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Abstract

Background: Measuring heart rate variability (HRV) through wearable photoplethysmography sensors from smartwatches is
gaining popularity for monitoring many health conditions. However, missing data caused by insufficient wear compliance or
signal quality can degrade the performance of health metrics or algorithm calculations. Research is needed on how to best account
for missing data and to assess the accuracy of metrics derived from photoplethysmography sensors.

Objective: This study aimed to evaluate the influence of missing data on HRV metrics collected from smartwatches both at
rest and during activity in real-world settings and to evaluate HRV agreement and consistency between wearable
photoplethysmography and gold-standard wearable electrocardiogram (ECG) sensors in real-world settings.

Methods: Healthy participants were outfitted with a smartwatch with a photoplethysmography sensor that collected high-resolution
interbeat interval (IBI) data to wear continuously (day and night) for up to 6 months. New datasets were created with various
amounts of missing data and then compared with the original (reference) datasets. 5-minute windows of each HRV metric (median
IBI, SD of IBI values [STDRR], root-mean-square of the difference in successive IBI values [RMSDRR], low-frequency [LF]
power, high-frequency [HF] power, and the ratio of LF to HF power [LF/HF]) were compared between the reference and the
missing datasets (10%, 20%, 35%, and 60% missing data). HRV metrics calculated from the photoplethysmography sensor were
compared with HRV metrics calculated from a chest-worn ECG sensor.

Results: At rest, median IBI remained stable until at least 60% of data degradation (P=.24), STDRR remained stable until at
least 35% of data degradation (P=.02), and RMSDRR remained stable until at least 35% data degradation (P=.001). During the
activity, STDRR remained stable until 20% data degradation (P=.02) while median IBI (P=.01) and RMSDRR P<.001) were
unstable at 10% data degradation. LF (rest: P<.001; activity: P<.001), HF (rest: P<.001, activity: P<.001), and LF/HF (rest:
P<.001, activity: P<.001) were unstable at 10% data degradation during rest and activity. Median IBI values calculated from
photoplethysmography sensors had a moderate agreement (intraclass correlation coefficient [ICC]=0.585) and consistency
(ICC=0.589) and LF had moderate consistency (ICC=0.545) with ECG sensors. Other HRV metrics demonstrated poor agreement
(ICC=0.071-0.472).

Conclusions: This study describes a methodology for the extraction of HRV metrics from photoplethysmography sensor data
that resulted in stable and valid metrics while using the least amount of available data. While smartwatches containing
photoplethysmography sensors are valuable for remote monitoring of patients, future work is needed to identify best practices
for using these sensors to evaluate HRV in medical settings.
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Introduction

Remote patient monitoring using digitally transmitted health
data through wearable physiological and activity sensors offers
many benefits and is gaining acceptance in the medical
community [1]. For example, applications of remote monitoring
include acute conditions such as COVID-19 recovery [2] along
with chronic conditions such as heart failure [3], chronic
obstructive pulmonary disease [4], and diabetes [5]. Remote
patient monitoring via wearable sensors can improve clinical
outcomes, improve self-management of diseases, and increase
patient engagement and satisfaction [6]. Many commercial
off-the-shelf (COTS) wearable sensors provide data on important
physiological information, particularly wrist-worn devices used
to measure heart rate [7,8]. Wrist-worn devices most often use
embedded photoplethysmography sensors that detect changes
in light intensity on the skin surface due to changes in blood
volume during the cardiac cycle to estimate heart rate [9]. While
not all smartwatches are certified as medical devices currently,
they offer a way of assessing the viability of
photoplethysmography sensors, which are used in some cleared
medical devices [9-11].

Heart rate variability (HRV) is an indicator of autonomic
nervous system functioning and can be used to identify health
conditions such as respiratory illness [12], multiple sclerosis
[13], Parkinson disease [14], and traumatic brain injury [15].
While collecting wearable sensor data such as HRV can provide
multiple benefits to patients and create a more holistic picture
of health status, real-world collection of HRV can be difficult
to assess due to missing data, differences in data processing
techniques, and the quality of data collected [16]. Missing data
due to compliance and low-quality signals is an issue when
using wearable sensors to monitor HRV in patients in clinical
or research settings [16]. Missing data is common in longitudinal
research studies, and it is problematic because it can reduce
statistical power and cause bias in the estimation of parameters
[17]. This is of concern when attempting to identify health
anomalies because identifying a change in health relies on
consistent and accurate baseline HRV data [18]. As demand for
remote patient monitoring grows, an important next step is to
identify best practices for data acquisition, processing, and
analysis of HRV data from wearable sensors.

In addition to the need for best practices regarding data
missingness, more understanding is still needed for accuracy
in wrist-worn photoplethysmography sensors compared with
more accurate wearable devices. Wrist-worn sensors typically
result in greater wear time compared with chest-worn devices;
however, wrist-worn sensors are more prone to
movement-related artifacts that can negatively influence HRV
signal quality [6]. Overwhelmingly, real-world studies have
opted to use wrist-worn photoplethysmography sensors to
evaluate HRV over other more accurate methods such as
chest-worn electrocardiogram (ECG) sensors, likely improving

patient compliance in these studies. As a result, we must
determine how to best assess data from wrist-worn
photoplethysmography sensors, including accounting for missing
data and assessing data validity compared with ECG HRV data.
This study conducted long-term (months) continuous monitoring
of high-resolution HRV data during daily life activities using
a COTS smartwatch with a photoplethysmography sensor and
activity (step count) data. The primary aim of this study was to
evaluate the influence of missing data on HRV metrics collected
from a photoplethysmography-based smartwatch both at rest
and during physical activity in real-world settings. The
secondary aim of this study was to evaluate HRV agreement
and consistency between the wrist-worn photoplethysmography
sensor and a chest-worn ECG heart rate monitor both at rest
and during periods of physical activity and sleep.

Methods

Ethical Considerations
For this prospective observational study, wearable sensor data
was collected from local community members. The protocol
was approved by the Research Triangle Institute (RTI)
international institutional review board (MOD00001413).
Written consent was received from all participants for
participation and data use. The consent process emphasized that
participation was voluntary and that individuals were allowed
to withdraw their consent for participation at any time. Personal
identifying information was stored in a secured file and kept
separate from data collected once enrolled in the study. All
smartwatch and survey data were deidentified and labeled by a
participant identifier for analysis. Participants were offered US
$50 every 3 months as study compensation, and participants
could earn up to US $100 if they were enrolled for the entire 6
months of the study duration.

Participants
Healthy volunteers aged 18 years and older were included in
this study. Individuals who were pregnant or who had a
pre-existing health condition were not excluded from
participation if they were able to use the wearable sensor.
Participants were enrolled for 3 months with the opportunity to
re-enroll for up to 6 months. Demographic data were obtained
and stored in Research Electronic Data Capture (REDCap).
Recruitment and data collection took place between May 2022
and June 2023.

Device Protocol
Each participant was outfitted with a Garmin Fenix 6/6s
smartwatch, which was worn on the nondominant wrist. We
chose to use Garmin over other wrist-worn
photoplethysmography sensors because its Health Companion
Software Development Kit provides access to high-resolution
interbeat interval (IBI) data collected by photoplethysmography
sensors that allow for monitoring of HRV. Other COTS sensors
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only provide summary and other processed data. The average
heart rate derived from Garmin watches strongly correlates with
clinical ECG heart rate data (r=0.96) [19]; however, the accuracy
of HRV metrics derived from Garmin has yet to be studied.
Garmin watches integrate 2 photoplethysmography sensors for
monitoring HR and a 3-axis accelerometer for detecting
movement in the x, y, and z directions. The watch firmware
uses accelerometer signals to calculate step counts in 1-minute
windows. We used the Companion Software Development Kit
to access minimally processed IBI data and step counts from
the participants. The SIGMA+ Health app (S+ app) was installed
onto the participant’s personal mobile device or a study-issued
Samsung Galaxy 12 smartphone if participants preferred not to
use their personal mobile device for the study. The Garmin
smartwatch was paired through a Bluetooth low energy
connection to the mobile device and data from the watch was
ingested through the S+ app onto an RTI secure Amazon Web
Services server in JavaScript Object Notation format for offline
data cleaning, metric extraction and standardization, and
analysis. The initial setup included giving each user the study
Personal identification number and a unique participant ID that
did not contain personally identifiable information, which
allowed the S+ app to track the user’s data from one or more
devices through the duration of the study. Within the app, the
participant could view the connectivity status of their Garmin
Fenix watch and manually trigger a data sync if required.
Participants completed a daily health survey administered within
the S+ app, which asked questions related to illness symptoms,
sleep quality, sleep duration, and any unusual events that may
have occurred that day (ie, psychological stress, excessive
exercise, etc). Results were stored in a REDCap database.

A subset of participants (n=5) wore a Polar H10 ECG heart rate
monitor with a sampling frequency of 1000 Hz over their chest
simultaneously with the Garmin smartwatch to assess agreement
and consistency between HRV metrics. IBI values derived from
the Polar H10 chest strap show strong agreement compared
with clinical ECG recordings at rest (intraclass correlation
coefficient [ICC]=0.95) and with light exercise (ICC=0.93)
[20]. Participants were encouraged to wear the Polar H10
continuously (day and night) for 5 days and were instructed to
only remove it during showers, baths, or swimming. Polar H10
data was retrieved through the Elite HRV mobile app, which
was downloaded to the participant’s personal smartphone before
data collection [21]. Excel files containing raw IBI data were
exported from the participant’s phone and sent to an RTI email
account. We did not get measures of step counts from the Polar
H10 device because Elite HRV only collects HRV data.

Data Processing for IBI Data From Garmin and Polar
Devices
Each IBI data point acquired through the Garmin smartwatch
and S+ app had an associated timestamp with millisecond
precision. Steps from the Garmin were reported at 60-second
intervals and IBI values were reported with each detected beat.
Each IBI data point acquired through the Polar H10 monitor
and Elite HRV app was recorded with millisecond precision.
IBI artifacts (IBI>1500 ms or IBI <300 ms) were flagged and
removed. For Garmin data quality control, we evaluated the
expected data fraction, calculated as a ratio of the number of

incoming data points to the maximum number of data points
expected during the monitoring period, to assess data
missingness. For simplicity, we assumed the expected number
of IBI data points would be 60 IBI values/minute. This would
correlate with an average heart rate of 60 beats per minute,
which is a typical heart rate for someone who is sitting or
resting. The exact number of data points expected varied due
to within- and between-person differences in average heart rate.
The expected data fraction was multiplied by 100 to be
represented as a percentage between 0 and 100. For analysis,
we chose to evaluate Garmin datasets with at least 70% of
expected data to ensure we were using high-quality datasets
with minimal missing data points. The first approximately 2
weeks of data were selected for each participant with at least
70% expected data fraction. Although there is some variation
in the number of IBI data points in each 5 min window (a higher
heart rate results in more IBI data points within a window), the
datasets with at least 70% of expected data that were used for
analysis contained a mean of 250 (SD 126) IBI data points
within each 5 min window.

Garmin and Polar data were processed into 5-minute windows
with each point in the window formatted as (timestamp, value)
and aligned based on real-time so that the windows start at
5-minute marks (eg, 12:00 AM, 12:05 AM). The following
metrics were extracted in 5 min windows: time-domain metrics
(median IBI, SD of IBI values [STDRR], root-mean-square of
the difference in successive IBI values [RMSDRR[) and
frequency-domain metrics (low-frequency [LF] power,
high-frequency [HF] power, and ratio of LF to HF power
[LF/HF]) [18,22]. To calculate HRV metrics in the frequency
domain, we resampled IBI data to 5 Hz using the Piecewise
Cubic Hermite Interpolating Polynomial method [23]. If there
was a gap in the signal greater than 15s, the longest continuous
segment in the 5-minute window was used. If there were more
than 3 gaps of this length, we did not use this window. After
interpolation, the signal was filtered to the low-frequency (LF:
004 to 0.15 Hz) and high-frequency regions (HF: 0.15 to 1.0
Hz; we increased the upper limit to 1.0 Hz vs the typically used
0.40 Hz to account for physical activity when breathing rates
and heart rates increase [24,25]). We computed a value
representing the LF and HF power for 60-second and 30-second
windows, respectively, using the formula: value = ln (variance
[data window]). Values less than 2.5 and more than 9.0 were
eliminated, and the median values were calculated to represent
the 5-minute window. For Garmin smartwatch step data,
reported every minute, we calculated the average of values in
the 5-minute window; we required at least 2 valid data points
for the calculation.

Semisimulation of Garmin Data Degradation
A semisimulation design based on previous work [26] was used
to create new datasets with various amounts of Garmin IBI data
from original Garmin datasets. The premise of this
semisimulation approach was to create new datasets with
different amounts of missing data based on real wear patterns.
Using this method, we ensured that we removed data in a
realistic manner rather than randomly removing data. In this
approach, we considered data missingness patterns from datasets
with low expected data fractions and applied these patterns to
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the datasets with high expected data fractions. These
semisimulated datasets were then compared to the reference
datasets to understand how varying amounts of data missingness
influence HRV metrics. In total, 4 additional 5-minute window
samples were randomly selected that contained fewer IBI data
points. These 4 samples were inspected to identify data gap
patterns and then used to model data missingness patterns in
the selected datasets.

To recreate data missingness, we matched the data missingness
pattern from the sample 5-minute windows to each 5-minute
window in the reference datasets used for analysis. For example,
one sample dataset with 120 IBI data points (missing 60% of
data) was missing data in the first 3.15 min of the window. The
first 3.15 min of each 5-min window was removed from the
reference dataset to simulate data missingness. The simulated
datasets were then compared with the reference datasets to
identify differences in HRV metrics. Missing data simulations
were performed using Python (Python Software Foundation)

[27]. The various datasets were labeled for analysis, that consists
of (1) a reference dataset with no missing data, (2) missing 10%
of data, (3) missing 20% of data, (4) missing 35% of data, and
(5) missing 60% of data. No simulated data degradation was
performed for Polar H10 IBI data.

Statistical Analysis
Mean and SD were calculated for all descriptive variables and
HRV metrics included in the analysis. For the primary aim, due
to the large sample size of Garmin 5-minute windows for rest
(48,442 windows) and light activity (19,976 windows),
Shapiro-Wilk normality tests were not valid; therefore, we
visually inspected each Garmin HRV metric for normality using
Quantile-Quantile (Q-Q) plots. Q-Q plots that appeared as a
roughly straight 45-degree line were considered normally
distributed. Variables that were not normally distributed were
transformed using a Box-Cox transformation before analysis.
Q-Q plots of each HRV variable are shown at rest in Figure 1
and at light activity in Figure 2.
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Figure 1. Quantile-Quantile plots for the median interbeat interval (IBI), SD of IBI values (STDRR), root-mean-square error of IBI values (RMSDRR),
low frequency (LF), high frequency (HF), and the ratio of low to high frequency power at rest (steps/min=0). Box-Cox transformations were performed
for STDRR and RMSDRR metrics. Smartwatch IBI data was collected and reported from 16 individuals recruited from a community setting between
May 2022 and June 2023.
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Figure 2. Quantile-Quantile plots for the median interbeat interval (IBI), SD of IBI values (STDRR), root-mean-square error of IBI values (RMSDRR),
low frequency (LF), high frequency (HF), and the ratio of low to high frequency power at light activity (100>steps/min>0). Box-Cox transformations
were performed for RMSDRR and LF/HF metrics. Smartwatch IBI data were collected and reported from 16 individuals recruited from a community
setting between May 2022 and June 2023.

We then used linear mixed-effect models to estimate the mean
differences in each Garmin HRV metric between the datasets
with missing samples by level of missingness and the reference
dataset. A participant-specific random intercept was included
in the models to account for correlations of our sample data
among multiple 5-minute windows within each participant [28].
An indicator of the level of data missingness (data without
missing samples as reference, data with 10%, 20%, 35%, or
60% samples removed) was included in the models as a
fixed-effect covariate. The Ime4 package in the statistical
environment R (R Core Team) was used for the model
estimations [29]. The statistical significance of the estimated
differences was tested using Satterthwaite’s method with a
2-tailed significance level of 0.05, and the 95% CI were obtained
using the bootstrap method through the bootMer function of
the Ime4 package in R (1000 simulations). Separate linear mixed
models were estimated using sample data under 2 different

conditions: at rest (steps/min=0) and during light physical
activity (steps/min of >0 and <100).

For the secondary aim, we assessed the reliability of
Garmin-derived HRV metrics within each participant and their
validity compared to Polar-derived HRV metrics. The intraclass
correlation coefficients (class 2, mean rating; ICC2,k) for
consistency and absolute agreement with 95% CI were obtained
using the irr package in the statistical environment R [30]. The
magnitude of the ICC was generally interpreted as ICC2,k of
0.5-0.75 as “moderate”, ICC2,k >0.75 as “good”, and ICC2,k

>0.9 as “excellent” [31]. In addition, we visually assessed
agreement between Garmin-derived HRV metrics and
polar-derived HRV metrics using Bland-Altman analyses to
evaluate the mean differences and 95% limits of agreement
[32]. R version 4.2.2 [33] was used for statistical analyses.
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Results

Overview
Garmin data were collected from 31 participants for up to 180
days. The analyzed sample in aim 1 used a mean of 16 (SD 3)
consecutive days of data from 16 participants resulting in 48,442
five-minute windows of data that represented rest (steps/min=0)
and 19,976 windows of data that represented light activity (100
>steps/min >0). Although there is not a clear precedence for
what percentage of missing data is acceptable, we wanted the
reference datasets to contain a minimal amount of missing data.
Therefore, each participant included in the analysis had an
expected data fraction of at least 70% (including daytime and

nighttime), and participants who did not meet this requirement
(n=15) were not included in the analysis. Differences in days
of data occurred because of between-person variance in
unprocessed IBI data and differences in wear patterns. For aim
2, 5 participants wore both the Garmin Fenix watch and Polar
heart rate monitor for 5 consecutive days. Demographic data is
shown in Table 1. The averages of each HRV metric for aims
1 and 2 are shown in Table 2 and Table 3. Box-Cox
transformations were performed for STDRR and RMSDRR
metrics at rest (steps/min=0; Figure 1) and RMSDRR and LF/HF
at light activity (100>steps/min>0; Figure 2). Tables 4 and 5
show results from the linear mixed models, specifically the
estimated error between the reference and missing data, the SE,
and the 95% CIs of the estimated difference.

Table 1. Participant characteristics of a community sample of individuals who provided smartwatch data between May 2022 and June 2023. In total,
31 individuals were recruited, data from 16 individuals were used in aim 1, and data from 5 individuals were used in aim 2.

Aim 2 (n=5), mean (SD)Aim 1 (n=16), mean (SD)Total sample (n=31), mean (SD)

35.2 (4.1)38.6 (13.3)38.6 (10.7)Age (years)

3 (60)13 (81)16 (53)Sex (females), n (%)

1.77 (0.08)1.77 (0.12)1.73 (0.12)Height (m)

95.4 (24.7)87.1 (16.5)83.4 (17.2)Mass (kg)

30.2 (5.6)27.7 (4.1)27.9 (4.7)BMI (kg/m2)

Table 2. Heart rate variability metrics for aim 1 datasets in a community sample of 16 individuals who provided smartwatch data between May 2022
and June 2023.

60% Missing
Garmin data

35% Missing
Garmin data

20% Missing
Garmin data

10% Missing
Garmin data

Reference Garmin data

Resting (steps/min=0)

887.85888.45887.88888.17888.86Median interbeat interval

52.8757.1457.4457.4457.41SD of interbeat interval values

40.9841.5341.8641.8341.70Root-mean-square of the difference in
successive interbeat interval values

6.506.506.316.386.52Low-frequency power

5.515.504.835.015.51High-frequency power

1.201.201.321.291.19Ratio of low-frequency to high-frequency
power

Light activity (0<steps/min<100)

695.30692.65687.19688.02690.70Median interbeat interval

50.3163.9663.3963.5563.90SD of interbeat interval values

34.5735.1135.8735.7235.20Root-mean-square of the difference in
successive interbeat interval values

6.266.266.196.226.28Low-frequency power

5.555.555.135.265.59High-frequency power

1.141.131.211.191.13Ratio of low-frequency to high-frequency
power
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Table 3. Heart rate variability metrics for aim 2 datasets in a community sample of 5 individuals who provided smartwatch data between May 2022
and June 2023.

60% Missing
Garmin data

35% Missing
Garmin data

20% Missing
Garmin data

10% Missing
Garmin data

Reference Garmin data

Resting (steps/min=0)

887.85888.45887.88888.17888.86Median interbeat interval

52.8757.1457.4457.4457.41SD of interbeat interval values

40.9841.5341.8641.8341.70Root-mean-square error

6.506.506.316.386.52Low-frequency power

5.515.504.835.015.51High-frequency power

1.201.201.321.291.19Ratio of low-frequency to high-frequency
power

Light activity (0<steps/min<100)

695.30692.65687.19688.02690.70Median interbeat interval

50.3163.9663.3963.5563.90SD of interbeat interval values

34.5735.1135.8735.7235.20Root-mean-square error

6.266.266.196.226.28Low-frequency power

5.555.555.135.265.59High-frequency power

1.141.131.211.191.13Ratio of low-frequency to high-frequency
power
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Table 4. Linear mixed-effects model results of the effects of missing raw data on heart rate variability metrics collected at rest (steps/min=0) in a
community sample of 16 individuals who provided smartwatch data between May 2022 and June 2023.

P valueUpper limit of the
95% CI

Lower limit of the
95% CI

SEEstimated difference between refer-
ence data and missing data

Heart rate variability metric and level of miss-
ing data compared with reference

Median interbeat interval

.431.139–2.6430.939–0.73910%

.270.978–3.0190.939–1.0420%

.621.374–2.3410.939–0.46835%

.240.928–2.8800.939–1.09560%

SD of interbeat interval values

.690.010–0.0140.006–0.00210%

.590.008–0.0150.006–0.00320%

.001a–0.008–0.0310.006–0.02035%

<.001a–0.204–0.2280.006–0.21560%

Root-mean-square

.270.013–0.0030.0040.00510%

.200.014–0.0030.0040.00520%

.001a–0.005–0.0210.004-0.01435%

<.001a–0.044–0.0610.004-0.05360%

Low-frequency power

<.001a–0.122–0.1450.006-0.13410%

<.001a–0.193–0.2150.006-0.20420%

.005a–0.005–0.0280.006-0.01635%

.004a–0.005–0.0280.006-0.01660%

High-frequency power

<.001a–0.490–0.5120.005-0.50110%

<.001a–0.667–0.6890.005-0.67820%

.02a–0.002–0.0240.005-0.01335%

.270.005–0.0160.005-0.00660%

Ratio of low frequency to high frequency

<.001a0.0980.0940.0010.09610%

<.001a0.1320.1280.0010.13020%

<.001a0.0070.0030.0010.00535%

<.001a0.0060.0020.0010.00460%

aP value <.05 indicates a significant difference compared with the reference dataset.
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Table 5. Linear mixed-effects model results of the effects of missing raw data on heart rate variability metrics collected at light activity (100>steps/min>0)
in a community sample of 16 individuals who provided smartwatch data between May 2022 and June 2023.

P valueUpper limit of
the 95% CI

Lower limit of
the 95% CI

SEEstimated difference between refer-
ence data and missing data

Heart rate variability metric and level of missing
data compared with reference

Median interbeat interval

.01a–0.627–4.6381.049–2.64510%

<.001a–1.481–5.4541.049–3.47320%

.063.958–0.0511.0491.99835%

<.001a6.5772.5131.0504.63160%

SD of interbeat interval values

.110.002–0.0110.003–0.00510%

.02a–0.001–0.0140.003–0.00820%

.080.001–0.0120.003–0.00635%

<.001a–0.210–0.2230.003–0.21760%

Root-mean-square

<.001a0.0520.0260.0070.03910%

<.001a0.0640.0370.0070.05020%

.05–.001–0.0250.007–0.01335%

<.001a–0.055–0.0810.007–0.06960%

Low-frequency power

<.001a–0.042–0.0670.006–0.05410%

<.001a–0.075–0.1000.006–0.08720%

<.001a–0.015–0.0400.006–0.02735%

.003a–0.006–0.0310.006–0.01960%

High-frequency power

<.001a–0.313–0.3360.006–0.32410%

<.001a–0.441–0.4640.006–0.45220%

<.001a–0.021–0.0450.006–0.03335%

<.001a–0.027–0.0500.006–0.03860%

Ratio of low frequency to high frequency

<.001a0.0450.0420.0040.04310%

<.001a0.0610.0580.0010.05920%

0.120.0004–0.0030.001–0.00135%

0.330.002–0.0010.001–0.00160%

aP value <0.05 indicates a significant difference compared to the reference dataset.

Aim 1: Heart Rate Variability Metrics at Rest
At rest (steps/min=0), there was no difference in median IBI
values between reference and simulated data (P>.05; Table 4
and Figure 3). There were significant differences in STDRR
and RMSDRR values between the reference and 35% and 60%
missing data (P<.05; Table 4, Figure 3). LF and LF/HF metrics

demonstrated significant differences between the reference and
all simulated datasets (P<.05; Table 4, Figure 3). HF in the
reference dataset was significantly higher compared to the 10%,
20%, and 35% missing datasets (P<.05; Table 4, Figure 3).
There was no significant difference between the reference
dataset and the 60% missing dataset (P>.05; Table 4 and Figure
3).
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Figure 3. Heart rate variability metrics at rest (steps/min=0). HRV: heart rate variability; IBI: interbeat interval; LF/HF: ratio of low frequency power
to high frequency power; RMSDRR: root-mean-square of the difference in successive IBI values; STDRR: standard deviation of interbeat interval
values.

In Figure 3, reference smartwatch data were compared to (1)
10% missing data (2), 20% missing data (3), 35% missing data
(4), and 60% missing data (5) per 5-minute window. Smartwatch
IBI data were collected and reported from 16 individuals
recruited from a community setting between May 2022 and
June 2023.

Aim 1: Heart Rate Variability Metrics at Light Activity
At light activity (100>steps/min>0), there were significant
differences in median IBI between the reference and all
simulated datasets (P<.05; Table 5 and Figure 4). STDRR and
RMSDRR values were different between the reference and

simulated datasets with 10%, 20%, and 60% missing data
(P<.05; Table 5 and Figure 4). Differences between the reference
dataset and 35% missing data were not statistically significant,
although results trended toward statistical significance (P=.06).
LF and HF metrics demonstrated significant differences between
the reference dataset and all simulated datasets (P<.05; Table
5 and Figure 4). LF/HF in the reference dataset was significantly
higher compared with the 10% and 20% missing datasets
(P<.05; Table 5 and Figure 4). There was no significant
difference between the reference dataset and the 35% and 60%
missing datasets (P>.05; Table 5 and Figure 4).
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Figure 4. Heart rate variability metrics at light activity (100>steps/min>0). HRV: heart rate variability; IBI: interbeat interval; LF/HF: ratio of low
frequency power to high frequency power; RMSDRR: root-mean-square of the difference in successive IBI values; STDRR: standard deviation of
interbeat interval values.

In Figure 4, Reference smartwatch data were compared to (1)
10% missing data (2), 20% missing data (3), 35% missing data
(4), and 60% missing data (5) per 5 min window. Smartwatch
IBI data was collected and reported from 16 individuals recruited
from a community setting between May 2022 and June 2023.

Aim 2: Validity and Agreement of
Photoplethysmography-Derived Heart Rate Variability
Compared With ECG-Derived Heart Rate Variability
Median IBI values calculated from Garmin
photoplethysmography sensors had moderate agreement

(ICC=0.585) and consistency (ICC=0.589) with Polar ECG
data, and LF calculated from Garmin photoplethysmography
sensors had moderate consistency (ICC=0.545) with Polar ECG
data. All other HRV metrics (STDRR, RMSDRR, LF, HF, and
LF/HF) demonstrated poor agreement between Garmin
photoplethysmography and Polar ECG data (ICC=0.071-0.470,
Table 6). Bland-Altman visual analysis indicated systematic
bias present in all HRV metrics, with particularly notable bias
in RMSDRR, HF, and LF/HF (Figure 5). The root-mean-square
error between Garmin and Polar devices for each HRV metric
are listed in Table 6.
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Figure 5. Bland-Altman plots for differences in heart rate variability metrics measured with a Garmin smartwatch and Polar heart rate monitor. HRV
data was collected and reported from 5 individuals recruited from a community setting between May 2022 and June 2023. HRV: heart rate variability;
IBI: interbeat interval; LF/HF: ratio of low frequency power to high frequency power.
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Table 6. Agreement and consistency between heart rate variability metrics were measured with a Garmin smartwatch and Polar heart rate monitor in
a community sample of 5 individuals who provided data between May 2022 and June 2023.

Root-mean-square
errorICC consistency, mean (95% CI)ICCa agreement, mean (95% CI)Heart rate variability metric

105.230.589 (0.547 to 0.628)0.585 (0.538 to 0.626)Median interbeat interval

30.920.472 (0.417 to 0.521)0.441 (0.302 to 0.545)SD of interbeat interval values

40.980.255 (0.178 to 0.324)0.214 (0.028 to 0.357)Root mean square of the difference in successive inter-
beat interval values

0.970.545 (0.497 to 0.588)0.473 (0.163 to 0.645)Low-frequency power

1.350.429 (0.370 to 0.483)0.404 (0.283 to 0.499)High-frequency power

0.370.117 (0.024 to 0.2)0.071 (–0.09 to 0.207)Low-frequency to high-frequency power ratio

aICC: intraclass correlation coefficient.

Discussion

Principal Findings
To our knowledge, this paper shows for the first time the results
of long-term (months) continuous monitoring of high-resolution
HRV data during daily life activities using a COTS smartwatch
with photoplethysmography sensor and activity (step count)
data. This study describes a methodology for the extraction of
HRV metrics from IBI time-series data that resulted in stable
and valid metrics while using the least amount of available data.
By understanding patterns of missing data, we can maximize
the amount of usable data and minimize the impact of data gaps
due to suboptimal wear compliance or any issues in the data
synchronization between the watch and the smartphone. We
found that time-domain HRV metrics (median IBI, STDRR,
and RMSDRR) are more resilient to missing data when the
participant is in a resting state; however, during light activity
missing data influence time-domain HRV metrics. Median IBI
measurements remain stable at rest even at 60% data
degradation. STDRR and RMSDRR measurements remain
stable at rest until 35% data degradation. Frequency-domain
HRV metrics (LF, HF, and LF/HF) are less resilient to missing
data both at rest and during light activity and are unstable even
at 10% data degradation. It is unclear why HF (during rest) was
not significantly different at 60% data degradation and LF/HF
(during light activity) was not significantly at 35% and 60%
data degradation compared to reference data. We speculate that
there may not be enough data at these levels of data degradation
for accurate comparison. Results from this study suggest that
analyses and algorithms that use primarily frequency-domain
HRV metrics are more sensitive to sparse data collection.
Researchers and engineers should carefully evaluate HRV
metrics in situations where data are sparse. If missing data are
an issue in a research study, it may be beneficial to rely on
metrics and algorithms using time-domain HRV metrics.

A few previous studies have simulated missing data patterns in
HRV data by evaluating differences between scattered missing
beats (one or two missing data points dispersed throughout the
dataset) and bursts of missing beats (longer periods of missing
data likely due to not wearing the device) [34,35]. Our study
considered data characteristics from real HRV data patterns to
remove data instead of using a random data removal approach.
We found that datasets with very sparse data (missing 35% and

60% of data points per 5-minute window) typically had one
burst of missing data. For example, we identified a 3.15 min
data gap (60%) during the beginning of one 5-minute window.
We also identified missing data between 1 minute and 2.75
minutes (35%) of another 5-minute window. The 20% and 10%
missing datasets were missing 0.80 minutes and 0.63 minutes,
respectively, of data scattered randomly throughout the trial,
most often in 1-2 second increments. In general, 5 min windows
that had data gaps that were smaller and more randomly
dispersed had a greater number of IBI datapoints, whereas
5-minute windows that had one larger burst of missing data,
often at the beginning of the 5-minute window, had fewer IBI
datapoints. We hypothesize that these larger bursts of missing
data may be the result of noncompliance (ie, not wearing the
Garmin watch), and the smaller data gaps may be due to
movement artifacts or device malfunction. Scattered missing
data due to movement artifacts is typically considered data
missing at random or missing completely at random [16]. Data
missing at random or missing completely at random do not
necessarily produce a bias in outcomes [17]. Bursts of missing
data that occur at similar times each day or routinely for a
particular purpose (ie, bathing) may be considered data missing
not at random, which could lead to biases in HRV outcomes
[16]. Further understanding of the type of missing data within
a 5-minute window is needed in future work.

Our secondary objective was to report validity and agreement
between the Garmin photoplethysmography wrist-worn sensor
compared with a chest-worn ECG sensor (Polar), which is closer
to a gold standard that would be used in a laboratory setting to
evaluate HRV [36,37] and has been used in the field for HRV
biofeedback [38]. ICCs for agreement and consistency were
mostly poor between Garmin and Polar devices. ICCs for
consistency were moderate for median IBI and LF, suggesting
these HRV metrics may be more reliable to measure in a
real-world setting. Bland-Altman plots showed systematic bias
in RMSDRR, HF, and LF/HF metrics. Specifically, Garmin
tended to overreport lower values and underreport higher values,
indicating that Garmin generally produced a smaller range of
RMSDRR, HF, and LF/HF values compared to Polar. Our study
compared processed HRV metrics (beyond a simple averaged
heart rate calculation) between devices under free-living
conditions. Previous studies have shown higher validity and
agreement between wrist-worn photoplethysmography sensors
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and Polar ECG average heart rate [36,37]; however, these studies
performed protocols in controlled, laboratory settings. Results
from this study highlight that agreement and consistency
between photoplethysmography wrist-worn sensors and ECG
sensors are lower in free-living conditions and should be
considered when evaluating HRV metrics. Commercially
available wearable technology continues to grow at a rapid pace,
and sensors that provide more accurate data are needed. Future
studies should evaluate the accuracy of HRV data in emerging
sensors.

Our study is the first to our knowledge to address the effects of
missing data using real examples of HRV data patterns collected
with photoplethysmography sensors; however, there are some
limitations to our current work. In our current sample, we have
limited labeling of HRV data. Future studies should include
daily self-reported activity logs to determine when participants
are sleeping, exercising, or not wearing their watch. We were
unable to evaluate data missingness during levels of high activity
(steps/min>100) because we did not have enough 5-minute
windows with high step counts. It is best to evaluate high levels
of activity in smaller time windows since many people engage
in high activity for very short durations; however, a minimum
window of 5 minutes is needed to accurately calculate
frequency-domain HRV metrics [39]. In future work, we will
aim to recruit individuals who are engaging in high levels of
activity. In addition, we recruited healthy individuals for this
study, but we did not exclude individuals with potential
confounders that could have affected HRV data. For example,
some participants may have had infrequent irregular heart
rhythms (ie, heart skipping a beat) or may have taken
medications that could have affected HRV values. Finally, our
small sample size when comparing Garmin to Polar HRV data

limits the generalizations we can make regarding Garmin's
validity in real-world settings.

Conclusion
Findings from this study have important implications for best
practices for photoplethysmography wearables use in clinical
and research settings. Time-domain HRV metrics (median IBI,
STDRR, and RMSDRR) collected in a resting state remain
stable until at least 35% data degradation. Frequency-domain
HRV metrics (LF, HF, and LF/HF) are less resilient to missing
data both at rest and during light activity and are unstable even
at 10% data degradation. Studies that allow for greater than
10% data degradation for frequency-domain HRV metrics may
introduce bias into their estimates, specifically the
underestimation of LF and HF values. Correction methods such
as gap-filling are possible to replace missing data; however,
differences in HRV outcomes will still exist compared with
more complete datasets without data loss [34]. In general, most
derived HRV metrics from the photoplethysmography-based
sensors used demonstrated moderate to poor agreement and
consistency with ECG-based sensors in a real-world setting,
and only median IBI values had reasonable agreement and
consistency between the 2 sensing modalities. Despite the
differences between photoplethysmography and ECG, we may
conclude that given the stability of time-domain HRV metrics
for up to 35% data degradation, these metrics could result in
more reliable calculations of health metrics compared with
frequency-domain metrics when monitoring patients using
wrist-worn photoplethysmography sensors. In conclusion, while
photoplethysmography sensors are valuable for remote
monitoring of patients, future work is needed to identify best
practices and the most accurate HRV metrics when using
photoplethysmography sensors to evaluate HRV in medical
settings.
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