Zhong and Rau [27]). While other smartphone
validation approaches, such as those by Tao et al [28], focus
primarily on validating measurement accuracy, the “Pocket
Gait Test” was specifically designed for analyzing subtle
gait parameters in neurological conditions and older adults.
This app uses the accelerometer embedded in smartphones
and provides voice prompts to start and end the gait assess-
ment, with a sampling rate of approximately 40 Hz. Custom
algorithms developed in MATLAB (MathWorks) processed
these data, resampling the discontinuous raw data to 100 Hz
using interpolation.

Sensor gait parameters included step frequency, accelera-
tion RMS, step variability, step regularity, and step sym-
metry. Step frequency refers to the rate of walking; RMS
represents the magnitude of force generated during walking;
step variability indicates the potential unsteadiness in gait,
where lower values are preferable; step regularity refers to the
consistency in walking pattern throughout; and step symmetry
measures the difference between left and right leg move-
ments, with higher symmetry indicating better gait balance.

Furthermore, walking videos covering approximately 5
meters were recorded using a GoPro HEROS8 camera mounted
on a tripod, set at a resolution of 1080p and a frame rate
of 60 fps. The BODY_25 key point model was used with
the OpenPose algorithm [29] to identify key body points and
output JSON files for each video frame. This approach has
been validated in previous human motion analysis studies
[31-33]. Python was used to connect key points on the left (or
right) side of the body into vectors and to process the videos
in batches, following a methodology similar to that described
by Viswakumar et al [31].

For signals with anomalies, especially when participants
entered or exited the screen and key points were incom-
plete, parameters were adjusted to reselect video segments
for analysis. MATLAB was then used for signal processing,
using Db4 for three-level wavelet transform decomposition
and reconstruction before data extraction. The output image
posture parameters included the knee angle, defined as the
angle between the thigh and calf segments; the ankle angle,
representing the angle between the calf and foot segments;
the elbow angle, indicating the angle at the elbow joint; the
angle between the upper arm and body trunk, reflecting upper
body posture; the angle between the body trunk and thigh,
which reflects hip flexion or extension; the angle between
the neck and body trunk, indicating forward head position;
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body lean, measured as the angle of the trunk relative to the
vertical; sight line, representing the orientation angle of the
head; heel height, defined as the vertical distance of the heel
from the ground; step length, which is the distance between
consecutive heel strikes; and step speed, which is derived
from step length and time.

Particularly for KA, ankle angle, EA, the angle between
the body trunk and thigh, and the angle between the upper
arm and body trunk, which dynamically change with walking,
the discussion focused on their mean and variance, while the
analysis of the other parameters primarily concentrated on
their mean values. The measurement of these angles follows
standardized biomechanical conventions [34].

Procedure

The experiment was conducted in the corridors of Yuquan
Hospital. Before its commencement, participants’ age, sex,
height, and weight were recorded. Their balance abilities
and confidence were assessed using the Tinetti scale [35]
and the Activities-Specific Balance Confidence (ABC) scale
[36]. During the experiment, participants wore a waist bag
containing a smartphone placed in the pocket at the L3 area of
the waist to collect walking data for calculating sensor-based
gait parameters.

Participants were instructed to perform three different
walking tasks in order: normal walking, dual-task walking,
and fast walking. These three tasks did not require specific
speed requirements. For the first two tasks, participants were
asked to walk at a natural and comfortable pace. The third
task required participants to walk as quickly as possible. In
addition, the second task involved a dual-task load, wherein
participants were required to continuously perform mental
arithmetic (addition and subtraction of two-digit numbers)
while walking, to assess the impact of cognitive load on gait.
Tasks were assigned randomly to eliminate the influence of
the order of the experiment. Each condition was repeated
twice. During the walking tasks, a GoPro HEROS8 camera
mounted on a tripod was positioned on the side of the
corridor. This setup captured a 5-meter midsection of the
participant’s walking path, including videos of both the left
and right sides of the body.

The experimental setup controlled for variables independ-
ent of the video by managing the distance between the
tripod and the participant, ensuring the participant occupied a
consistent proportion of the video frame. This control allowed
for the collection of consistent and reliable data across all
participants and conditions. The field experimental environ-
ment is shown in Figure 1.

[llustration of the experimental setup at Yuquan Hospi-
tal corridors, where participants performed walking tasks
while being recorded. The image shows (A) a participant
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wearing a waist bag containing a smartphone positioned at
the L3 vertebra region for collecting accelerometer data, and
(B) the positioning of the GoPro HERO8 camera mounted
on a tripod to capture a 5-meter walking segment. Three
walking conditions were tested: normal walking, dual-task
walking (with mental arithmetic), and fast walking. Data
were collected between January and September 2023 from 90
participants (24 healthy controls and 66 patients with CSVD),
with complete data available for 29 participants (10 controls
and 19 patients with CSVD).

Data Exclusion

This study implemented a rigorous data exclusion process
to maintain the quality and reliability of its results. After

Lai et al

exclusions, the final analysis included 29 participants (10
normal controls and 19 patients with CSVD). The demo-
graphic characteristics of these participants are shown in
Table 2. Similar to the initial recruitment cohort, these groups
remained demographically comparable. This comparability
ensures the validity of subsequent gait parameter comparisons
between groups in the final analyzed cohort.

Table 2. Demographic characteristics of participants with complete data included in the final analysis of a cross-sectional study on gait parameters in

cerebral small vessel disease.

Variables Normal, mean (SD) CSVD?, mean (SD) P value
Age (years) 67.40 (6.79) 71.79 (7.56) 12
Height (cm) 165.10 (9.65) 168.11 (7.65) 29
Weight (kg) 66.10 (11.30) 65.13 (12.34) .82
BMI 24.12 (2.23) 2292 (3.22) 37

4CSVD: cerebral small vessel disease.

Factors contributing to incomplete data included technical
issues with sensor equipment (9.8% of exclusions), errors
in video recording (37.7% of exclusions), and participants’
inability to complete all tasks due to physical limitations
(29.5% of exclusions) or scheduling conflicts (26.2% of
exclusions). In addition, data segments in which participants
had just entered or exited the screen, resulting in incomplete
key point detection by the OpenPose algorithm (approxi-
mately 10% of video recordings), were excluded to maintain
consistency in the posture and gait analysis.

This stringent exclusion criterion was essential to ensure
that the analysis was based on complete and accurate
representations of each participant’s gait characteristics,
thereby enhancing the study’s overall validity and reliability.
While this reduced our effective sample size, it ensured that
all analyzed data met the highest quality standards necessary
for drawing meaningful conclusions about gait disturbances
in CSVD.

Ethical Considerations

This study follows the STROBE (Strengthening the Report-
ing of Observational Studies in Epidemiology) guidelines for
cross-sectional studies and was conducted in accordance with
ethical standards. Ethical approval was obtained from the
Ethics Committee of Yuquan Hospital, Tsinghua University,
and the Science and Technology Ethics Committee (Humani-
ties, Social Sciences, and Engineering) of Tsinghua Univer-
sity. The formal IRB approval number is THU-04-2025-1023.
All participants provided written informed consent before
they participated in the study, which included consent for
the collection, analysis, and publication of anonymized data
and results. Participants did not receive financial compen-
sation. The experiment was conducted on-site at Yuquan
Hospital, where participants were already present for clinical
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care. Participation was entirely voluntary, with participants
signing up to take part in the study of their own accord.
All experimental procedures were strictly followed by the
guidance of attending physicians to ensure participant safety
and comfort. All assessments and data collection procedures
were scheduled to accommodate participants’ daily routines
and were conducted with careful attention to minimize
fatigue, discomfort, or disruption to their normal activities.
Their privacy and confidentiality were ensured throughout
the study. All collected data were anonymized by assign-
ing unique identification codes to each participant, and
personal identifiers were stored separately from research data.
During data analysis and reporting, no personally identifi-
able information was used, and results were presented as
aggregated data. The video recordings and images used for
gait analysis were processed using the OpenPose algorithm,
which converts human figures into skeletal representations
and removes identifiable facial features and body characteris-
tics. No identifiable images of participants are included in the
paper or supplementary materials. For the field experimental
environment setup image (Figure 1), consent was obtained
from the individual shown, and the image was processed to
obscure any identifiable features.

Results

Sensor Data

Mann-Whitney U tests were used to compare gait character-
istics between the normal and CSVD groups across various
walking tasks, revealing several patterns. During a normal
walking task, significant differences were noted in RMS
(P=.006) and step regularity (P=.003), with the normal group
having higher values, while step frequency, step variability,
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and step symmetry showed no significant differences between
groups.

During dual walking conditions, RMS (P=.006) and
step regularity (P=.005) again differed significantly, with
the normal group showing higher values. In addition, step
symmetry was significantly higher in the normal group
(P=.001), while step frequency (P=.83) and step variability
(P=.48) remained not significantly different.

In the fast walking condition, RMS (P<.001) and step
regularity (P=.01) continued to show significant differences,

Lai et al

with the normal group exhibiting higher values. Step
frequency, step variability, and step symmetry did not differ
significantly between groups.

These findings suggest that while certain aspects of gait,
such as step frequency and variability, are not significantly
affected by CSVD, other parameters, such as RMS and step
regularity, consistently show noticeable differences across
various walking conditions, with the CSVD group demon-
strating significantly lower values than the normal group.
Detailed sensor results are presented in Table 3.

Table 3. Comparison of sensor-based gait parameters between normal controls and patients with cerebral small vessel disease during three walking

tasks.
Characteristic Normal, mean (SD) CSVD?, mean (SD) P value
Normal walking
Step frequency 1.75 (0.19) 2.00 (0.60) .56
RMSP 1.64 (0.45) 143 (042) 006
Step variability 0.10 (0.06) 0.12 (0.08) .59
Step regularity 0.76 (0.09) 0.61 (0.25) 003
Step symmetry 0.90 (0.06) 0.85 (0.15) 1
Dual-task walking
Step frequency 1.70 (0.17) 1.92 (0.43) 82
RMS 1.57 (0.45) 1.28 (0.38) 006
Step variability 0.10 (0.06) 0.13 (0.08) A48
Step regularity 0.74 (0.13) 0.57 (0.24) 005
Step symmetry 0.90 (0.09) 0.83 (0.15) 001
Fast walking
Step frequency 1.90 (0.18) 2.02(0.42) 58
RMS 2.17 (0.68) 1.86 (0.69) <.001
Step variability 0.12 (0.06) 0.14 (0.06) 72
Step regularity 0.80 (0.07) 0.63 (0.27) 01
Step symmetry 0.94 (0.05) 0.81 (0.22) 26

4CSVD: cerebral small vessel disease.
bRMS: root mean square.

Video Data

Mann-Whitney U tests were used. Analysis was conducted on
the mean angles of key body joints on both the left and right
sides of 29 participants, focusing on the ankle, knee, elbow,
thigh, head, and back. This analysis examined the changes
in angles and angular accelerations of these joints across
various tasks. The results indicated significant differences
between the normal group and the CSVD group in three
specific measurements: the mean angle between the calf and
the vertical line from the ground, the angle between the head
and the body, and the angle between the head and the ground.

Under normal walking conditions, significant differences
were observed in the angles of the head with respect to the
body (P=.023) and the ground (P=.008). The normal group
had a mean head-to-body angle of 132.96 (SD 7.78) degrees
and a head-to-ground angle of 134.11 (SD 8.28) degrees,
compared to 128.07 (SD 7.99) degrees and 128.40 degrees
(SD 9.75) degrees, respectively, for the CSVD group.
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During dual walking, the CSVD group exhibited a
significantly greater calf angle of 163.20 (SD 3.07) degrees
compared to 159.97 (SD 2.40) degrees in the normal group
(P=.004). The head-to-body (P=.021) and head-to-ground
angles (P=.015) also showed significant differences, with
the disease group demonstrating a more pronounced forward
head posture.

In fast walking, although the calf angle did not differ
significantly between the groups, the angles involving the
head continued to show significant differences, with the
CSVD group maintaining a more downward head position
(head-to-body: P=.024; head-to-ground: P=.003).

These results suggest that patients with CSVD tend to
lower their heads more when walking. This alteration in head
posture could be indicative of balance or visual scanning
changes in this population, potentially affecting their gait
dynamics and overall mobility. Detailed video results are
presented in Table 4.
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Table 4. Comparison of video-based postural parameters between normal controls and patients with cerebral small vessel disease across three

walking tasks.

Characteristic Normal, mean (SD) CSVD?, mean (SD) P value
Normal walking
Calf 159.81 (2.06) 161.54 (2.94) 26
Head and body 132.96 (7.78) 128.07 (7.99) 02
Head and ground 134.11 (8.28) 128.40 (9.75) 008
Dual walking
Calf 159.97 (2.40) 163.20 (3.07) 004
Head and body 133.64 (8.83) 126.38 (7.08) 02
Head and ground 134.43 (8.29) 125.02 (8.42) 02
Fast walking
Calf 159.26 (2.63) 16091 (3.31) 40
Head and body 133.66 (6.21) 128.39 (6.40) 02
Head and ground 134.25 (6.20) 126.98 (7.75) 003

4CSVD: cerebral small vessel disease.

Discussion

Principal Findings

This study has identified three key findings that significantly
advance the understanding of gait disturbances in CSVD:
(1) patients with CSVD exhibit a distinct forward head
posture during walking tasks, with significantly different
head-to-body and head-to-ground angles compared to healthy
controls (2) step regularity and RMS values are signifi-
cantly reduced in patients with CSVD across all walking
conditions, suggesting altered gait dynamics and reduced
stability; and (3) the integration of sensor and video data
provides complementary insights that neither method alone
could capture, demonstrating the value of a multimodal
approach to gait analysis in CSVD. These findings collec-
tively address the initial objective to identify and characterize
distinct gait patterns and postural adaptations in patients with
CSVD compared to healthy older adults, using the integrative
analysis approach combining sensor and video data.

The forward head posture observed in patients with
CSVD through video data might reflect adaptive mecha-
nisms to maintain balance or compensate for propriocep-
tive deficits. This raises new questions about the nature
of postural adaptations in CSVD. Notably, the sensor data
provided precise measurements of these postural changes,
while the video data offered a more qualitative understanding
of the overall gait pattern. In contrast, the lack of signifi-
cant differences in step frequency and variability between
the normal and CSVD groups suggests that basic temporal
aspects of gait might be less affected by CSVD. This finding
is intriguing as it contrasts with some previous research [21],
possibly due to methodological differences or the variabil-
ity in disease severity among participants. It is important
to consider that traditional gait metrics, while valuable,
might not be sensitive enough to capture all aspects of gait
disturbances in CSVD.

Furthermore, this study highlights the importance of
considering both sensor and video data in gait analysis.

https://formative jmir.org/2025/1/e58864

The sensor data’s high precision in measuring joint angles
and movements provides a detailed view of the mechani-
cal aspects of gait, while video data offers a more holistic
picture of gait, including body posture and coordination. This
dual approach is crucial for a comprehensive analysis, as
it captures both the quantitative and qualitative aspects of
gait. The head angle, identified in this study as one of the
differing factors in gait between patients with CSVD and
healthy individuals, is challenging to capture through body
sensors. The integration of video image processing enables
the analysis of the overall gait in patients with CSVD, thereby
providing more information that can be used to identify gait
abnormalities in these individuals.

Integrating the clinical diagnosis of CSVD with the
observed gait dynamics in patients with CSVD, this study
underscores a critical linkage between early-stage CSVD
manifestations and their impact on motor functions, as
demonstrated by gait disturbances. The clinical findings from
CSVD diagnosis reveal a pattern of gait disturbances that
precede cognitive impairments, highlighting the significance
of gait assessment in early CSVD identification. These
disturbances, notably in dual-task walking conditions where
patients exhibited lower average amplitude, gait regular-
ity, and symmetry, align with observations of pronounced
forward head posture in patients with CSVD through sensor
and video analysis. This posture suggests an adaptation
mechanism to maintain balance, potentially compensating
for proprioceptive deficits intrinsic to CSVD. The conver-
gence of clinical diagnosis with gait analysis in this study
presents a compelling case for incorporating comprehensive
gait assessment tools in the early detection and management
of CSVD, fostering a holistic approach to patient care. The
correlation between clinical indicators of CSVD and specific
gait disturbances further supports the integration of sensor
and video gait analysis into CSVD’s diagnostic and monitor-
ing frameworks (refer to Table 5).
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Table 5. Correlation between cerebral small vessel disease clinical findings and gait parameters in the observational study.

Parameter Study finding

Clinical finding P value (if applicable)

Forward head posture
Step regularity Lower in patients with CSVD
Step symmetry

Head-to-body angle Altered in patients with CSVD

Gait disturbances Identified

Increase in patients with CSVD?

Decrease in patients with CSVD

Confirmed 008
Confirmed 003
Confirmed —
Confirmed 02
Confirmed —

4CSVD: cerebral small vessel disease.

Limitations

This study has several limitations that should be acknowl-
edged. Although information was collected from a total of 90
participants, due to constraints such as experimental duration,
scheduling, and task difficulty, complete data were obtained
from only 29 participants (including sensor and video data
across 3 tasks). This smaller number of participants could
potentially impact the results to a certain extent and limit
the ability to conduct more detailed subgroup analyses or to
control for potential confounding factors such as age, sex, or
comorbidities.

Technical challenges also affected the data collection.
Approximately 9.8% of the exclusions were due to issues
with sensor equipment, while 37.7% resulted from errors
in video recording. In addition, 29.5% of participants were
unable to complete all tasks due to physical limitations, and
26.2% had scheduling conflicts. These high exclusion rates
highlight the practical challenges of conducting comprehen-
sive gait analysis in older populations, particularly those with
neurological conditions such as CSVD.

The OpenPose algorithm used for video analysis occasion-
ally resulted in incomplete key point detection (approximately
10% of video recordings), particularly when participants
were entering or leaving the screen. This necessitated careful
selection of video segments for analysis, which may have
introduced some selection bias. Furthermore, while our
approach of combining sensor and video data provides
complementary insights, it also introduces complexity in
data integration and interpretation that may not be readily
transferable to clinical settings without specialized expertise.

Conclusions

This study offers valuable insights into the intricate gait
disturbances experienced by patients with CSVD. By
adopting a comprehensive approach that integrates sensor-
based quantitative assessments with video-based qualitative
observations, this study has enriched the understanding of

CSVD’s impact on motor functions. The identification of
specific gait parameters that differ between patients with
CSVD and controls—particularly forward head posture and
reduced step regularity—provides potential biomarkers for
early detection and monitoring of CSVD progression.

These findings have several important implications for
clinical practice and future research. First, they suggest
that smartphone-based gait assessment combined with video
analysis could serve as a cost-effective screening tool for
early CSVD detection, potentially enabling earlier interven-
tion before significant cognitive decline occurs. Second, the
quantifiable nature of these gait parameters enables objec-
tive monitoring of disease progression over time, which
could serve as outcome measures in clinical trials of new
therapeutic interventions. Third, understanding the specific
gait adaptations in CSVD suggests targeted rehabilitation
approaches that might focus on improving proprioception and
balance to address the forward head posture observed in these
patients.

Furthermore, the smartphone-based assessment method
demonstrated in this study has potential for remote monitor-
ing applications, allowing clinicians to track patients’ gait
parameters outside of clinical settings and providing a more
ecological assessment of functional mobility. This approach
could be particularly valuable in resource-limited settings
or for patients with mobility restrictions that make frequent
clinic visits challenging.

Future research should aim to validate these findings
in larger, more diverse cohorts and explore the potential
of longitudinal gait assessment to predict disease progres-
sion and response to interventions. In addition, the develop-
ment of more user-friendly, automated analysis tools could
facilitate the integration of comprehensive gait assessment
into routine clinical care for patients with CSVD, poten-
tially improving early detection, monitoring, and personalized
treatment planning for this common but often underdiagnosed
condition.
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