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Abstract

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists
use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of
these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be
unreliable due to discrepancies in what is reported versus the actual visual patterns. This discrepancy can interfere with quality
improvement interventions and negatively impact patient care.

Objective: The objective of this study is to provide an alternative method for distinguishing between radiologists by means of
captured eye-tracking data such that the raw gaze (or processed fixation data) can be used to discriminate users based on
subconscious behavior in visual inspection.

Methods: We present a novel discretized feature encoding based on spatiotemporal binning of fixation data for efficient geometric
alignment and temporal ordering of eye movement when reading chest x-rays. The encoded features of the eye-fixation data are
used by machine learning classifiers to discriminate between faculty and trainee radiologists. A clinical trial case study was
conducted using metrics such as the area under the curve, accuracy, F1-score, sensitivity, and specificity to evaluate the
discriminability between the 2 groups regarding their level of experience. The classification performance was then compared
with state-of-the-art methodologies. In addition, a repeatability experiment using a separate dataset, experimental protocol, and
eye tracker was performed with 8 participants to evaluate the robustness of the proposed approach.

Results: The numerical results from both experiments demonstrate that classifiers using the proposed feature encoding methods
outperform the current state-of-the-art in differentiating between radiologists in terms of experience level. An average performance
gain of 6.9% is observed compared with traditional features while classifying experience levels of radiologists. This gain in
accuracy is also substantial across different eye tracker–collected datasets, with improvements of 6.41% using the Tobii eye
tracker and 7.29% using the EyeLink eye tracker. These results signify the potential impact of the proposed method for identifying
radiologists’ level of expertise and those who would benefit from additional training.

Conclusions: The effectiveness of the proposed spatiotemporal discretization approach, validated across diverse datasets and
various classification metrics, underscores its potential for objective evaluation, informing targeted interventions and training
strategies in radiology. This research advances reliable assessment tools, addressing challenges in perception-related errors to
enhance patient care outcomes.
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Introduction

Lung cancer is the leading cause of cancer death, claiming
139,000 American lives yearly [1]. To mitigate its impact, the
US Preventative Task Force recommends annual radiological
screening for at-risk individuals [2]. Radiologists identify
suspicious lung lesions (nodules) from patient chest images and
recommend further management, including biopsy, continued
surveillance, or further workup. Radiological surveillance
reduces population mortality from lung cancer, but it is
estimated that radiologists will make errors on 33% of abnormal
chest exams, eliminating the chance for patients to start
lifesaving treatment [3]. The predominant source of these errors
is not deficient medical knowledge. Rather, errors primarily
stem from the methods radiologists use to visually inspect the
image, referred to as perceptual errors [4]. In other words,
perceptual errors in radiology are mistakes that occur during
the visual inspection and interpretation of medical images. They
are distinct from cognitive errors, which involve incorrect
reasoning or decision-making based on observed information.
There are 2 primary patterns for overlooking a disease due to
perceptual errors:

• Examining the affected area but ignoring the disease: This
occurs when the radiologist inspects the region with the
abnormality but fails to recognize it, possibly due to subtle
presentation, distractions, or visual fatigue.

• Not examining the affected area: This happens when the
radiologist misses the region with the abnormality entirely,
often due to inefficient search patterns, incomplete scanning,
or being misled by more prominent findings elsewhere.

Kundel [5] investigated the effects of perceptual errors in
radiology and concluded that decisions and outcomes improve
when radiologists’ experiences are enhanced.

Radiologists and radiology educators understand the stakes
associated with missed diagnoses due to perceptual errors but
have limited tools to combat these errors. Classical educational
texts include general concepts, for example, “...scan the areas
of least interest first, working toward the more important areas”
[6], which, unfortunately, are inadequate to improve radiologist
performance meaningfully.

Eye-tracking technology has been previously proposed as a tool
to evaluate radiologist perception. Eye trackers are powerful
because they provide high (>30 Hz) temporal and spatial
resolution (approximately 1 degree of error). With the aid of
eye tracking, quantitative analyses can be performed to
understand the cognitive and perceptual processes better.
Eye-tracking technology has previously proven relevant in
evaluating decision-making processes [7], attention interruption
[8], skill level determination [9], and impact of search pattern
education [10].

In 2017, van der Gijp et al [11] performed a systematic literature
review outlining the current state of science concerning visual
perception in radiology. A key tenet is the global-focal search
model [12-14], which can be summarized as the generation of
an initial, fast global impression followed by a more detailed
focal search. Eye-tracking technology allows these principles
to be tested and potentially optimized to evaluate all clinically
relevant portions of the exam in greater detail. Of the 22 relevant
articles van der Gijp et al [11] reviewed, a consensus
“traditional” feature set consisting of 5 features that could be
experimentally measured was found to be associated with
expertise.

Despite the development of this consensus feature set, visual
search complexity may not be adequately captured by simple,
low-dimensional features that do not fully describe how visual
perception relates to skill. Machine learning is well-suited to
provide deeper insight into radiologist visual search behavior
and how this relates to radiologist performance. Waite et al [3]
highlighted the importance of understanding perceptual expertise
in radiology and the potential use of eye-tracking and perceptual
learning methods in medical training to improve diagnostic
accuracy. Lim et al [15] identified several features that can be
extracted from eye-tracking data, including pupil size, saccade,
fixations, velocity, blink, pupil position, electrooculogram, and
gaze point, to be used in machine learning models. Among these
features, fixation was the most commonly used feature in the
studies reviewed.

Shamyuktha et al [16] developed a machine learning framework
using eye gaze data such as saccade latency and amplitude to
classify expert and nonexpert radiologists. Harezlak et al [17]
investigated eye movement traits to differentiate experts and
laymen in a similar study. Akshay et al [18] proposed a machine
learning algorithm to identify eye movement metrics using raw
eye-tracking data. Rizzo et al [19] used machine learning to
detect cognitive interference based on eye-tracking data. Öder
et al [20] applied machine learning to classify familiar web users
based on eye-tracking data. Indeed, these techniques can be
used to enhance competency assessment and feedback
techniques in radiologists.

Eye tracking also holds the potential for understanding the
longitudinal aspects of competency progression in medical
education, allowing for examining how interpretive and
diagnostic skills develop over time. Karargyris et al [21] and
Bigolin Lanfredi et al [22] created and validated chest x-ray
datasets with eye-tracking data and report dictation for
developing such artificial intelligence systems. These datasets
aim to support the research community in developing more
complex support tools for radiology research.

In this study, we use machine learning to compare the
discriminability of 2 radiologists of different skill levels using,
first, the aforementioned “traditional” gaze-based features (such
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as time to scan, saccade length, the total number of fixations,
and total regressive fixations) [11] and second, the “proposed”
features that we developed to describe high-dimensional visual
search patterns thoroughly and quantitatively. We curate the
traditional feature sets to those that could be practically acquired
without laborious manual ground truthing of exams, as this
would permit large-scale deployment of this technology to health
care institutions. To highlight the use of eye-tracking data and
artificial intelligence, we term our general approach “biometric
radiology artificial intelligence.”

The driving hypothesis behind the work presented in this paper
is that gaze patterns measurably differ among radiologists as a
function of their experience level. To test this hypothesis, we
proposed a novel discretized feature encoding method that

condenses fixation data into a few representative spatiotemporal
bins for descriptive and predictive analytics purposes (Figure
1). With spatiotemporal binning, fixations are divided into a
predefined number of temporal segments (bins). Within each
temporal bin, the fixations are counted within spatial
subdivisions of the image. This process results in a vector that
captures detailed and structured information about both where
and when fixations occurred. By splitting fixations into temporal
bins, we capture the evolution of the visual search process over
time, providing insights into how radiologists allocate their
attention during different phases of image inspection. Also,
spatial binning allows us to understand which regions of the
image are being focused on and how frequently. In addition,
this method transforms raw fixation data into structured features
that can be effectively used by machine learning models.

Figure 1. Overall algorithm: the steps required to generate proposed features from the raw dataset and build the proposed machine learning model.

We collected the gaze fixation data from radiologists while they
were reading the x-rays. These data were then segmented into
fixed temporal groups before discretizing them to convert them
into final encoded vectors. The final encoded features were then
used in training machine learning algorithms to classify
radiologists.

Collecting data from 2 participants—1 faculty member (expert)
and 1 resident (trainee)—we analyzed their behavior and level
of experience using the proposed approach. Using stratified
cross-validation over 10 folds, we compared the area under the

curve (AUC) performance of several classifiers using the
proposed methodology with the AUC performance of those
same classifiers when using a traditional feature set (Table 1).
We then confirmed our results using data from a second
similarly designed, larger study evaluating 8 participants—4
faculty members (expert) and 4 residents (trainee). The
remainder of the paper is structured as follows: Methods presents
the data collection and preparation procedures and details of
the proposed method; Results describes the simulation study
and interpretation; and Discussion presents the discussion,
concluding remarks, and advice to practitioners.
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Table 1. State-of-the-art features from 22 relevant studies.

Association with high level of expertise (percentage of the
total number of included studies)

Attribute descriptionAttribute (per trial)

Decrease (45.45%)Measures the total duration spent scanning the chest x-ray
image, indicating the thoroughness of the visual inspection

Total time to scan

Increase (4.55%) or decrease (4.55%)Counts the number of distinct locations revisited during
the scan, suggesting areas of uncertainty or interest

Regressive fixation count

Decrease (18.18%)Total number of fixations, reflecting the intensity of the
visual scrutiny

Fixation count

Increase (9.09%) or decrease (4.55%)Sum of all saccade lengths, indicating the extent and pattern
of the visual search (time between fixations) [23] captured
in a single chest x-ray scan

Total saccade length

Increase (9.09%) or decrease (9.09%)Percentage of salient regions covered by the gaze, reflecting
the comprehensiveness of the examination

Coverage

Methods

Study Design, Data Collection, and Preparation

Overview
The study design was prospective, controlled, block-randomized,
and Institutional Review Board (IRB) approved. Each study
participant completed 4 roughly 1-hour sessions in a radiology
reading room, including tutorial, calibration, assessment, and
annotation periods. The tutorial included an overview of the
assessment period and instructions on how to perform dictation
and annotation consistently. Calibration was performed to ensure
that recorded and actual gaze were consistent based on a 9-point
custom calibration mapping script.

Nodule and normal cases were derived from the Shiraishi 2000
chest radiograph dataset [24], which includes 154 chest
radiographs with 5 degrees of subtlety from level 1 (extremely
subtle) to level 5 (obvious). Distractor cases were derived from
the VinDr chest radiograph dataset [25]. A total of 3 sets of 6
nodule cases from the Japanese Society of Radiological
Technology dataset, 1 set each from the intermediate difficulty
levels (2, 3, and 4), and 1 set of 9 normal cases from the
Japanese Society of Radiological Technology dataset were
randomly sampled without replacement. In total, 2 cases each
of pneumothorax, cardiomegaly, and consolidation from the
VinDr dataset were randomly sampled without replacement to

serve as distractor cases. These distractor cases functioned
mainly to prevent control subject bias to the nodule detection
task. Each participant reviewed the exams only once during the
trial, and all study participants reviewed the same set of cases.

A custom software tool was developed to automatically display
the study images and capture time-stamped bilateral gaze,
bilateral pupil, head pose, voice, annotation, and image display
configuration data. No chin rest was used to ensure that the
study was performed in a manner that was as close as possible
to a clinical setting. After each session, data were transferred
to a database for further analysis.

Data Acquisition
In the first study, the EyeLink 1000 eye tracker and software
were used to collect eye-tracking data [26]. A total of 2
participants—1 faculty member (9 years of faculty experience)
and 1 resident (3 years of trainee experience)—observed a series
of chest x-ray images, which contained a balanced class
composition of normal scans (no abnormalities), abnormal scans
(mass or nodule present), or abnormal scans with pleural
effusion. A total of 110 trials (55 trials were studied by each
participant) were recorded. We leveraged the EyeLink suite to
remove most artifacts, such as blinks, from the eye-tracking
data captured in each participant’s trial and manually filtered
remaining artifacts, such as off-screen distractions left
unprocessed (eg, the far-displaced fixations in Figure 2).
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Figure 2. Example of eye-tracking fixations for 1 trial processed by the EyeLink software. The fixations illustrated include participants 1 (blue) and
2 (red) superimposed on the image displayed during the trial. The “invalid” fixations that were not successfully filtered out are shown as “x” markers
and were manually removed during data processing.

In the second study, a Tobii 5L eye tracker was used [27]. This
second dataset included 8 participants (4 faculty with an average
of 12.75 years of faculty experience and 4 trainees with 2.25
years of trainee experience), each scanning the same set of 27
images. The Tobii gaze data were unprocessed to evaluate the
robustness of the proposed method to fixation postprocessing.

Common (Traditional) Features
To establish a necessary baseline to which the proposed
methodology can compare, several attributes were established
based on a meta-analysis done by van der Gijp et al [11] in
2017. The baseline is used for two main reasons: (1) traditional
features are well-known and correlate with radiologist expertise,
serving as a necessary reference point to evaluate our proposed
method’s effectiveness, and (2) comparing our novel discretized
vector encoding method against this baseline demonstrates the
added value, improved classification accuracy, and robustness
of our new approach. We separated those features based on if
they required ground truthing of exams. Meanwhile, ground
truthing of medical exams is costly and time-consuming as it
involves manual annotation by experts, which also limits the
scalability of the method. In addition, reliance on ground truth
annotations can introduce biases and errors, as the annotations
themselves might vary between experts, which limits
applicability and transferability to real-world applications.
Consequently, features that required knowledge of the image
abnormalities’ ground truth location (ie, area of interest) were
removed: fixation duration on the area of interest, number of
fixations on the area of interest, and the time between trial start
and the first fixation on the area of interest. This ensures that
the proposed approach can be more easily and widely applied
in clinical settings without the need for extensive preparatory
work. It also helps mitigate potential variability and subjectivity
in the training data, leading to more robust and generalizable
models. Furthermore, by excluding features tied to known
locations abnormally, we can better capture inherent differences

in visual search patterns between experienced and less
experienced radiologists.

Table 1 summarizes the remaining attribute names, descriptions,
and expected association with levels of expertise. All features
were used as originally defined except for coverage. Salient
regions refer to areas of an image that are not part of a peripheral
black background. This is typically necessary because users
may be viewing scans with different amounts of background
area. As noted previously, we used the Tobii gaze data without
fixation postprocessing. For evaluating traditional features using
fixations in the Tobii dataset, we substituted raw gaze data with
fixation data. For purposes of clarity and brevity, we use
fixations and gaze interchangeably for the remainder of the
paper.

Proposed Approach: Discretized Vector Encoding for
Fixation Data
Here, we describe the proposed method for directly using the
fixation patterns as an alternative approach to using the current
and previously described attributes in Table 1. The proposed
strategy aims to extract information from fixations in the
following 2 ways: first, geometric alignment: this involves
mapping the coordinates of eye fixations on the chest x-ray
images into a Cartesian grid. Each fixation is assigned to a
specific grid cell based on its position, such as the Cartesian
locations of the fixations when displayed on a chest x-ray image.
Second, temporal order in which the fixations appear: the order
in which fixations occur is crucial. Fixations are split into
temporal bins, preserving the sequence of visual inspection. For
each trial with recorded fixation data, we split the fixations into
t number of temporal bins (each bin covers “total time divided
by the number of bins in seconds”) or groups before counting
the number of fixations captured within square grids or
subdivisions of size x. Then, the t number of x-by-x grids is
encoded into a single vector of size 1-by-(x×x×t). The overall
procedure is described in pseudocode in algorithm 1 (Textbox
1) and illustrated in Figure 3.
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Textbox 1. Discrete vector encoding for fixation data.

Algorithm 1: Vector encoding for fixation data

• Input

• n-Fixation coordinates of a single trial, F[n×2], number of x- and y-axis subdivisions, (x,y), number of temporal groups, (t)

• Output

• Encoded vector, V[1×(t×x×y)]

• Initialize

• Create array A[t×x×y] and centroids C[(x×y)×2] corresponding to the center of each grid subdivision (defined by second and third indices of A

• Evenly split fixations into t-groups, T = ([F1, F2,  ]1,  , [ , F(n-1) Fn ]t)

• Procedure

• For i= 1 →>t do:

f = Ti

For j = 1 → len (f) do:

C*=argmin (|| C-fj ||)

A [i, Cx
*, Cy

*] += 1

V = vec(A)

Return V

Figure 3. Proposed discretized vector encoding for fixation data. Bins 1, 2, and 3 capture fixations in a preserved spatial dimension across different
temporal windows. Each row represents a temporal bin, and within each bin, the chest x-ray image is divided into spatial grids. The fixations are counted
within each grid cell, providing a detailed representation of the radiologist’s visual search pattern over time.

In Figure 3, participant 1 inspects a single chest x-ray image;
the processed fixations are captured as illustrated gold squares
with red edges, with the first fixation labeled as a blue cross
and the last fixation visualized as a magenta star. In this
example, the fixations are split into 3 temporal segments (Step
1), in which 3-by-3 grids count the number of fixations within
them (Step 2). Then, the proposed algorithm outputs the final
encoding vector as the flattening and concatenation of the set
of 3-by-3 grids (Step 3). For a given (square) grid of size x and

t number of temporal segments, the final yielded output vector
is of length, regardless of trial temporal duration. Segmenting
the raw data into fixed temporal segments is one of the benefits
of this approach and a strategy developed and imposed to
generate consistent numbers of variables on the encoding output
across different trials. As the number of fixations across each
trial can vary between participants, fixing the number of
temporal segments allows the capturing of trial duration while
conforming to a prescribed number of grid subdivisions and
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temporal groups. For example, with Figure 3 as a reference, the
final encoded vector will yield a vector with larger values therein
for longer trials and yield a sparse vector (with lower values or
values of zero) for shorter trials. Users can increase the fidelity
of the grid and the number of time groups to represent a
continuous spatiotemporal domain more closely. It is notable
that the proposed methodology possesses the capability for
tensor configuration for use in deep learning architecture by
using t layers of grids. This tensor configuration is not studied
in the paper due to the small sample size. The introduced
technique is designed with more accessible or simpler classifiers
in mind.

Performance Metric and Simulation Setup

To evaluate the discriminability of participants using the
proposed approach, we use a stratified-fold cross-validation to
calculate the AUC metric for several classification models,
where each of the folds contains 5 trials from both levels of
experience as the hold-out set. The study was performed on the
data acquired by the EyeLink and Tobii equipment separately,
and the following sections will contain an elaboration on their
respective results. We performed cross-validations on a
full-factorial configuration of 5, 7, 10, and 15 square grid
subdivisions and 3, 5, 10, and 20 temporal groupings and
selected the settings for each classifier that yielded the best
results. In the presentation of these results, the average scores
were calculated by computing the AUC metrics at the lowest
level (data acquisition method, classifier, data type, feature
extraction method, grid-size, temporal-group, and
cross-validation seed) and averaged to the presented levels of
granularity. Given the small sample size of 110 (EyeLink
dataset) and 216 (Tobii dataset) trials, and high dimensionality
in the chosen configurations (up to 4500 encoded variables in
our study), there are available pathways that we have used to
alleviate the effects of the curse of dimensionality present [28],
such as principal component analysis (PCA) [29] and kernel
principal component analysis (KPCA) [30]. The feature
extraction and dimensionality reduction methods used include
reducing the input data to 2 dimensions (with varying amounts
of explained variance) and fixing the amount of variance
explained to 50%, 90%, and 99% (with varying numbers of
dimensions). These techniques were used not only to reduce
the density of the data but also to introduce an additional
preprocessing step that leverages the spectral decomposition of
data collected from each participant.

Some of the major reasons for considering PCA and KPCA
instead of the other alternatives include the following: PCA and
KPCA are among the most popular method of dimensionality
reduction; most technical practitioners, especially in the field
of medicine, are familiar with PCA and KPCA; PCA and KPCA
have rigorous mathematical properties and commonly used
baseline methods in statistical analysis; and PCA and KPCA

have relatively low computational complexity compared with
many of the other shallow and deep alternatives.

All the codes were written using Python. The used libraries and
versions are as follows: matplotlib (3.7.1), seaborn (0.12.2),
tqdm (4.65.0), scipy (1.8.0), scikit-learn (1.0.2), xgboost (1.7.5),
GPy (1.10.0), numpy (1.21.6), pandas (2.0.1), and joblib (1.2.0).

Ethical Considerations
This study was conducted in full compliance with human
participant research ethics and was reviewed and approved by
the University of Texas Health San Antonio Institutional Review
Board (20190533HU). All participants were fully informed
about the purpose and procedures of the study, and informed
consent was obtained before their inclusion. To ensure the
privacy and confidentiality of participant data, all identifying
information was removed to anonymize the dataset before
analysis. Furthermore, participants were compensated $400
USD for their time and involvement in the study.

Results

Competing Algorithms and Training
In this study, we use the Gaussian process, logistic regression,
and k-nearest neighbors classifiers from the Scikit-learn [31]
package; the extreme gradient boosting (XGBoost) [32]
tree-based ensemble classifier; and a modified AlexNet [33]
deep learning classifier. The Scikit-learn classifiers were
selected for their accessibility to users, while the XGBoost and
AlexNet-like neural networks were chosen as more complex
classifiers. The logistic regression, k-nearest neighbors, and
XGBoost classifiers used Scikit-learn’s StratifiedKFold and
GridSearchCV packages to train on the balanced accuracy loss
function (also defined by Scikit-learn), while the Gaussian
process methodology used Laplace approximation as detailed
in their documentation [31]. Finally, the AlexNet-like classifier
used sparse categorical cross-entropy [34] for training.

EyeLink Dataset
Figure 4 illustrates the average AUC across each classifier
tasked with distinguishing between 2 participants (particularly
between 2 levels of experience) using either the traditional or
the proposed encoded data types (features). Along with the
original data types, we include the average AUC of the
classifiers based on the usage of select feature extraction
configurations. The encoded features extracted from the raw
dataset, shown on the left, illustrate a consistently high AUC
score compared with the traditional features shown on the right,
implying that the model performance for each classifier (except
for certain feature extraction configurations of the AlexNet
model) has high discriminatory power under optimal
spatiotemporal encoding settings.
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Figure 4. Numerical study results on the area under the curve metric reported for each classifier when consuming the EyeLink dataset, organized by
the aggregated average of classifier, data type, and select feature extraction levels using the original dataset, principal component analysis (PCA), and
kernel principal component analysis (KPCA). Alex: AlexNet-like neural network classifier; Average: average of all classifiers; GP: Gaussian process;
KNN: k-nearest neighbors; LR: logistic regression; XGBoost: extreme gradient boosting;.

We also present the AUC metrics from Figure 4 below in Table
2. The performance of the classifiers using the encoded data
type consistently yielded higher discriminatory power than those
using the traditional data type across all feature extraction
methods. Encoding the fixation data into the proposed
spatiotemporal elements provides more information each
classifier can use to determine the experience level of a given
participant more effectively than using traditional attributes.
This table illustrates the original encoded data to possess the
highest performance, with AUC scores consistently above 0.98
across all classifiers. However, usage of the traditional data
yields roughly 0.522 at worst, as seen in the reported results for
the AlexNet classifier. This trend of encoded data providing
better results is also seen when using feature extraction; although
a performance decrease is observable when reducing dimensions
either through an information covariance matrix (PCA) or spatial

relation (KPCA), the use of encoded data still outperforms those
corresponding to the use of the traditional data. This suggests
that the loss in information due to dimensionality reduction can
be considered negligible in light of the benefits of using
spatiotemporal encoding. The lower relative performance of
the AlexNet-like classifier is likely caused by the number of
training samples available in this study. The report on AUC in
the table for the classifier is higher for the encoded data type,
where it is observable that using the data without dimensionality
reduction provides the best performance. This effect has been
studied in Sumner and Alaeddini [35], in which neural networks
already perform feature extraction throughout each present
layer; this supportively evidences the reported results here,
whereas (besides the small dataset) performing feature extraction
beforehand may not provide enough information for the network
to use its architecture to its fullest potential.
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Table 2. Numerical tabulation of area under the curve scores across each classifier and data type and select feature extraction methods.

Classifier for the EyeLink dataset, AUCaFeature extraction method and data
type

XGBoostdLRcKNNbGaussian processAlexNet

KPCAe (2D)

0.9801.0000.9801.0000.801Encoded

0.9140.9700.9670.9780.336Traditional

KPCA (50%)

0.9801.0000.9961.0000.501Encoded

0.9140.9700.9670.9780.292Traditional

Original

0.9911.0001.0001.0000.985Encoded

0.9141.0000.9001.0000.522Traditional

PCAf (2D)

0.9911.0000.9910.9780.818Encoded

0.8300.8060.8700.8660.500Traditional

PCA (50%)

0.9911.0000.9911.0000.611Encoded

0.8300.8060.8700.8660.500Traditional

aAUC: area under the curve.
bKNN: k-nearest neighbor.
cLR: logistic regression.
dXGBoost: extreme gradient boosting.
eKPCA: kernel principal component analysis.
fPCA: principal component analysis.

By using the encoded vectors for classification, differences in
eye-tracking patterns can more consistently be distinguished
between the 2 participants. Figures 5 and 6 illustrate one such
difference in search pattern behavior. The more experienced
participant (participant 1, Figure 5) shows a more uniformly
distributed search pattern across the chest x-ray. In contrast, the
less-experienced participant (participant 2, Figure 6) focuses

on regions where they suspect abnormalities. It is clear from a
visual inspection that the behavior between these participants
is markedly different and using the correct spatiotemporal
configurations to capture the differences between the 2
participant’s behavior by leveraging the proposed methodology
(as reported numerically in Table 2) provides a consistent
improvement of classification accuracy.
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Figure 5. Scan of chest x-ray by participant 1 (faculty).

Figure 6. Scan of chest x-ray by participant 2 (trainee).

Tobii Dataset
We have performed the same analysis on the data acquired using
Tobii eye-tracking equipment. It is notable that although the
AUC scores from the EyeLink dataset are consistently high,
natural anticipations allow one to observe more variation in
classifier performance when more individual participants
(classified as either a more-experienced faculty or

less-experienced trainee) are introduced to the study. Figure 7
illustrates a report on AUC in a similar fashion to that in Figure
4, with lower scores across all classifying models for both data
types. As seen in Figure 4, Figure 7 also suggests that the best
performance for the encoded data on average is attained when
using it without feature extraction, although, for several cases,
we can observe that some form of feature extraction yields better
results than their respective traditional dataset counterparts.
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Figure 7. Numerical study results on the area under the curve metric reported for each classifier when consuming the Tobii dataset, organized by the
aggregated average of classifier, data type, and selected feature extraction levels using the original dataset, principal component analysis (PCA), and
kernel principal component analysis (KPCA). Alex: AlexNet-like neural network classifier; Average: average of all classifiers; GP: Gaussian process;
KNN: k-nearest neighbors; LR: logistic regression; XGBoost: extreme gradient boosting;.

When inspecting Tables 3, we can numerically inspect the
average (and variance of) AUC, F1-score, accuracy, specificity,
and sensitivity of each classifier when consuming each data
type in both datasets. Within the Tobii dataset, the encoded data
type generally outperformed (shown in italics) the traditional
data type across most metrics and models. Although the encoded
data type that was consumed within the Tobii dataset possessed
more discriminatory capability than that in the traditional data,
the performance gap was less pronounced than those observable
in the EyeLink dataset. For example, the Tobii average (and
variance) AUC scores for the encoded data type ranged from
0.55 (0.05) to 0.82 (0.04), while the traditional data type ranged
from 0.51 (0.07) to 0.76 (0.05), and the EyeLink average
(variance) AUC scores for the same data types ranged from
0.63 (0.07) to 1.0 (0.0) and from 0.52 (0.08) to 0.96 (0.01),
respectively. There is a consistent trend across datasets that
support the encoded data are capable of providing higher values
of accuracy and performance; the F1-score for the Gaussian

process, k-nearest neighbors, logistic regression, and XGBoost
were consistently higher when using the encoded data than when
using traditional attributes in classification. This highlights the
ability of the proposed encoding procedure to improve the
balance between precision and recall in the classifiers and, as
a result, the overall effectiveness of each model’s predictions.
In terms of specificity, the encoded data type is also shown to
have a competitive edge in boosting a classifier’s ability to
correctly identify true negative class labels (experienced
participants). As seen in Table 3, the average range of
improvement lies between 0.01 to 0.04 for the EyeLink dataset
and between –0.2 to +0.15 for the Tobii dataset; the negative
value of the improvement is seen with the AlexNet-like model,
which, as explained before, may have difficulty fitting well for
classification on small datasets, made more difficult by the
variation in subconscious behavior between participants that
are recorded in spatiotemporal encodings by the proposed
methodology.
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Table 3. Numerical tabulation of mean and variance area under the curve, F1-score, accuracy, specificity, and sensitivity across each data acquisition
method, classifier, and data type.

Data acquisition systemMetric and classifier

TobiiEyeLink

Data typeData type

Traditional, average (SD)Encoded, average (SD)Traditional, average (SD)Encoded, average (SD)

Area under the curve

0.51 (0.07)0.55 (0.05)0.52 (0.08)0.63 (0.07) aAlexNet

0.76 (0.05)0.82 (0.04)0.96 (0.01)1 (0)GPb

0.74 (0.04)0.73 (0.05)0.93 (0.01)0.96 (0.01)KNNc

0.71 (0.08)0.82 (0.04)0.93 (0.01)1 (0)LRd

0.71 (0.05)0.73 (0.05)0.91 (0.01)0.97 (0.0)XGBooste

F1-score

0.23 (0.1)0.39 (0.1)0.41 (0.09)0.43 (0.1)AlexNet

0.71 (0.05)0.73 (0.07)0.90 (0.03)0.98 (0)GP

0.71 (0.04)0.61 (0.1)0.88 (0.02)0.90 (0.03)KNN

0.58 (0.09)0.74 (0.06)0.82 (0.04)0.98 (0)LR

0.67 (0.05)0.68 (0.07)0.87 (0.02)0.96 (0)XGBoost

Accuracy

0.5 (0.01)0.51 (0.0)0.49 (0.04)0.52 (0.02)AlexNet

0.7 (0.03)0.76 (0.03)0.93 (0.01)0.99 (0.0)GP

0.7 (0.02)0.69 (0.03)0.9 (0.01)0.93 (0.01)KNN

0.64 (0.03)0.77 (0.03)0.88 (0.01)0.98 (0.0)LR

0.67 (0.03)0.72 (0.03)0.9 (0.01)0.96 (0.0)XGBoost

Specificity

0.66 (0.12)0.46 (0.16)0.42 (0.22)0.43 (0.22)AlexNet

0.65 (0.07)0.80 (0.04)0.97 (0.01)0.98 (0)GP

0.67 (0.04)0.76 (0.06)0.93 (0.01)0.97 (0.01)KNN

0.67 (0.08)0.81 (0.04)0.97 (0.01)0.99 (0.0)LR

0.63 (0.08)0.76 (0.05)0.92 (0.01)0.95 (0.01)XGBoost

Sensitivity

0.32 (0.12)0.56 (0.17)0.57 (0.2)0.64 (0.22)AlexNet

0.76 (0.05)0.72 (0.07)0.89 (0.04)0.99 (0)GP

0.74 (0.04)0.61 (0.1)0.87 (0.03)0.89 (0.05)KNN

0.6 (0.09)0.72 (0.06)0.77 (0.06)0.98 (0.01)LR

0.71 (0.05)0.68 (0.07)0.86 (0.03)0.98 (0)XGBoost

aSuperior values are italicized.
bGP: Gaussian process.
cKNN: k-nearest neighbor.
dLR: logistic regression.
eXGBoost: extreme gradient boosting.
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Discussion

Principal Findings
In this study, we demonstrated the capacity of eye-tracking
technology, combined with machine learning algorithms, to
discriminate between radiologists’ experience levels. For this
purpose, we developed a novel feature encoding technique where
fixations are first spatially arranged according to their Cartesian
coordinates on chest x-ray images and temporally ordered. The
fixations are then subdivided into predefined temporal bins, and
within each bin, we count the number of eye fixations within
each subdivision. These counted bins are then concatenated to
form a vector encoding to be used as feature input for machine
learning algorithms. Our experiments showed that the discretized
vector encoding creates discriminative features that are not
captured by conventional metrics. Using the encoding approach
allows classifiers to better distinguish between participants in
terms of experience level, which highlights performance gains
(when compared with using traditional features for
discrimination) of 6.9%, 7.11%, 9.14%, 9.59%, and 5.61% for
AUC, accuracy, F1-score, sensitivity, and specificity,
respectively, aggregated across both EyeLink and Tobii datasets
in Table 3. The Tobii dataset exhibits a lower performance gain
(6.41%, 7.48%, 8.62%, 5.11%, and 9.45%) than observed using
the EyeLink dataset (7.29%, 6.83%, 9.54%, and 13.13%) due
to using a more diverse roster of participants; however, the trend
in using the proposed eye-tracking encoding approach
possessing the competitive edge is still present, highlighting
the effectiveness of spatiotemporal assortment in the introduced
method. These results validate our initial hypothesis that when
appropriately encoded, eye-tracking data can provide nuanced
insights into the difference between radiologist’s expertise
levels.

We can also observe the perceptual strategies radiologists use
during diagnostic evaluations. Previous research has often
focused on more general eye-tracking metrics without leveraging
the full potential of machine learning to analyze the data. For
example, studies by van der Gijp et al [11] and Waite et al [3]
explored how visual search patterns correlate with diagnostic
accuracy and expertise. With the help of the proposed encoding
method, such machine learning models can be developed to
determine expertise level and has the potential to identify and
track potential features from eye fixations or gaze fixations.

Limitations
While our study has shown promising results and potential
benefits, it is important to acknowledge limitations that may
have a degree of effect on our findings. One such limitation is
sample size; across both the EyeLink and Tobii datasets, there
were 2 participants in one study (EyeLink) and 8 participants
in the other (Tobii), with both containing small numbers of
images scanned by each participant. Another condition involves
the variation in data acquisition. In total, 2 different eye-tracking
devices (EyeLink and Tobii) were used for data collection, and
while serving the same overarching purpose of collecting data,
some additional variability in the findings are notably attributed
to the usage of 2 different hardware-software configurations.

Another important consideration includes the difference in
traditional feature sets between the EyeLink and Tobii datasets.
Coupled with data acquisition differences, some features from
the EyeLink software were not congruent with the Tobii dataset,
such as the usage of fixations (EyeLink) versus gaze (Tobii).
When applying the encoding approach to these datasets, the
Tobii dataset had larger yielded values in each output vector.
This did not affect the results substantially; however, it
underscores the challenge of directly comparing data from 2
sources. One final consideration was our decision to remove
certain metrics related to the location of abnormalities in chest
x-rays as features in the traditional data type during performance
evaluation. For example, we did not consider the time to first
fixation on the region of abnormality. This and other like
attributes possess statistical significance in previous works;
however, their inclusion necessitates extensive labeling,
validation, and other processing in order to establish ground
truth information for each image scanned by each participant.

Conclusions
Despite the limitations above, this study holds significant
promise and offers a range of benefits worthy of attention and
consideration for use. By extracting spatiotemporal features
from eye-tracking data, the proposed approach has demonstrated
the capacity to differentiate users based on eye-tracking behavior
alone instead of traditional methods and can be extended for
use in fields ranging from medical to educational. The approach
enables discriminability between users and offers a pathway to
gaining deeper insights into generalized differences between
levels of expertise. By exploring these pathways, this approach
holds the potential to establish more effective educational
programs that can assist users optimize their search patterns.
Respective to the study conducted, by providing support to
radiologists to find abnormalities quickly and accurately in chest
x-rays, our approach seeks to reduce perceptual errors in medical
diagnoses. In fields where the development of unique and
precise search patterns is important, the proposed approach
offers a valuable source of knowledge transfer. Transmission
of expertise from more-experienced individuals to
less-experienced individuals can be facilitated and result in
increased streamlining during the learning process and yield
more efficient and accurate search patterns. The potential
benefits can apply to professionals and trainees or students alike.

In summary, we have shown the potential for spatiotemporal
features extracted from eye-tracking data to be useful in
discriminating between radiologists of different skill levels and
opening the door to improving education. We plan to augment
this research by increasing the number of radiologists to
demonstrate generalizability and exploring additional types of
spatiotemporal analyses. The implications of our findings extend
beyond radiology, suggesting that similar methodologies could
revolutionize training and assessment protocols in various fields
that rely on visual cognition like aviation and ground
transportation. Further research could explore the integration
of these techniques into real-time training tools, potentially
transforming educational paradigms in professions requiring
visual expertise.
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