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Abstract
Background: Conventional approaches for major depressive disorder (MDD) screening rely on two effective but subjective
paradigms: self-rated scales and clinical interviews. Artificial intelligence (AI) can potentially contribute to psychiatry,
especially through the use of objective data such as objective audiovisual signals.
Objective: This study aimed to evaluate the efficacy of different paradigms using AI analysis on audiovisual signals.
Methods: We recruited 89 participants (mean age, 37.1 years; male: 30/89, 33.7%; female: 59/89, 66.3%), including 41
patients with MDD and 48 asymptomatic participants. We developed AI models using facial movement, acoustic, and text
features extracted from videos obtained via a tool, incorporating four paradigms: conventional scale (CS), question and
answering (Q&A), mental imagery description (MID), and video watching (VW). Ablation experiments and 5-fold cross-vali-
dation were performed using two AI methods to ascertain the efficacy of paradigm combinations. Attention scores from the
deep learning model were calculated and compared with correlation results to assess comprehensibility.
Results: In video clip-based analyses, Q&A outperformed MID with a mean binary sensitivity of 79.06% (95%CI 77.06%‐
83.35%; P=.03) and an effect size of 1.0. Among individuals, the combination of Q&A and MID outperformed MID alone
with a mean extent accuracy of 80.00% (95%CI 65.88%‐88.24%; P= .01), with an effect size 0.61. The mean binary accuracy
exceeded 76.25% for video clip predictions and 74.12% for individual-level predictions across the two AI methods, with
top individual binary accuracy of 94.12%. The features exhibiting high attention scores demonstrated a significant overlap
with those that were statistically correlated, including 18 features (all Ps<.05), while also aligning with established nonverbal
markers.
Conclusions: The Q&A paradigm demonstrated higher efficacy than MID, both individually and in combination. Using AI to
analyze audiovisual signals across multiple paradigms has the potential to be an effective tool for MDD screening.
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Introduction
Depressive disorder is a common mental disorder affect-
ing approximately 322 million patients in the world, with
major depressive disorder (MDD) as one of its two main
subcategories, which can significantly affect all aspects
of life, including performance at school, productivity at
work, and relationships with family and friends [1]. The
primary methods to assess depression encompass mental
status examinations and assessment scales. However, mental
status examinations such as the Hamilton Rating Scale for
Depression (HAMD) necessitate direct, in-person interviews
conducted by clinicians, which can result in processes that
are both time-consuming and labor-intensive [2]. Self-Report
Symptom Inventories (SRSI) such as the Beck Depression
Inventory [3] and the Patient Health Questionnaire-9 (PHQ-9)
[4] are time-efficient but can be influenced by subjective
biases, which allows for individual variability [5]. Therefore,
the outcomes are susceptible to both intentional and unin-
tentional subjective influences [6] and more approaches are
needed to improve efficiency and accuracy.

In recent years, artificial intelligence (AI) has garnered
attention for its application in signal analysis across vari-
ous modalities. For instance, support vector machines have
been used to analyze functional magnetic resonance imaging
(fMRI) data [7] and a convolutional neural network (CNN)
has been applied to an electroencephalogram (EEG) [8] to
detect depression. While physiological signals such as fMRI
and EEG are unaffected by subjective factors and directly
reflect the participants’ physical states, they involve complex
procedures and high costs. In contrast, noncontact signals,
including text, audio, visual content, and scale information
are more accessible for analysis.

In the text modality, hidden Markov models and ran-
dom forest models were developed to predict depression
and posttraumatic stress disorder based on frequency of
Twitter usage and content [9]. By aggregating weighted
words using lexicons, the sentiment score derived from
text messages demonstrated a positive association with the
severity of depression as measured by the self-rated Patient
Health Questionnaire-8 (PHQ-8) [10-12]. Among the audio
modalities, speech patterns such as a narrowed pitch range
and reduced phonemes within the vowel space have emerged
as important objective indicators for assessing depressive
states [13,14]. Along with prosodic features, mel frequency
cepstral coefficients (MFCC) [15], detailed spectral features
[16], and deep-learned acoustic characteristics [17] have also
been used to identify the presence of depressive symptoms,
achieving binary accuracy of up to 79% or F1-score of 0.890.

For the visual or multimodal domain, several open datasets
are available. One notable example is the Audio/Visual
Emotion Challenge and Workshop [18], which focuses on
the detection of depression and uses an audio-visual dataset
that includes image features extracted from original images
and audio recordings and transcribed text from Google Cloud,
paired with the PHQ-8 scores. Facial action units (AU), as
outlined in the Facial Action Coding System [19], serve as

the foundation for facial expressions and constitute essential
image features in the Audio/Visual Emotion Challenge and
Workshop. Commonly observed AUs correspond to a range
of expressions such as smiling and frowning (see Table S1 in
Multimedia Appendix 1). A higher overall frowning (Action
Unit 4, ie AU4) and head-down posture were identified in
a study by Fiquer et al [20], while a lower overall AU12
and a markedly higher overall AU14 were identified in a
study by Girard et al [21]. This indicated that the distribution
of AUs differs significantly between depressed and nonde-
pressed persons. Facial Action Coding System has also been
employed in the analysis of stress [22], anxiety [23], and
Parkinson’s disease [24].

There are several other existing datasets, including
Mundt-35 [25], BlackDog [26], and MODMA [27]. Most of
these datasets contain a single paradigm, primarily relying
on interviews such as HAMD, or targeting the scores of
SRSIs such as the PHQ-8. Additionally, current multimodal
AI methods mainly extract local features from utterances
or sentences for video clip predictions [28,29]. At the same
time, we believe the screening and diagnosis of MDD should
include the entire process, similarly to the process of clinical
practice.

For other paradigm options, mental imagery description
(MID) [30] can manifest across different sensory modali-
ties, encompassing visual [31,32], auditory [33], and textual
information, and tends to evoke stronger emotional responses
than verbal processing [30].

Thus, aiming to evaluate the efficacy of different
paradigms, we aggregated them in a tool, namely the
Electronic Tool for Depression (ETD), and used a state-
of-the-art (SOTA) method using audiovisual signals to
validate their efficacies. We propose the ETD to be a
nonsubjective and easy-use MDD screening tool. The SOTA
method generates predictions on video clips, and two of
the four paradigms contain only visual signals; therefore,
we implemented a voting mechanism for individual predic-
tions and proposed a global feature method for the remain-
ing vision-only paradigms. This pilot study underscores our
primary contributions, which can be summarized as follows:
(1) to validate the efficacy of the paradigms via AI on
audiovisual signals and aggregate them within a tool for
MDD screening and (2) to propose a global feature method
and explore its efficacy and interpretability.

Methods
Design of the Task and Building the Tool
The ETD consists of four paradigms, aggregated into an
application designed for an 11.5-inch tablet featuring an
8-MP front-facing camera and a 44.8 kHz sample rate
microphone. Before using the ETD, clinicians adjusted the
tablet to ensure that the participant’s head is aligned with
the device at an appropriate distance (approximately 50
centimeters) for effective face capture. The ETD structure
and app design are depicted in Figure 1. Paradigm 1
uses a conventional self-rated scale, specifically the PHQ-9.
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Paradigm 2 encompasses a question-and-answering (Q&A)
paradigm simulating psychiatric examinations. Paradigm 3
requires participants to describe images with the hint words
[30-33]. Paradigm 4 presents three video clips of varying
emotional sentiment scores [34,35] in a positive, neutral, and
negative sequence (41‐73 seconds, average 60.33 seconds).

Participants sequentially respond to these components, with
recordings capturing their reactions during both the viewing
and responding phases, including the PHQ-9 selections; the
entire process takes approximately 5 minutes. It is essential to
clarify that the scale was only used to elicit reactions, and its
scores did not contribute to the predictions.

Figure 1. Components of the Electronic Tool for Depression (ETD). PHQ-9: Patient Health Questionnaire-9; Q&A: question-and-answer.

Recruitment
In this study, 89 participants were recruited from April 2022
to December 2022 in Beijing. Among these, 51 were recruited
from the Beijing Anding Hospital Inpatient Department
and were all diagnosed with MDD by experienced psychia-
trists according to the International Code of Diseases, tenth
revision (ICD-10) [36]. All participants met the inclusion
criteria, which were as follows: (1) age 18‐65 years, (2)
proficiency in standard Chinese, (3) educational level of
primary school or above, and (4) ability to understand and
cooperate with the research protocol.

Exclusion criteria included (1) diagnosis of schizophrenia,
schizoaffective disorder, or other mental disorders and (2)
history of organic brain disease. The remaining 38 partic-
ipants were recruited openly from the general population
(employees and college students) who were not experiencing
depression-related symptoms.

Participants from the hospital completed two steps: the
first involved using the ETD app, and the second inclu-
ded assessment using the HAMD-17 scale by clinicians.
Community participants only completed the ETD test, and all
were confirmed to have no depressive symptoms based on the
PHQ-9 assessment. Finally, the asymptomatic and the healthy
control groups formed the nonMDD group (48 participants),

while the mild group and the moderate or severe group were
collectively referred to as the MDD group (41 participants).
For ease of explanation, the mild group was designated as
MDD-sub1, and the moderate or severe group was designated
as MDD-sub2. Sex was compared using the Χ2 test; age and
HAMD scores were compared using the Mann-Whitney U
test. There were no significant differences in sex ratio or age
between the groups, while the MDD group had significantly
higher PHQ-9 scores than the nonMDD group.
Ethical Considerations
This study was approved by the Ethics Committee of Beijing
Anding Hospital Capital Medical University. No compensa-
tion fee was paid to participants, with written informed
consent obtained for the data usage of research analysis.
Data were deidentified and all analyses followed data privacy
guidelines.
Model Training
All recorded videos underwent a manual verification process
to ensure that the image ratio of a complete head, face,
and eyes exceeded the empirical 95% threshold. We adopted
the MFCC-based recurrent neural network (RNN) [29] as
the validation model, which used a multimodal method that
integrated MFCC and AU features and achieved a SOTA
accuracy of 95.6% in binary classification of depression

JMIR FORMATIVE RESEARCH Chen et al

https://formative.jmir.org/2025/1/e56057 JMIR Form Res 2025 | vol. 9 | e56057 | p. 3
(page number not for citation purposes)

https://formative.jmir.org/2025/1/e56057


on the DAIC-WOZ (Distress Analysis Interview Corpus)
dataset [18]. We pretrained the RNN on RAVDESS (Ryerson
Audio-Visual Database of Emotional Speech and Song
dataset) [37], aggregated the AU features, and fine-tuned the
model on our dataset. We developed a CNN model for AU
detection using EfficientNet [38] on BP4D [39], achieving
a mean F1-score of 0.76 on selected AUs. The sample size
of video clips for the RNN was 11,075, comprising 6826
normal, 2933 mild, and 1316 moderate or severe instances.
We established a clip-voting ratio to represent the individual
results. While the RNN simultaneously processed local audio
and visual data, it did not incorporate conventional scale and
video watching. To address this limitation, we proposed a
global feature extraction method (depicted in Figure 2) to

derive global features and build AI models. For the vision
modality, we used Gaze360 [40] and Dlib [41] along with
AU features to estimate gaze and head orientation. For the
audio modality, we extracted MFCC-based features and the
pure audio duration of the human voice. For the text modality,
we calculated sentiment scores using the pyltp package [42].
The features were concatenated in the order of visual, audio,
and text features. Additionally, we incorporated statistical
characteristics such as mean and variance to enhance their
global representation. Normalization and bias adjustments
were applied to ensure that all the features were positive for
later attention computation (complete feature list is provided
in Table S2 in Multimedia Appendix 1).

Figure 2. The global feature extraction method architecture. MFCC: mel frequency cepstral coefficients; MLP: multilayer perceptron.

We adopted a multilayer perceptron (MLP) as our classi-
fier for global predictions, which is identical to the RNN.
The MLP comprises layers with 512, 1024, 128, and 3
neurons, incorporating batch normalization and a 0.2 dropout
rate to mitigate overfitting; a softmax layer was added as
the prediction. The Adam optimizer was used with a base
learning rate of 1e-3, β1 of 0.9, β2 of 0.999, and ε of 1e-8.
Given that deep learning methods are often considered “dark
magic,” we sought to enhance comprehensibility by employ-
ing Grad-Cam [43] to visualize the attention scores of the
MLP’s best-performing model across each feature. These
results were then compared with Spearman and Kendall
correlation coefficients computed using scikit-learn [44].
Statistical Analysis
Ablation experiments were conducted on various paradigm
combinations. The models predicted three levels of severity,

and binary performance was assessed to distinguish between
depressed or nondepressed states. Sensitivity, specificity,
accuracy, and area under the curve (AUC) were measured
for binary results. Accuracy was specifically calculated for
severity predictions. The five-fold performances underwent
the Friedman test, followed by the posthoc Nemenyi test and
Cliff δ effect size. A 95% CI was computed using bootstrap-
ping, with the exception of single fold clip prediction AUC,
which used normal approximation.

Results
Demographic characteristics are shown in Table 1 and
the findings of clip prediction and the Friedman test are
presented in Table 2. The difference among Q&A, MID,
and QI (combination of Q&A and MID) is significant in
binary sensitivity (P=.02), with a large effect (ε2=0.47). The
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differences in binary AUC and extent accuracy are close
to significant (P=.07 and P=.09, respectively), with large
effects (ε2=0.26 and ε2=0.23, respectively). The differences
in binary specificity and binary accuracy were not significant
and exhibited small effects. Posthoc Nemenyi test results
for sensitivity are detailed in Table 3, revealing that Q&A
outperformed MID (P= .03) with a large effect size (Cliff
δ=1.0). The difference between QI and MID is close to
significant (P=.06) with a large effect (Cliff δ=1.0).

The results of individual prediction and the Friedman
test are presented in Table 4. In the RNN voting analysis,
the differences among Q&A, MID, and QI were significant
in terms of binary sensitivity (P<.01) with a large effect
(ε2=0.61). The differences in binary accuracy and binary
AUC were nonsignificant (P =.13 and P=.09, respectively)
but showed large effects (ε2=0.18 and ε2=0.23, respectively).
Posthoc Nemenyi test results on extent accuracy are presented
in Table 4.

Table 1. Demographic characteristics.
Factors MDDa nonMDDb P value
Sex, n (%) .13c

  Male 12 (29.3) 18 (37.5)
  Female 29 (70.3) 30 (62.5)
Age (years), mean (SD) 38.41 (15.12) 35.98(12.37) .50d

HAM-De, mean (SD) 14.51 (4.66) –f –
PHQ-9g, mean (SD) 13.05 (6.00) 4.17 (2.71) <.001d

aMDD: major depressive disorder.
bnonMDD: non-major depressive disorder.
cChi-square test was used to derive the P value.
dMann-Whitney U test was used to derive the P value.
eHAM-D: Hamilton rating scale for Depression.
fNot applicable.
gPHQ-9: PHQ-9: Patient Health Questionnaire-9.

Table 2. Clip prediction results of the MFCC-baseda RNNb [29] for paradigm combinations.
Paradigm/
statistics/
performance

Sensitivity (%), mean
(95% CI)

Specificity (%), mean
(95% CI)

SAc (%), mean (95%
CI)

AUCd (%), mean (95%
CI) EAe (%), mean (95% CI)

Q&Af 79.06 (77.06‐83.35) 85.71 (73.30‐90.19) 83.01 (74.43‐86.10) 78.12 (66.11‐82.35) 88.70 (83.15‐91.33)
MIDg 56.99 (41.78‐63.36) 85.10 (76.36‐89.81) 76.25 (69.90‐80.30) 70.40 (65.09‐73.60) 81.43 (76.42‐85.35)
QIh 80.22 (75.88‐84.72) 85.61 (77.06‐89.50) 84.41 (81.98‐86.44) 80.36 (76.45‐82.78) 90.37 (88.81‐91.64)
P valuei .02 .55 .25 .07 .09
Effect size (ε2) 0.47 0.00 0.07 0.27 0.23

aMFCC: mel frequency cepstral coefficients.
bRNN: recurrent neural network.
cSA: screen accuracy.
dAUC: area under the curve.
eEA: extent accuracy.
fQ&A: question-and-answer.
gMID: mental imagery description.
hQI: combination of Q&A and MID.
iFriedman test was used to calculate the P value.

Table 3. Posthoc test results of the MFCC-baseda RNNb clip prediction sensitivity between pairs of Q&Ac, MIDd, and QIe.
Paradigm statistic item P valuef Cliff δ (effect size)
Q&A-MIDg .03 1.0 (large)
Q&A-QIh .90 −0.04 (negligible)
QI-MIDi .06 1.0 (large)

aMFCC: mel frequency cepstral coefficients.
bRNN: recurrent neural network.
cQ&A: question-and-answer.
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Paradigm statistic item P valuef Cliff δ (effect size)

dMID: mental imagery description.
eQI: combination of Q&A and MID.
fNemenyi test.
gQ&A-MID: comparison between Q&A and mental imagery description.
hQ&A-QI: comparison between Q&A and combination of Q&A and mental imagery description.
iQI-MID: combination of Q&A and mental imagery description, and single paradigm mental imagery description.

Table 4. Individual prediction results of the MFCC-baseda RNNb voting for paradigm combinations.
Paradigm
performance

Sensitivity (%), mean
(95% CI)

Specificity (%), mean
(95% CI)

SAc (%), mean (95%
CI)

AUCd (%), mean (95%
CI) EAe (%), mean (95% CI)

Q&Af 75.00 (57.50‐87.50) 82.22 (68.89‐86.67) 78.82 (72.94‐83.53) 90.83 (84.17‐95.83) 70.59 (57.65‐77.65)
MIDg 60.00 (42.50‐67.50) 88.89 (77.78‐95.56) 75.29 (62.35‐80.00) 85.00 (81.94‐90.45) 65.88 (57.65‐71.77)
SQIh 75.00 (50.00‐87.50) 88.89 (80.00‐93.33) 82.36 (69.42‐89.42) 92.50 (86.11‐96.11) 80.00 (65.88‐88.24)
P value .29 .26 .13 .09 .009
Effect size 0.04 0.06 0.18 0.23 0.61

aMFCC: mel frequency cepstral coefficients.
bRNN: recurrent neural network.
cSA: screen accuracy.
dAUC: area under the curve.
eEA: extent accuracy.
fQ&A: question-and-answer.
gMID: mental imagery description.
hSQI: combination of conventional questionnaire, Q&A, and mental imagery description.

Table 5. QI outperformed MID (P<.05) with a substantial
effect (Cliff δ=0.64). The difference between Q&A and QI
was nonsignificant (P=.14) but indicated a large effect (Cliff
δ=−0.48). In the global feature MLP analysis, differences
among the paradigms were insignificant and exhibited small
effect sizes, with results in Table S3 in Multimedia Appendix
1.

The best fold performance is shown in Table 6. The global
feature, SQIV (combination paradigm of CS, Q&A, MID,
and VW) MLP achieved a peak individual binary accuracy of
94.12%. Notably, the RNN voting SQI model also achieved a
top accuracy of 94.12%, but with a higher extent accuracy of
94.12%, and an AUC of 0.99.

Table 5. Post-hoc statistic test results of the RNNa voting individual prediction extent accuracy between pairs of Q&A,b MIDc, and QId.
Paradigm statistic item P valuee Effect size (Cliff δ)
Q&A-MIDf .60 0.32 (small)
Q&A-QIg .14 −0.48 (large)
QI-MIDh .01 0.64 (large)

aRNN: recurrent neural network.
bQ&A: question-and-answer.
cMID: mental imagery description.
dQI: combination of Q&A and MID.
eNemenyi test.
fQ&A-MID: comparison between Q&A and mental imagery description.
gQ&A-QI: comparison between Q&A and combination of Q&A and mental imagery description.
hQI-MID: combination of Q&A and mental imagery description, and single paradigm mental imagery description.

Table 6. Performance of the best fold of the global feature MLPa SQIVb model, the MFCC-basedc RNNd SQIe clip model, and the MFCC-based
RNN SQIe voting model.

Method Paradigm performance
Sensitivity %,
(95% CI)

Specificity %,
(95% CI) SAf %, (95% CI) AUCg (95% CI) EAh %(95% CI)

MLPa SQIVb 100.0 (63.06‐
100.0)

88.89 (51.75‐
99.72)

94.12 (71.31‐
99.85)

0.97 (0.87‐1.0) 76.47 (50.10‐93.19)

RNNd SQIe 80.69 (77.74‐
83.64)

89.93 (88.60‐
91.26)

87.36 (86.09‐
88.63)

0.91 (0.90‐0.92) 83.03 (81.60‐84.46)

RNNd voting SQIe 100.0 (63.06‐
100.0)

88.89 (51.75‐
99.72)

94.12 (71.31‐
99.85)

0.99 (0.91‐1.0) 94.12 (71.31‐99.85)
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Method Paradigm performance
Sensitivity %,
(95% CI)

Specificity %,
(95% CI) SAf %, (95% CI) AUCg (95% CI) EAh %(95% CI)

aMLP: multilayer perceptron.
bSQIV: combination of conventional scale, Q&A, mental imagery description, and video watching.
cMFCC: mel frequency cepstral coefficients.
dRNN: recurrent neural network.
eSQI: combination of conventional scale, Q&A, and mental imagery description
fSA: screen accuracy
gAUC: area under the curve
hEA: extent accuracy

The test results of comparison between the RNN voting and
the proposed global feature method can be found in Table
S4 in Multimedia Appendix 1. The input data are the same
in Q&A and MID; for paradigm combinations, we compared
RNN-voting QI and the global feature method (ie, combina-
tion paradigm of CS, Q&A, and MID; SQI), as they use
the most comparable input data. No statistically significant
differences were identified between the two methods across
all three paradigms. Figures S1-S4 in Multimedia Appendix
1 illustrate the collective and individual learnings of the best
MLP SQIV model. The mean attention scores of the features
are sequenced by the nonMDD group, the MDD-sub1 group,
and the MDD-sub2 group. The complete attention scores with
Spearman correlation scores are mentioned in Table S5 in
Multimedia Appendix 1, sorted in descending order for the
MDD-sub2 group. Previously analyzed nonverbal markers in
studies by Fiquer et al [20] and Girard et al [45] can be found
in Table S6 in Multimedia Appendix 1. As shown in Figure
S1 in Multimedia Appendix 1, the different groups exhibit
varying levels of attention to specific features. The Spearman
and Kendall correlation coefficients for each feature relative
to the target extent of depression are available in Table S5 in
Multimedia Appendix 1, where 18 features demonstrated a P
value<.05.

Discussion
Principal Findings
We aimed to evaluate the efficacy of different paradigms via
AI on audiovisual signals. We aggregated the four paradigms
within the ETD and held 5-fold cross-validation on the two
AI models among the paradigm combinations. Our findings
show that there are differences in paradigm efficacies, and
the AI model learns knowledge consistent with prior human
experience.

For the single paradigm with the MFCC-based RNN,
Q&A outperformed MID in identifying patients but per-
formed equally in distinguishing extent levels. The difference
between Q&A and MID in clip sensitivity was significant,
but nonsignificant in individual extent accuracy. This makes
Q&A more precise in identifying MDD patients.

For paradigm combinations with the MFCC-based RNN,
integrating MID with Q&A slightly decreased clip sensitiv-
ity significance but significantly improved individual extent
accuracy significance compared with MID. Considering that

the difference between QI and Q&A was nonsignificant in
either clip sensitivity and extent accuracy, and the differen-
ces among Q&A, MID, and QI were nonsignificant in the
other performance indexes, we conclude that Q&A demon-
strated higher efficacy than MID and suggest that paradigm
combinations perform better than a single paradigm. As
known, Q&A is a simplified version of a clinical interview,
and the questions are all symptom-related, which makes it the
most relevant paradigm for MDD and the most important one.

In the individual prediction of the global feature MLP,
no significant differences were observed across the para-
digm combinations. When fixing the paradigms, no nota-
ble differences were found between the MFCC-based RNN
voting and the global feature MLP, which validated the global
features’ effectiveness. Some large effect sizes were noted,
particularly in binary AUC and extent accuracy for Q&A
and QI, which may be attributable to feature granularity. The
RNN feature integrates both local and global information,
with local features benefiting from transfer learning, which
enhances performance—achieving a top binary accuracy of
94.12%, a top mean binary accuracy of 82.36%, and a mean
extent accuracy of 80.00%. In contrast, the global features
may be coarse at the granular level. Even so, the MLP still
achieved a mean binary accuracy ranging from 74.12% to
85.88%, with a 95% CI spanning 69.41% to 91.77%, and a
top binary accuracy of 94.12%. Overfitting might exist and
could result in wide CIs.

Compared with support vector machine models [7], which
showed a mean binary accuracy of 78.95% on event-related
fMRI [46] and 85.00% on block-related fMRI [47] and CNN
[8], which achieved a mean binary accuracy of 85.62% on
EEG data, the ETD demonstrated equivalent performance
while relying on much more readily accessible daily data.
Compared to SRSIs, the audiovisual data are more objective
and easier to use. Compared to interview-based assessments
such as the HAMD [2], the ETD required approximately 5
minutes, saving about 83% of the time. The ETD’s per-
formance and efficiency support its potential to objectively,
accurately, and efficiently screen for MDD.

In the visualization, it is noteworthy that the high- and
low-attention features did not intersect, particularly between
the MDD group and the nonMDD groups, indicating that
participants in different groups exhibited diverse behavioral
patterns. Almost all 16 features mentioned by Fiquer et al
[20] and Girard et al [21] exhibited high attention scores, with
the lowest score being 0.68. Among these, 15 features ranked
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in the top 20%, except for “head down” which ranked 31st
in MDD-sub1, demonstrating consistency with prior studies.
Additionally, “head motion velocity” was not included in
this study. When comparing with correlation results, 18
features emerged as having significant positive or negative
relationships with MDD extent, both in feature items and
in correlation trends observed via Spearman and Kendall
methods—differing only in specific weights. Of these, 11
aligned with the correlation trends; 5 showed patterns in
which the attention scores for the MDD group were either
higher or lower than those of the nonMDD group, and only 2
showed no clear trends. For instance, the mean attention score
of AU4, interpreted as “frown” by Fiquer et al [20], increased
with the extent of MDD, and the Spearman correlation for
AU4 was positive (P=.005). These high-attention score and
correlation-consistent features may serve as urgently needed
objective markers and should be further investigated.

The MLP leverages global features representing statistical
values throughout the process, sacrificing some detail at the
granular level while maintaining low model and computa-
tional complexity. Despite potential overfitting, the alignment
of the visualization results with correlation findings indicates
that the MLP has acquired knowledge consistent with medical
prior knowledge, supporting its performance and underscores
its potential as a valuable tool. For the inconsistent elements,
the neural network introduces significant nonlinearity and
captures relationships in high-dimensional spaces. In contrast,
Spearman and Kendall correlations are limited to assessing
relationships between single inputs and targets. We propose
that a trained model can reveal complex multi-input–target
relationships that are difficult to define manually. Further-
more, results may vary with the accumulation of additional
data.

The ETD’s efficiency—requiring less time and energy—
and its objectivity and accuracy make it a flexible and
practical tool to be applied across diverse medical scenes that
prioritize lightweight and quietness, particularly in screening

and health monitoring scenes. Multimodal analysis may
produce better results; for instance, AUC of binary depres-
sion status increased from 0.72 to 0.76 with networked
smartphone sensors combining to text messages [12], and
the binary accuracy increased from 76.27% to 95.60% when
AU features were added to acoustic features in the base-
line MFCC-based RNN [29]. As wearable devices continue
to gain popularity, easily obtainable physical signals such
as ECG and photoplethysmography can be integrated as
additional modalities to enhance clinical outcomes. In our
work, we currently use visual, acoustic, and text information
jointly, which we believe may be a key point in the high
performance observed and should receive more attention in
future studies. As audiovisual features are also related to
other conditions such as anxiety disorder and schizophrenia
[48], or to distinguish between MDD or bipolar depression
[49], aggregating multiple paradigms may further improve
efficacy.
Conclusions
The Q&A method showed greater efficacy compared to
MID, and combining paradigms may yield better results than
using individual paradigms alone. Visualization interpretation
showed that the AI method acquired knowledge that aligns
with medical expertise and identified several potentially
significant markers. By applying AI to multimodal audio-
visual signals, these findings position the ETD as a valua-
ble, objective tool for screening MDD and show potential
for applications across a broader spectrum of psychiatric
disorders with various data modalities.
Limitations
The efficacy of the modalities remains inadequately explored.
Automatically detected AUs may not achieve the reliability
of human-labeled results. Additionally, conclusions drawn
from current analyses may require revision as sample sizes
increase, particularly in deep learning frameworks.
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