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Abstract
The study introduces MedCheckLLM, a large language model–driven framework that enhances medical record evaluation
through a guideline-in-the-loop approach by integrating evidence-based guidelines.
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Introduction
Large language models (LLMs) have demonstrated enor-
mous potential in assessing complex datasets in health care
across many applications [1,2]. One underexplored area
is their application for the reliable evaluation of medical
documents. The automated evaluation of these documents
has the potential to enhance patient safety. The system’s
reasoning process must be (1) transparent and comprehensible
to human evaluators and (2) guided by established medical
guidelines proven to increase patient safety [3].

In this study, we introduce a framework that con-
sists of a multistep approach for medical record eval-
uation that incorporates guidelines into the evaluation
process (ie, guideline-in-the-loop). Our proposed algorithm,
MedCheckLLM, is an LLM-driven, structured reasoning
mechanism designed to automate the evaluation of medical
records against evidence-based guidelines. The guidelines
are deterministically accessed and returned to the LLM as
input without further model fine-tuning. This strict separation
of LLM and guidelines is expected to increase the valid-
ity and interpretability of the evaluations. The approach's
step-by-step structure could improve transparency in clinical

applications. The primary objective of this research is to
introduce the conceptual framework and assess its feasibility.

Methods
The MedCheckLLM algorithm begins by extracting a
patient’s diagnosis from the medical report (Figure 1).
Based on the diagnosis, it suggests an appropriate guide-
line. A human medical expert makes the final guideline
selection. Guidelines are then accessed independently of the
LLM’s mechanisms using programmatically built interfaces
for guideline retrieval. Subsequently, guidelines are provi-
ded as input to the LLM and are either identified as
already formatted in a usable checklist or converted into a
checklist. This diagnosis-specific checklist is used to assess
the medical report by the LLM, with a final verification
by a human medical expert. To test this approach, we
used expert-validated simulated medical reports (simulated
dataset) and physician-generated medical reports (physician
dataset). Performance was analyzed for patient histories with
headaches using guidelines from the International Headache
Society and the physician dataset for four further neurological
diagnoses (ie, border zone infarction, meningitis, neuromyeli-
tis optica, and subarachnoid haemorrhage). The validity of
this method was further analyzed by evaluating generated
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doctor’s notes with a correct diagnosis compared to doctor’s
notes with a false diagnosis. The LLMs, GPT-4 and Claude-3
were used for testing (see Multimedia Appendix 1).

Figure 1. Workflow of MedCheckLLM. A medical report including medical history, diagnosis and treatment is provided as input. First, the LLM
identifies the given diagnosis. Second, it suggests a medical guideline for evaluation of the medical report, with a human medical expert making
the final selection. Then, independently of the LLM, the selected guideline is accessed, and diagnosis-specific text is extracted and inputted into
the LLM. Subsequently, the LLM determines whether the input guideline text is in checklist format; if not, it extracts a checklist. Using this
diagnosis-specific checklist, the LLM evaluates the medical report based on the diagnosis-specific checklist. Finally, a human expert assesses the
LLM evaluation. Dashed arrow: Checklist extraction instead of detection of checklist format. Blue box: Component uses an LLM. Green Box:
Components do not use an LLM.

Results
We evaluated the medical report analysis conducted by
MedCheckLLM for various headache diagnoses. In the
simulated dataset, MedCheckLLM (based on GPT-4 and
Claude-3, Table 1) extracted the specified diagnosis correctly
in 100% of cases from a list of 61 possible diagnoses from
The International Classification of Headache Disorders-3 [4].
The model suggested existing evidence-based guidelines in

70.59% (12/17) of medical reports and detected the for-
mat of the guidelines as checklists in 100% of the cases
(N=17). MedCheckLLM accurately evaluated 87% (67/ 77)
of checklist items. Performance on the physician dataset
showed an accurate evaluation in 77.4% (24/ 31) of checklist
items (Table 2). It identified incorrect diagnoses where the
stated diagnosis did not align with the content of the doctor’s
letters in 94.1% (16/17) of cases, while it correctly recognized
100% (N=17) of letters with matching diagnoses.

Table 1. Performance of MedCheckLLM on the simulated dataset.

Elements of algorithmic structure GPT-4 performance, % (n/N) Claude-3 performance, % (n/N)
Explanation of specific task of each
element

Extracting stated diagnosis 100 (17/17) 100 (17/17) Extract the diagnosis that is stated in
the medical report

Suggestion of existing guidelines 70.6 (12/17) 58.8 (10/17) Suggest a guideline that should be
used to evaluate the medical report

Detection of checklist 100 (17/17) 100 (17/17) Detect whether the accessed
guidelines are in a structured
checklist- criteria format

Evaluation of diagnostic criteria
(checklist items)

87 (67/77) 83.8 (62/74) Assess whether the criteria listed in
the checklist are met in the medical
report

Evaluation of letters with correct
diagnosis (clinical descriptions and
diagnosis match)

100 (17/17) 94.1 (16/17) Assess whether the diagnosis stated
in the medical report aligns with the
clinical descriptions

Evaluation of letters with false
diagnosis (clinical descriptions and
diagnosis do not match)

91.4 (16/17) 91.4 (16/17) Evaluate whether the diagnosis that
is stated in the medical report fits the
clinical descriptions

Table 2. Performance of MedCheckLLM on the physician dataset.
Element of algorithmic structure Stroke Meningitis Neuromyelitis optica Subarachnoid hemorrhage
Extracting stated diagnosis Yes Yes Yes Yes
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Element of algorithmic structure Stroke Meningitis Neuromyelitis optica Subarachnoid hemorrhage
Suggestion of existing guidelinesa Yes, applicable Yes, partially

applicable
Yes, applicable Yes, partially applicable

Creation of checklist, level of detaila Yes, moderate
detail

Yes, moderate detail Yes, thorough detail Yes, minimal detail

Evaluation of diagnostic criteria, % (n/N) 100 (7/7) 66.7 (4/6) 87.5 (7/8) 60 (6/10)
aThe responses were classified as yes, and partially applicable,applicable, or minimal, moderate, or thorough detail.

Discussion
The framework of MedCheckLLM represents a promising
approach for a comprehensive, guideline-anchored review of
electronic health records. It holds the potential to function as
a quality assurance framework throughout patient care due to
its advantages of separate partitioning of the LLM and the
guidelines, rather than training guidelines into an LLM. The
flexibility of this approach allows for immediate implemen-
tation of guideline updates or the option to implement
customized protocols for subgroups of patients. Due to
the checklist-based approach, each item can be verified

individually, thus increasing the algorithm’s interpretability,
which is crucial in health care settings [5]. Due to the LLM’s
subpar guideline suggestion capability, medical experts are
integrated at this step to ensure that established guidelines are
used. Further research is essential to advance the devel-
opment of LLM-driven methods for extracting checklists
from unstructured guidelines, as well-structured guidelines
are crucial for detailed, high-quality checklists. Further, this
framework facilitates improved data mining practices in
electronic health records [6]. In the future, it is crucial to
address privacy concerns to ensure the ethical application of
these powerful tools in real-world clinical settings [7-9].
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Multimedia Appendix 1
Large language models used in this study.
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